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Abstract7

A homogeneous set of a graph G is a set X of vertices such that 2 ≤ |X| < |V (G)|8

and no vertex in V (G) − X has both a neighbor and a non-neighbor in X. A graph9

is prime if it has no homogeneous set. We present an algorithm to decide whether a10

class of graphs given by a finite set of forbidden induced subgraphs contains infinitely11

many non-isomorphic prime graphs.12

Keywords: modular decomposition, induced subgraph, prime graph, homogeneous set13

1 Introduction14

All graphs in this paper are simple. We writeH �i G if a graphH is isomorphic to an induced15

subgraph of a graph G, which is a subgraph of G obtained by deleting some vertices. A class16

C of graphs is hereditary if for all graphs H and G, H ∈ C whenever H �i G and G ∈ C.17

For a set X of graphs, we say G is X-free if H 6�i G for all H ∈ X. Let us write Free(X) to18

denote the class of X-free graphs. It is clear that for each hereditary class C of graphs, there19

exists a set X of graphs such that C = Free(X), simply by taking X as �i-minimal graphs20

∗Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. NRF-2017R1A2B4005020).

1



not in C. Note that this set X is not necessarily finite (for example, consider the class of1

forests, whose minimal forbidden set contains all cycles on three or more vertices).2

A homogeneous set (also known in the literature as clans [12], intervals [17, 20], or3

modules [15, 21]) of a graph G is a set X of vertices such that 2 ≤ |X| < |V (G)| and each4

vertex in V (G)−X is either complete or anti-complete to X. A graph is prime1 if it has no5

homogeneous set.6

For positive integers n, let Pn be a path on n vertices and let K1,n be a complete bipartite7

graph on n + 1 vertices where one part consists of one vertex. In P4-free graphs, also8

known as cographs [8], it is well known that they have no prime graphs on three or more9

vertices. However, in K1,3-free graphs, commonly known as claw-free graphs, we can easily10

find infinitely many prime graphs, such as all cycle graphs on at least 5 vertices. Thus we may11

ask the following question: for a given set L of finitely many graphs, can we decide whether12

there are infinitely many non-ismorphic L-free prime graphs? We answer this question13

positively as follows.14

Theorem 1.1. For a given finite set L of graphs, there exists an algorithm to decide whether15

Free(L) contains infinitely many non-isomorphic prime graphs.16

Prime graphs form the ‘building blocks’ of all other graphs by means of the modular17

decomposition (See [3, Theorem 1.5.1]). The modular decomposition first appeared in the18

abstract of a talk by Fräıssé [13] in 1953, although its first appearance in an article seems to19

be Gallai [14]. It has since appeared in a number of contexts, ranging from game theory to20

combinatorial optimization.21

The significance of Theorem 1.1 is that if a hereditary class C = Free(L) of graphs has only22

finitely many non-isomorphic prime graphs, then the class has a number of desirable proper-23

ties. For example, C is well-quasi-ordered by the induced subgraph relation [18, Theorem 6]24

(in other words, C contains no infinite set of graphs no one of which is an induced subgraph25

of any other), and every graph in C has bounded clique-width [11], which itself gives rise to26

a number of desirable algorithmic properties, via the meta-theorem of Courcelle, Makowsky,27

and Rotics [10].28

Brignall, Ruškuc, and Vatter [5] studied an analogous problem for permutations, under29

the ‘containment’ ordering. In the theory of permutations, simple permutations correspond30

to prime graphs in our context. They proved that there exists an algorithm to determine31

whether a given hereditary class of permutations described by finitely many forbidden per-32

mutations admits infinitely many simple permutations. To prove the existence of a decision33

algorithm, they utilise a theorem on unavoidable subpermutations in large simple permuta-34

tions by Brignall, Huczynska, and Vatter [4].35

For us, it is also necessary to understand unavoidable induced subgraphs in large prime36

graphs. Recently Chudnovsky, Kim, Oum, and Seymour [6] proved such a theorem, which37

states that every sufficiently large prime graph contains one of a few large prime graphs as38

an induced subgraph. We will review this theorem in detail in Theorem 2.2. Our algorithm39

will check whether all these unavoidable induced subgraphs are forbidden by the given set L40

1Other terms that have been used for ‘prime’ include indecomposable, irreducible, and primitive.
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of forbidden graphs. If all of them are forbidden, then Free(L) contains only finitely many1

non-isomorphic prime graphs and so the algorithm terminates with the answer NO. If at2

least one of them is not forbidden, then we prove that Free(L) contains arbitrarily large3

prime graphs and so the algorithm terminates with the answer YES.4

One outcome of Theorem 2.2 dominates the work to prove Theorem 1.1, namely the case5

of ‘chains’ of length n, and this is covered in Section 3. In theory, to handle this case one6

could employ automata-theoretic arguments analogous to those used in [5] to handle ‘pin7

sequences’, the direct analogue of chains for permutations. Instead, we will present a purely8

combinatorial argument, using a few applications of the pigeonhole principle, to show that if9

a class Free(L) contains arbitrarily long chains, then it must contain arbitrarily long chains10

with a periodic construction, whose period is bounded by a function of the largest graph in11

L.12

The remaining cases from Theorem 2.2 and hence the proof of Theorem 1.1 are covered13

in Section 4.14

2 Unavoidable induced subgraphs in large prime graphs15

Chudnovsky, Kim, Oum, and Seymour [6] proved that every sufficiently large prime graph16

contains one of a few large prime graphs as an induced subgraph. After a couple of prelim-17

inary concepts, we introduce definitions of those large prime graphs and the result in this18

section.19

The 1-subdivision of a graph G is the graph H obtained from G by subdividing every20

edge once. The line graph of a graph G is the graph H whose vertex set is V (H) = E(G)21

and two vertices e1, e2 are adjacent in H if two edges e1, e2 share an end in G. We are22

particularly interested in the 1-subdivision of K1,n, and the line graph of K2,n, both of which23

are prime for all n ≥ 3, and illustrated in Figure 1(i) and (ii), respectively.24

The thin spider with n legs is the graph H with vertex set V (H) = {v1, v2, . . . , vn} ∪25

{u1, u2, . . . , un} and edge set E(H) = {viui : 1 ≤ i ≤ n} ∪ {uiuj : 1 ≤ i < j ≤ n}. The half-26

graph of height n is the graph H with vertex set V (H) = {v1, v2, . . . , vn} ∪ {u1, u2, . . . , un}27

and edge set E(H) = {viuj : 1 ≤ i ≤ j ≤ n}. The graph H ′n,I has vertex set V (H ′n,I) =28

{v1, v2, . . . , vn} ∪ {u1, u2, . . . , un} ∪ {w} and edge set E(H ′n,I) = {wvi : 1 ≤ i ≤ n} ∪ {viuj :29

1 ≤ i ≤ j ≤ n} ∪ {uiuj : 1 ≤ i < j ≤ n}. Finally, the graph H∗n has vertex set V (H∗n) =30

{v1, v2, . . . , vn} ∪ {u1, u2, . . . , un} ∪ {w} and edge set E(H∗n) = {wv1} ∪ {viuj : 1 ≤ i ≤ j ≤31

n} ∪ {uiuj : 1 ≤ i < j ≤ n}. Examples of these graphs are illustrated in Figure 1(iii)–(vi),32

and it is easy to see that these graphs are prime.33

A chain C of length n is a sequence v0, v1, . . . , vn of distinct vertices such that for each34

i ∈ {2, . . . , n}, vi is adjacent to all v0, v1, . . . , vi−2 but not vi−1, or non-adjacent to all35

v0, v1, . . . , vi−2 but adjacent to vi−1. We call v0 the first vertex of the chain. The graph36

induced by a chain of length n is prime, or is prime after discarding one of the vertices v0 or37

v1, as shown by the following result.38

Proposition 2.1 ([6, Corollary 2.3]). Every chain of length n > 3 contains a chain of length39

n− 1 inducing a prime graph.40
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(i) (ii) (iii) (iv) (v) (vi)

Figure 1: Examples of the unavoidable graphs of cases (i)–(vi) in Theorem 2.2.

Note that, in a slight departure from [6], we will not necessarily require that a chain is1

contained inside some specified graph. Instead, chains can be considered as sequences of2

vertices, which may or may not be embedded inside some larger graph, depending on the3

context. Additionally, we may from time to time abuse notation by referring to the chain4

when we mean the graph induced by a chain.5

We are now ready to state the main result of [6], which provides the structural basis for6

our algorithm.7

Theorem 2.2 (Chudnovsky, Kim, Oum and Seymour [6]). For every integer n ≥ 3, there8

exists N such that every prime graph with at least N vertices contains one of the following9

graphs as an induced subgraph.10

(i) The 1-subdivision of K1,n or its complement.11

(ii) The line graph of K2,n or its complement.12

(iii) The thin spider with n legs or its complement.13

(iv) The half-graph of height n.14

(v) The graph H ′n,I .15

(vi) The graph H∗n or its complement.16

(vii) A prime graph induced by a chain of length n.17

Note that in the characterization of Theorem 2.2, the complements of the half-graphs18

(case (iv)) and H ′n,I (case (v)) both contain (as induced subgraphs) graphs of the same19

type, with two vertices removed. Since the graphs in cases (i)–(vi) of Theorem 2.2 admit20

regular structures, it is relatively straightforward to check whether a class Free(L) contains21

arbitrarily large ones. The details are provided in Section 4.22

3 Chains and strings23

In this section, we consider the chains that arise in case (vii) of Theorem 2.2. Note that the24

complement of a chain is again a chain.25
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0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0

Figure 2: Examples of chains, and their encodings as strings via the bijection φ. Note the
two examples on the right give rise to graphs that are isomorphic.

For convenience, we seek to describe an encoding of chains as strings over the alphabet1

{0, 1}. First, we introduce some elementary concepts about strings.2

A (0, 1)-string (or simply a string) is an element of {0, 1}∗, where {0, 1}∗ is the set of3

all finite sequences of 0 and 1. The length of a string S is the number of 0’s and 1’s in the4

string and is denoted by |S|. Given strings S and T , we denote the concatenation (defined5

in the natural way) by ST . For example, if S = 011 and T = 101, then ST = 011101. Let6

St denote the concatenation of t copies of a string S. For example, S3 = SSS.7

We say that T is a factor of S, or S contains T as a factor, if there exist strings X and8

Y such that S = XTY . An occurrence of T in S is a pair (T, i) such that S = XTY and9

|X| = i − 1 (that is, T is a factor of S that starts at the i-th letter). Furthermore, we say10

that the occurrences (S1, i1) and (S2, i2) of two (possibly equal) factors inside some string S11

with i1 ≤ i2 are 1-disjoint if i1 + |S1| < i2 (in other words, there is at least one letter of S12

that is not used in either of the occurrences, but lies ‘between’ S1 and S2), and they intersect13

if i1 + |S1| > i2.14

We are now ready for the basic encoding of chains into strings, which we will denote by15

φ. For a chain C = v0, v1, . . . , vk of length k, let φ(C) = s1s2 · · · sk where si = 0 if vi is16

adjacent to vi−1, and si = 1 otherwise for each i ∈ {1, . . . , k}. Note that φ is a bijection17

between chains and strings, but recall that the graphs induced by two distinct chains C118

and C2 can be isomorphic and so a graph that is induced by some chain does not necessarily19

have a unique representation as a string. Note also that if C contains k + 1 vertices, then20

φ(C) contains k letters, because the first vertex is not assigned a letter. See Figure 2.21

We say that a graph G is induced by a string S if G is induced by C = φ−1(S). Similarly,22

we say that a string S contains a graph G if the graph induced by S contains G as an induced23

subgraph.24

In addition to encoding chains into strings, we also need to be able to encode subgraphs of25

strings, in order to identify when a given string contains graphs from the minimal forbidden26

set L. To this end, suppose that G is a graph on n vertices that embeds inside some string27

S. If φ−1(S) = v0, v1, . . . , vk, then G is isomorphic to the graph induced on the subsequence28

vi1 , vi2 , . . . , vin that corresponds to the chosen embedding, where 0 ≤ i1 < i2 < · · · < in ≤ k.29

We now define a new encoding ψ from subsequences of chains (or embeddings of graphs into30

chains) into strings over the three-letter alphabet {0, 1, | }.31

For each j ranging from 2 to n, the encoding ψ writes symbols according to the following32

rules: if ij = ij−1 + 1, then write 0 if vij is adjacent to vij−1
, and 1 otherwise. When33

ij > ij−1 + 1, write | 0 if vij is not adjacent to vij−1
(and all earlier vertices), and | 134

otherwise. If G is isomorphic to the graph induced on the subsequence M of some chain,35
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1 0 | 0 1 | 1 0 0 | 10 1 0 0 1 1 0 1 0 1 0 0 1 11 0 0 1 1 0 0 1

Figure 3: On the left, an embedding M of a graph inside the chain with string
01001101010011. On the right, the encoding of M is the representation ψ(M) = 10 | 01 |
100 | 1 with blocks 10, 01, 100 and 1.

then we call ψ(M) a representation of G. A block of a representation is a maximal factor1

that contains only the letters 0 and 1. See Figure 3. Note that if a representation begins2

with the symbol |, then we will assume that there is an empty block preceding it.3

Before we go further, we need to make a few remarks about the strings created under4

the encoding ψ. Suppose that M is an embedding (or subsequence) of a graph on n vertices5

inside some chain.6

• ψ(M) has exactly n− 1 symbols that are 0 or 1.7

• ψ(M) cannot contain the factor | |, nor can it end with the symbol |. Therefore, there8

are at most n− 1 instances of the symbol | in ψ(M).9

• ψ(M) therefore contains at most 2n− 2 letters.10

• ψ is not a bijection, because it does not remember the specific positions of vertices of11

M in the chain.12

At this point we make an important observation: one can view the reverse process of ψ,13

from words over the alphabet {0, 1, | } to graphs, as a monadic second-order transduction,14

from which it is possible to conclude that the edge relation on subgraphs of chains is definable15

by a monadic second-order formula. This gives rise to a decision procedure for whether16

Free(L) contains arbitrarily long or not via the Backwards Translation Theorem (see [9,17

Theorem 7.10]), as the language over {0, 1, | } corresponding to Free(L) is regular. This18

approach is essentially the same as the one given in the case of permutations, see [5], but it19

is not the approach we use here.20

Instead, the decision procedure we present here comprises two parts and is elementary21

(in that it requires only the pigeonhole principle applied to the structures introduced in this22

section so far). First, we establish that if there exists a chain of a specified (large) length23

in Free(L), then there exists arbitrarily long chains with a periodic structure, where the24

size of the period is bounded above by a function of the largest forbidden graph in L (this25

may be compared to the ‘pumping lemma’ in the study of regular languages). Note that26

by exhaustively checking membership in Free(L) of all chains of the specified large length,27

this result is already sufficient for a decision procedure. However, the second part of our28
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0 | 1 1 | 1 | 1 1 1 | 1 | 1 | 0 | 1 | 1

Figure 4: Four different representations of the same graph K4 − e.

procedure gives us a simpler method, namely a check for whether a particular chain sequence1

can be repeated arbitrarily often.2

Now we consider the total number of possible representations of graphs on n vertices.3

Each representation is obtained from a (0, 1)-string of length n − 1 by inserting at most4

n − 1 copies of the symbol |. There are 2n−1 (0, 1)-strings of length n − 1, and there are5

2n−1 choices of inserting the symbol | or not at each position. Thus, we deduce the following6

observation.7

Observation 3.1. For each positive integer n, there are at most 22n−2 representations of8

graphs on n vertices. Moreover, each such representation R has at most n blocks.9

Now consider a representation R of a graph with n vertices. Although we cannot recover10

the specific embedding of this graph in a chain that gave rise to the representation, we can11

reconstruct the graph from R in the natural way: create vertices v1, v2, . . . vn, where v2, . . . , vn12

correspond to the non-| symbols in R, reading from left to right. For each i (2 ≤ i ≤ n), the13

adjacencies of vi to the previous i−1 vertices is determined by the letter of R corresponding14

to vi (which is either 0 or 1), and the letter (if it exists) immediately preceding this one in15

R (specifically, whether this symbol is | or not).16

Given the above reconstruction process, each representation R corresponds to a unique17

graph G. However, each graph G can have several corresponding representations – see18

Figure 4 for an example. We let RG denote the set of all representations that correspond to19

a given graph G. Note that |RG| ≤ 22|V (G)|−2 by Observation 3.1.20

Our final preparatory task is to observe how a representation R ∈ RG can be embedded21

in some given (0, 1)-strings S. We say that the string S contains the representation R if22

(1) each block of R is embedded as a factor in S, and23

(2) every pair of distinct blocks Bi and Bj are embedded as 1-disjoint factors, with the factor24

corresponding to Bi preceding that of Bj if and only if Bi precedes Bj in R.25

Now, we introduce two lemmas for the proof of Theorem 1.1.26

Lemma 3.2. Let L be a set of graphs having at most n vertices. If there exists a (0, 1)-string27

T of length at least d (n−1)4
n+1

3
e(2n−2 + n− 1) containing no graphs in L, then there exists a28

(0, 1)-string S of length at most 2n such that the (0, 1)-string Sk contains no graph in L for29

all k.30
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Proof. Let R = ∪G∈LRG be the set of all representations of graphs from L. Note that, by1

Observation 3.1, we have |R| ≤
∑n

k=1 22k−2 ≤ 4n/3. Furthermore, each representation in R2

has at most n blocks.3

Let s = d (n−1)4
n+1

3
e. We may assume that |T | = s(2n−2 + n − 1). We can rewrite4

T = T1`1T2`2 · · ·Ts`s where |Ti| = 2n−2 + n − 2 and `i = 0 or 1 for all i. Thus, the Ti are5

pairwise 1-disjoint.6

We claim that there exists j∗ such that for every representation R ∈ R, at least one7

block of R is not a factor of Tj∗ . Suppose not. Then for each j ∈ {1, 2, . . . , s}, there exists8

Rj ∈ R such that Tj contains each block of the representation Rj as a factor. Note that the9

blocks of Rj in Tj may overlap and may appear in the incorrect order. Since s > (n−1)4n/310

and |R| ≤ 4n/3, by the pigeonhole principle, at least n of the Tj must contain all the blocks11

from one particular representation R∗ ∈ R as a factor. That is, there exists a subsequence12

j1, j2, . . . , jn of 1, 2, . . . , s such that Rj1 = Rj2 = · · · = Rjn = R∗. This means that by13

considering the factor of Tj1 equal to the first block of R∗, the factor of Tj2 equal to the14

second block, and so on, and recalling that the Tjk are pairwise 1-disjoint, we find that T15

contains the representation R∗. Therefore T contains some G ∈ L, a contradiction which16

proves the claim.17

Now, Tj∗ does not contain at least one block of every representation R ∈ R as a factor.18

By the pigeonhole principle, since |Tj∗| = 2n−2 + n − 2, there exist two (not necessarily19

disjoint) occurrences (A, a1) and (A, a2) in Tj∗ such that |A| = n− 2, and a1 < a2. That is,20

we find the same factor of n− 2 letters occurring at least twice in Tj∗ .21

Now, consider the occurrence (S, a1) in Tj∗ where S is a factor of Tj∗ of length a2 − a1,22

in other words, Tj∗ = K1SAK2 for some (possibly empty) prefix K1 and suffix K2 of Tj∗ .23

Note that |S| ≤ 2n−2 since Tj∗ has length 2n−2 + n − 2 and |A| = n − 2. We claim that24

φ−1(Sk) ∈ Free(L) for all k.25

Suppose to the contrary that there exists k such that Sk contains some representation26

R ∈ R. By construction of Tj∗ , there is some block B of R that is not contained in Tj∗ as a27

factor, and therefore B is not contained in SA or in S as a factor. Moreover, by construction28

of S, we observe that either Sk is a factor of SA, or SA is a factor of Sk. See Figure 5.29

(A, a2)

(A, a1)

Si
S S S S

(A, a2)

(A, a1)

SA SA

S Si

Figure 5: Since both occurrences (A, a1) and (A, a2) represent the same factor, we can deduce
that for each positive integer i, either Si is a factor of SA or SA is a factor of Si.

If Sk is a factor of SA, then since the block B is a factor of Sk, it is also a factor of30

SA, which is a contradiction. Therefore, SA is a factor of Sk. We may assume that B31

is embedded as a factor in Sk starting from an entry in the first copy of S. Note that A32

contains precisely n−2 letters, and B contains at most n−1 letters. From this, we conclude33
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that B embeds into SA (starting from an entry in the prefix S), another contradiction.1

Thus we conclude that Sk contains no representation R ∈ R for all k, which completes2

the proof.3

Lemma 3.2 tells us that if a class Free(L) contains arbitrarily long chains then it contains4

arbitrarily long chains with a periodic construction, whose period is at most 2n. Our next5

lemma gives us the necessary practical condition for our decision procedure to test whether6

a string can be repeated arbitrarily many times or not.7

Lemma 3.3. Let L be a set of graphs having at most n vertices. Let S be a string. If S2n−1
8

contains none of the graphs in L, then Free(L) contains φ−1(Sk) for all k.9

Proof. Suppose that the lemma is false. Let M be the minimum number such that SM
10

contains at least one graph G ∈ L. This means that there exists a representation R ∈ RG11

which is contained in SM . Fix one such embedding of R in SM . Since M ≥ 2n and12

|V (G)| ≤ n, there exist two consecutive copies of S neither of which is used in the embedding13

of R in SM . We can therefore eliminate one of these two copies of S while still ensuring that14

the blocks of R are 1-disjoint (to ensure R can still be embedded in the resulting string).15

That is, SM−1 still contains R, which is a contradiction since M is the minimum number16

such that SM contains at least one graph in L.17

4 Proof of the main result18

In this section, we prove our main result, Theorem 1.1. Recall the statement of our main19

theorem.20

Theorem 1.1. For a given finite set L of graphs, there exists an algorithm to decide whether21

Free(L) contains infinitely many non-isomorphic prime graphs.22

Let Gn be the set that consists of the 1-subdivision of K1,n and its complement, the line23

graph of K2,n and its complement, the thin spider with n legs and its complement, the half-24

graph of height n, the graph H ′n,I , and the graph H∗n and its complement. In other words,25

Gn contains one representative of each type of graph in Theorem 2.2 except for chains. Note26

that it is routine to check that all the graphs in Gn are prime.27

By Theorem 2.2, a large prime graph that does not contain a chain of length n must28

contain a graph in Gn. For a graph in Gn, it is easy to deduce the following lemma by29

the definition of Gn. For an example, suppose that a graph G with n vertices is an induced30

subgraph of the 1-subdivision of K1,N+1. Let v be a vertex of degree N+1 in the 1-subdivision31

of K1,N+1, let u1, u2, . . . , uN+1 be neighbors of v, and let vi be a neighbor of ui other than v32

for each i. Now, there exist ui and vi such that neither ui nor vi are in G. We delete ui and33

vi from the 1-subdivision of K1,N+1 to obtain the 1-subdivision of K1,N that contains G as34

an induced subgraph. We can prove similarly for other cases.35
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Lemma 4.1. Let G be a graph on n vertices and let N be an integer with N ≥ max {n, 3}.1

If G is an induced subgraph of some graph in GN+1, then there exists a graph H in GN such2

that G is an induced subgraph of H.3

Finally, we give the proof of our main theorem, providing Algorithm 1.4

Proof of Theorem 1.1. Let n ≥ 3 be the minimum integer such that every graph in L has at5

most n vertices. By the contrapositive statement to Lemma 4.1, if Gn has a graph in Free(L)6

then Free(L) must contain a graph from GN for every N ≥ n. Hence Free(L) has infinitely7

many non-isomorphic prime graphs.8

Now, we may assume that every graph in Gn is not in Free(L). By Theorem 2.2, it is9

enough to decide whether Free(L) has infinitely many non-isomorphic prime graphs induced10

by chains. If there exists a string S of length at most 2n such that φ−1(S2n−1) ∈ Free(L),11

then by Proposition 2.1 and Lemma 3.3, Free(L) has infinitely many non-isomorphic prime12

graphs induced by chains.13

On the other hand, if φ−1(S2n−1) 6∈ Free(L) for every string S of length at most 2n,14

then by Lemma 3.2 the maximum length of a chain contained in Free(L) is less than15

d (n−1)4
n+1

3
e(2n−2 +n− 1), which implies that Free(L) has only finitely many non-isomorphic16

prime graphs.17

Algorithm 1 Does Free(L) contain infinitely many prime graphs?

1: Let L be the input set of graphs and let n ≥ 3 be the minimum integer such that every
graph in L has at most n vertices.

2: if Gn has a graph in Free(L) then
3: output YES.
4: else if there exists a string S of length at most 2n such that the string S2n−1 contains

no graph in L then
5: output YES.
6: else
7: output NO.
8: end if

5 Concluding remarks18

Complexity of the procedure. We have not made any particular effort to optimize19

the procedure described above. The majority of the work lies in determining whether a20

hereditary class Free(L) admits arbitrarily long chains or not, and here one may need to21

exhaust over all 22n+1 − 1 chains of length at most 2n, where n = maxG∈L |G|. By contrast,22

Lemma 4.1 shows that in order to check whether Free(L) contains arbitrarily large prime23

graphs of the other types listed in Theorem 2.2, it suffices to check whether each of the 1024

graphs in Gn (each having at most 2n+ 1 vertices) contains some graph in L.25
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In the analogous problem of deciding whether a hereditary class of permutations contains1

only finitely many simple permutations, a recent paper due to Bassino, Bouvel, Pierrot and2

Rossin [2] establishes an algorithm with run time O(nk log(nk) + n2k), where n is the size3

of the largest forbidden permutation, and k is the number of forbidden permutations. It is4

quite possible that a similar detailed analysis of chains in graphs could lead to a much more5

efficient algorithm.6

Finding all the prime graphs in a class. If our decision procedure returns YES, then7

in theory it could provide a ‘certificate’ of an infinite family of prime graphs that the class8

contains. On the other hand, if the procedure returns NO, then Lemmas 3.2 and 4.1 give9

bounds on the number of vertices that the largest prime graph in the class can contain.10

However, the following result (recently re-discovered by Chudnovsky and Seymour [7]), gives11

a more practical method that may terminate sooner:12

Proposition 5.1 (Schmerl and Trotter [20]). Let n ≥ 3 be an integer. Every prime graph13

on n vertices contains a prime induced subgraph on n− 1 or n− 2 vertices.14

Furthermore, the only prime graphs that do not contain a prime graph on 1 fewer vertices15

are the half-graphs of height n, and their complements. Thus, to list all prime graphs in16

a class, one can successively generate and check for membership the prime graphs of each17

order, and halt as soon as one finds two consecutive integers where the hereditary class18

contains no prime graphs of that order.19

Classes with infinitely many minimal forbidden graphs One may ask whether it is20

possible for a hereditary class C = Free(L) to contain only finitely many prime graphs when21

L is an infinite minimal set of forbidden graphs. The answer to this is no: any hereditary22

class containing only finitely many prime graphs possesses the property of being labelled well-23

quasi-ordered (see [1, Theorem 2]), and any such class is defined by a finite set of minimal24

forbidden graphs (this latter observation is essentially due to Pouzet [19]).25

The same observation (that a hereditary class with only finitely many prime graphs is26

defined by finitely many minimal forbidden graphs) also leads to a quick proof of a special27

case of the results concerning ‘prime extensions’: namely that a finite set of prime graphs28

necessarily only has finitely many prime extensions (see Giakoumakis and Olariu [16]).29

Acknowledgment The authors would like to thank the reviewer for providing a careful30

review and an alternative proof of the theorem in terms of monadic second-order logic.31
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