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ABSTRACT

The simple relational structures form the units, or atoms, upon which all other relational

structures are constructed by means of the substitution decomposition. This decomposi-

tion appears to have first been introduced in 1953 in a talk by Fraı̈ssé, though it did not

appear in an article until a paper by Gallai in 1967. It has subsequently been frequently

rediscovered from a wide variety of perspectives, ranging from game theory to combina-

torial optimization.

Of all the relational structures — a set which also includes graphs, tournaments and

posets — permutations are receiving ever increasing amounts of attention. A simple per-

mutation is one that maps every nontrivial contiguous set of indices to a set of indices that

is never contiguous. Simple permutations and intervals of permutations are important in

biomathematics, while permutation classes — downsets under the pattern containment

order — arise naturally in settings ranging from sorting to algebraic geometry.

We begin by studying simple permutations themselves, though always aim to estab-

lish this theory within the broader context of relational structures. We first develop the

technology of “pin sequences”, and prove that every sufficiently long simple permutation

must contain either a long horizontal or parallel alternation, or a long pin sequence. This

gives rise to a simpler unavoidable substructures result, namely that every sufficiently

long simple permutation contains a long alternation or oscillation.

Erdős, Fried, Hajnal and Milner showed in 1972 that every tournament could be ex-

tended to a simple tournament by adding at most two additional points. We prove analo-

gous results for permutations, graphs, and posets, noting that in these three cases we may

need to extend a structure by adding d(n + 1)/2e points in the case of permutations and
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vi ABSTRACT

posets, and log2(n + 1) points in the graph case.

The importance of simple permutations in permutation classes has been well estab-

lished in recent years. We extend this knowledge in a variety of ways, first by showing

that, in a permutation class containing only finitely many simple permutations, every sub-

set defined by properties belonging to a finite “query-complete set” is enumerated by an

algebraic generating function. Such properties include being an even or alternating per-

mutation, or avoiding generalised (blocked or barred) permutations. We further indicate

that membership of a permutation class containing only finitely many simple permuta-

tions can be computed in linear time.

Using the decomposition of simple permutations, we establish, by representing pin se-

quences as a language over an eight-letter alphabet, that it is decidable if a permutation

class given by a finite basis contains only finitely many simple permutations. We also dis-

cuss possible approaches to the same question for other relational structures, in particular

the difficulties that arise for graphs. The pin sequence technology provides a further result

relating to the wreath product of two permutation classes, namely that CoD is finitely based

whenever D does not admit arbitrarily long pin sequences. As a partial converse, we also

exhibit a number of explicit examples of wreath products that are not finitely based.
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INTRODUCTION

This thesis consists of two parts: In Part I we study the structure of simple permutations

in the context of relational structures, while in Part II we apply this structural knowledge

of simplicity to permutation classes. This division reflects the fact that the study of per-

mutations — and particularly simple permutations — lies in an area of research extending

beyond the subject of permutation classes. However, that these two topics are covered un-

der the single title of this thesis reflects the importance in studying simple permutations for

the further understanding of permutation classes. Many of the major permutation-based

results in this thesis may be found published or available as preprints [28, 29, 30, 31].

In Chapter 1 we begin by introducing permutations and the containment partial or-

der. We then take a more broad view by defining the general construction of relational

structures, and demonstrate how permutations, graphs, tournaments and posets may all

be described in this language. We then commence our discussion in Sections 1.4 and 1.5 of

intervals, simplicity and the substitution decomposition in the context of relational struc-

tures, at each stage also translating back to the permutation case.

In Chapter 2 we introduce the new technology of pin sequences and show how suf-

ficiently long simple permutations must contain either a long proper pin sequence, or a

long wedge or parallel alternation. We also introduce the language of pins, a necessary

prerequisite for the decidability result of Chapter 7. We close the chapter with a specula-

tive discussion on possible analogues of this decomposition theory for graphs.

Motivated by a result of Erdős, Fried, Hajnal and Milner in 1972 for tournaments,

Chapter 3 considers the problem of embedding a given relational structure inside a larger

simple structure. We demonstrate that a general approach may be used relying on the sub-

xi



xii INTRODUCTION

stitution decomposition, but that the outcome for each type of relational structure may be

somewhat unique. To demonstrate this, we look at the simple extensions of permutations,

graphs, tournaments and posets.

Much emphasis has been placed in recent years in developing optimal algorithms for

computing intervals and the substitution decomposition. In Chapter 4 we review a recent

paper by Bergeron, Chauve, Montgolfier and Raffinot who give a linear-time algorithm to

compute the intervals in a given permutation. It follows directly from this work that the

permutation substitution decomposition may be computed in linear time. We also review

some algorithmic results in the case of graphs.

Permutation classes have been intensively studied in recent years, and in Chapter 5

we review some of the results in this area, manifested primarily in constructions between

permutation classes, their enumeration and special properties including partial well order

and atomicity. Permutation classes containing only finitely many simple permutations

have received particular attention, and we cover the most important results concerning

these.

One particular property of permutation classes containing only finitely many simple

permutations is that they are enumerated by algebraic generating functions. By means of

“finite query-complete sets of properties”, we show in Chapter 6 that many different sub-

sets of such permutation classes are also enumerated by algebraic generating functions.

We close the chapter with some further enumerative results coming from the decomposi-

tion of simple permutations in Chapter 2, and note how, using the linear-time substitution

decomposition algorithm of Chapter 4, we may establish in linear time whether a given

permutation lies in a specified class known to contain only finitely many simple permuta-

tions.

Chapter 7 answers affirmatively the natural question arising from the studies of Chap-

ters 5 and 6: is it decidable if a permutation class given by a finite basis contains infinitely

many simple permutations? This is done using the decomposition results of Chapter 2, in

particular showing that the language of pins lying within a specified class forms a regular
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language, and hence its infinitude is decidable.

Finally, in Chapter 8, using the technology of pin sequences in a slightly different con-

text we derive a general sufficient result concerning the basis elements of the wreath prod-

uct between two finitely based permutation classes, relying on whether one of the per-

mutation classes contains arbitrarily long pin sequences or not. In the case where a given

class contains arbitrarily long pin sequences, we demonstrate in a number of cases wreath

products which are not finitely based. This suggests that the finite basis result is, to some

extent, necessary, though we also present some evidence to the contrary.
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CHAPTER 1

PRELIMINARIES

EXPRESSING an object in terms of smaller, indecomposable objects, is a goal aimed at in

a wide variety of subject areas. The first example one finds in mathematics is the Fun-

damental Theorem of Arithmetic, which demonstrates how any positive integer greater

than 1 may be written uniquely (up to ordering) as a product of prime factors. It is a

property that is not true for elements of an arbitrary collection, however; take for exam-

ple the elements of a ring, which in general are not uniquely factorisable (unless the ring

is specifically shown to be a Unique Factorisation Domain). When a given collection of

objects can be uniquely factorised, emphasis is often placed on the study of the prime or

indecomposable elements, as it is these which form the “building blocks” of the collection.

One such family of objects is the family of relational structures – objects governed by

a given set of relations – whose most notable members include graphs, tournaments, per-

mutations and posets. Their “factorisation” is relatively straightforward, and will be re-

ferred to as the “substitution decomposition”, though is known also as the modular de-

composition, disjunctive decomposition and X-join. The elemental building blocks of this

decomposition are the “simple” structures. This term is used primarily in the context of

permutations, while in other contexts these structures are called prime or indecomposable

(note in particular that “simple” usually has a different meaning in the context of graphs).

The notion of substitution decomposition dates back at least to a 1953 talk of Fraı̈ssé,

but only the abstract of this talk [55] survives. The first article using the substitution de-

composition seems to be Gallai [58] (for an English translation, see [59]), who applied them

3



4 1 PRELIMINARIES

particularly to the study of transitive orientations of graphs. Some work on the substitu-

tion decomposition in the general context can be found in Möhring [92]. It has proved to

be a useful technique in a wide variety of settings, ranging from game theory to combi-

natorial optimisation (see Möhring [94] or Möhring and Radermacher [95] for extensive

references).

Our relational structure of choice is the permutation. It has sufficient complexity to

be worthy of extended study, but also is easily represented graphically. In this setting,

much of the motivation for studying the substitution decomposition is for the purposes

of enumeration, particularly of permutation classes, and Part II is primarily dedicated to

demonstrating the enumerative consequences of this study.

Adapting the permutation-specific theory we will develop to other relational struc-

tures is not necessarily obvious; much of the theory depends, as we have indicated, on the

graphical representation of permutations, and so, for example, finding a graph-theoretic

analogue will not follow immediately. Thus throughout Part I we will discuss the success

(or otherwise) of existing attempts in this avenue.

1.1 Permutations, Containment and Order Isomorphism

We begin by introducing the terms we need to study permutations; the definition of a

general relational structure will follow after this is established. For n ∈ N denote by [n]

the set {1, 2, . . . , n}, and for i ≤ j let [i, j] correspond to the set {i, i + 1, . . . , j}. We may

sometimes also refer to open or half-open segments, for example (i, j] denotes the set {i +

1, i + 2, . . . , j}.

In our context, a permutation π of length n is an ordering of the elements of [n]. For

example, π = 918572364 is a permutation of length 9. Two particular families of permu-

tations to which we will refer relatively often are the increasing permutations denoted by

ιn = 12 · · · n, and the decreasing permutations δn = n(n− 1) · · · 1.

For i ∈ [n] denote by π(i) the image of the number i under π, and, by extension, π([i, j])

corresponds to the image of the segment [i, j]. The pair (i, π(i)) represents a point of π,
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and in this pair i is the position and π(i) the value of the point. Viewing π as a set of

points immediately indicates the graphical interpretation which will prove invaluable in

our forthcoming study. We will, however, postpone this viewpoint momentarily while we

introduce some further definitions.

Two finite sequences of the same length, α = a1a2 · · · an and β = b1b2 · · · bn, are said

to be order isomorphic if, for all i, j, we have ai < aj if and only if bi < bj . As such, each

sequence of distinct real numbers is order isomorphic to a unique permutation. For a

sequence α and set of permutations C, with a slight abuse of notation we will sometimes

write statements like “α ∈ C”, meaning “the permutation order isomorphic to α lies in C.”.

Similarly, any given subsequence (or pattern) of a permutation π is order isomorphic to a

smaller permutation, σ say, and such a subsequence is called a copy of σ in π. We may

also say that π contains σ (or, in some texts, π involves σ) and write σ ≤ π. If, on the other

hand, π does not contain a copy of some given σ, then π is said to avoid σ. For example, π =

918572346 contains σ = 51342 because of the subsequence 91572 (= π(1)π(2)π(4)π(5)π(6)),

but avoids τ = 3142.

The pattern containment order forms a partial order on the set of all permutations, and

in Part II we will be looking at sets of permutations closed under taking subpermutations.

A book introducing the study of these permutation patterns has been written by Bóna [22].

1.2 Graphical Representation and Symmetries

As mentioned above, we may think of a permutation π as a set of points (i, π(i)), and

immediately we can form a graphical representation. We can go further, however, and

give a pictorial description of order isomorphism. Two sets S and T of points in the plane

are said to be order isomorphic if the axes can be stretched and shrunk in some manner to

map one of the sets onto the other, i.e., if there are strictly increasing functions f, g : R→ R

such that {(f(s1), g(s2)) : (s1, s2) ∈ S} = T . (As the inverse of a strictly increasing function

is also strictly increasing, this is an equivalence relation.)

The plot of the permutation π is the point set {(i, π(i))}, and every finite point set in the
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Figure 1.1: The plot of the permutation π = 934826715.

plane in which no two points share a coordinate (often called a generic or noncorectilinear

set) is order isomorphic to the plot of a unique permutation; in practice we will simply say

that a point set is order isomorphic to a permutation. See Figure 1.1 for an example. Steve

Waton’s PhD thesis [118] extends this graphical interpretation of containment to consider

the sets of permutations that can be drawn by taking points lying on a given geometrical

shape.

This geometric viewpoint indicates several of the symmetries of pattern containment.

The maps (x, y) 7→ (−x, y), (x, y) 7→ (x,−y) and (x, y) 7→ (y, x), when applied to generic

point sets, correspond to “reversing”, “complementing” and “inverting” permutations re-

spectively. Formally, the reverse of a permutation π of length n is the permutation obtained

by reading the sequence of symbols of π in reverse order, i.e. from right to left. For each

i ∈ [n], the ith component of the complement of π is assigned value n + 1 − π(i), while the

inverse of π is denoted π−1 and is defined by π−1(j) = i, where j = π(i). For example, the

reverse of π = 934826715 is 517628439, its complement is 176284395 and π−1 = 852396741.

Of these three symmetries, one of the reverse or complement mappings, together with

the inverse mapping generate the dihedral group with eight elements. It is clear to check,

either graphically or otherwise, that each of these symmetries preserves pattern contain-

ment (for example, σ ≤ π if and only if σ−1 ≤ π−1). That these are the only symmetries

is less immediate but follows directly from the work on permutation reconstruction by

Smith [111].
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1.3 Relational Structures

The most general objects we will consider are the relational structures, which we now

introduce as a precursor to handling simplicity and the substitution decomposition. For

any set A, a k-ary relation R is a subset of Ak. An ordered sequence of relations over A is

then called a relational structure.

More specifically, define a relational language, L, to be a set of relational symbols R to-

gether with positive integers nR denoting the arity of the symbols R. A relational structure

A whose relational symbols are those of L is then defined by its ground set dom(A) and a

set of subsets RA ⊆ dom(A)nR for each R ∈ L. Such a structure will also be called an

L-structure. If, for example, (a1, . . . , anR
) ∈ RA then we write RA(a1, . . . , anR

), and RA is

an nR-ary relation.

We will be working primarily with relational structures whose ground sets are finite,

though many of these principles may be applied to infinite relational structures. In partic-

ular, the substitution decomposition is readily extended to include infinite structures, as

shown in [95].

We now briefly review how some well-known objects may be viewed as relational

structures.

Permutations. A permutation π on n points may be viewed as the relational structure

Aπ with ground set dom(Aπ) = [n], on a language containing two binary linear relations,

L = {<,≺, n< = 2, n≺ = 2}. The first relation, <Aπ , is the normal ordering on [n], while

i ≺Aπ j if and only if π(i) < π(j). For example, π = 934826715 corresponds to the relational

structure Aπ on [9] with

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9

and

8 ≺ 5 ≺ 2 ≺ 3 ≺ 9 ≺ 6 ≺ 7 ≺ 4 ≺ 1.
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Graphs. A graph G is a relational structureAG on the language L = {E,nE = 2}, where

E is a binary symmetric relation, dom(AG) = V (G), and EAG(x, y) if and only if x ∼ y

in G. The analogue to containment in graphs is the notion of the induced subgraph:1 an

induced subgraph of G is a graph formed on any subset of vertices from G, with x ∼ y in

the subgraph if and only if x ∼ y in G.

Tournaments. A tournament is a complete oriented graph. A tournament T therefore

corresponds to the relational structure AT on the language L = {→, n→ = 2}, but where

→ is now a trichotomous binary relation, i.e. for each x, y ∈ dom(AT ) = V (T ), precisely

one of x = y, x →AT y or y →AT x is true. The name “tournament” derives from its use

to denote a competition where every pair of players x, y must meet each other in a match,

the outcome being either that x wins, denoted y → x, or that x loses, denoted x → y.

The containment order on tournaments is not surprisingly the same as graphs; an induced

subtournament of a tournament T is a tournament formed on any subset of vertices of T

with x→ y in the subtournament if and only if x→ y in T .

Posets. By definition, a poset is a relational structure on the language containing a single

binary relation, <, which is reflexive, antisymmetric and transitive. The comparability graph

G(P,<) of a poset (P,<) is a graph with vertex set P , and edge p ∼ q if and only if either

p < q or q < p. Conversely, if G is a comparability graph for some poset (P,<), then the

order < is called a transitive orientation of (the edges of) G. This connection between posets

and graphs arises in a number of combinatorial problems – see Möhring [93] for a survey.

1.4 Intervals and Simplicity

Before we can discuss the substitution decomposition, we must first define how we can

find “factors” of a given relational structure, and hence define the elemental relational

structures – those structures with no nontrivial factors.
1This is sometimes called the “vertex induced subgraph”, to distinguish from edge induced subgraphs.
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Following Földes [54], we say that a set X ⊆ dom(A) is an interval if for every R ∈ L
and nR-tuple (x1, . . . , xnR

) ∈ dom(A)nR \XnR , with at least one xi ∈ X , then

RA(x1, . . . , xnR
) ⇐⇒ RA(x1, . . . , xi−1, y, xi+1, . . . , xnR

) for all y ∈ X.

Informally, an interval corresponds to a subset X of the ground set dom(A) for which every

pair of elements of X have exactly the same relations with the elements of dom(A) \ X .

Accordingly, every singleton set {x} ⊆ dom(A) is an interval, as is all of dom(A). Every

other interval is said to be a proper interval, and a structure is simple if it has no proper

intervals.

Simplicity has, to some extent, been studied for relational structures in general, for ex-

ample, by Földes [54] and Schmerl and Trotter [107]. Much greater attention has, however,

been diverted to particular structures, the most pertinent of which we will now review.

Permutations. In the permutation case, an interval of π corresponds to a set of contiguous

indices I = [a, b] such that the set of values π(I) = {π(i) : i ∈ I} is also contiguous.

Intervals are clearly identified in the plot of a permutation as a set of points enclosed in

an axis-parallel rectangle, with no points lying in the regions above, below, to the left or to

the right (see Figure 1.2 for an example). Intervals of permutations are interesting in their

own right and have applications to biomathematics, particularly to genetic algorithms for

sequencing problems, and modelling the genomes of prokaryotes as permutations allows

the matching of gene sequences.2 See Corteel, Louchard, and Pemantle [37] for extensive

references.

It then follows that a simple permutation is one whose only intervals are of length 0, 1

and n. Figure 1.3 shows three simple permutations of length 12. Note that the eight order-

isomorphism preserving symmetries also preserve intervals, and hence simplicity. The

number of simple permutations of length n = 1, 2, . . . is 1, 2, 0, 2, 6, 46, 338, 2926, 28146, . . .

(sequence A111111 of [110]), the first few being 1, 12, 21, 2413 and 3142. We will look at

the asymptotics of this sequence in Subsection 1.4.2.
2In these contexts, the term “common interval” is used, indicating a segment upon which two or more

permutations agree; we will encounter this definition again in Chapter 4.
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Figure 1.2: An interval in a permutation.

Figure 1.3: The plots of three simple permutations of length 12.

Graphs. An interval in a graph3 is a set of vertices X ⊆ V (G) such that N(v) \ X =

N(w) \X for all v, w ∈ X , where N(v) denotes the neighbourhood of v in G. A graph on n

vertices therefore has several trivial intervals (∅, V (G), and the singletons); a graph with no

nontrivial intervals is then often called prime or indecomposable (the word simple meaning

something completely different in this context). These graphs have been the subject of

considerable study, see for example Ehrenfeucht, Harju, and Rozenberg [47], Ille [71], and

Sabidussi [105]. A survey of indecomposability and the substitution decomposition in

graphs can be found in Brandstädt, Le, and Spinrad [27].

Tournaments. An interval in a tournament T is a set A ⊆ V (T ) such that for all v /∈ A,

either v → A or v ← A. Clearly the empty set, all singletons, and the entire vertex set are

all intervals of T , and T is said to be simple if it has no others. Crvenković, Dolinka, and

Marković [40] survey the algebraic and combinatorial results concerning simple tourna-
3These are also called autonomous sets, blocks, bound sets, clans, closed sets, clumps, committees, con-

gruences, convex sets, externally related sets, factors, modules, parties solidaires, partive sets, stable sets, and
strong intervals.
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ments.

Posets. An interval of a poset (P,<) corresponds to a set A ⊆ P which for every p ∈ P \A
satisfies one of p < A, p > A or p is incomparable to every point of A. Intervals in a poset

correspond to “convex” intervals in its related comparability graph. A subset of B ⊆ P is

called (P,<)-convex if the set {r ∈ P : there exist p, q ∈ B such that p < r < q} is a subset

of B. The following lemma is then easily deduced:

Lemma 1.1 (Buer and Möhring [32]). Given a poset (P,<), the set of intervals of (P,<) is equal

to the set of (P,<)-convex intervals of G(P,<).

1.4.1 Interacting Intervals

In the general context of relational structures, intervals interact with each other in a pleas-

ing way. Two intervals are said to overlap if neither interval is contained in the other and

their intersection is nontrivial.

Proposition 1.2. For any two overlapping intervals I and J of the L-structure A,

(a) I ∩ J is an interval of A (Földes [54, Proposition 1]),

(b) I ∪ J is an interval of A (Földes [54, Proposition 2]), and

(c) I \ J is an interval of A.

Proof. We will prove only Case (c) in the case where L consists solely of a k-ary relation R

(k ≥ 2); the result for a general language L follows immediately. If I and J are overlapping

intervals of A, we must show that if RA(x1, x2, . . . , xk) with x1 ∈ I \ J and not all of

x2, . . . , xk lie in I \ J , then RA(y, x2, . . . , xk) for any y ∈ I \ J .

Since I is an interval and x1, y ∈ I , we are finished if, for some i ∈ [2, k], xi lies in

dom(A)\I , so suppose that every xi ∈ I∩J . Since I and J overlap, there exists at least one

z ∈ J \I , and so RA(x1, x2, x3, . . . , xk) implies RA(x1, z, x3, . . . , xk) because J is an interval.

We can now obtain RA(y, z, x3, . . . , xk), and thus RA(y, x2, x3, . . . , xk) as required.



12 1 PRELIMINARIES

Figure 1.4: Two intervals and their intersection.

For two sets X and Y , let X4Y denote the symmetric difference of X and Y , namely

(X ∪ Y ) \ (X ∩ Y ). Providing a relational structure A is defined by a language consisting

only of binary symmetric relations and relations with arity at least 3, then the symmetric

difference of two intersecting intervals is also an interval.

Proposition 1.3 (Möhring and Radermacher [95, Theorem 4.1.1]). Let A be an L-structure

for which nR ≥ 2 for every R ∈ L. Then if I and J are overlapping intervals, I4J is also an

interval if every binary relation R ∈ L is symmetric.

In the permutation case, Proposition 1.3 clearly does not apply. However, Proposi-

tion 1.2 is easily seen by considering the graphical representation, as in Figure 1.4.

1.4.2 Asymptotics

The asymptotic enumeration of simple structures has been studied variously for permu-

tations, tournaments, graphs, and indeed in a more general setting. We will presently

review the problem for permutations and graphs, with a view to showing that although

both these structures fall within the category of relational structures, the solutions are sig-

nificantly different (although the approach is essentially identical). One the one hand, the

dominant term in the asymptotic enumeration of simple permutations is n!/e2 (a fraction

1/e2 of the total number of permutations of length n), while on the other hand almost all

graphs are indecomposable.

This difference indicates the caveat that must be added when attempting to study rela-

tional structures in their full generality: that certain results do hold for every structure (e.g.
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the substitution decomposition), but many other results are only true in certain cases. We

will encounter further differences as we progress through this study of simplicity – first

in the difficulties of adapting the permutation-specific simple decomposition to the graph

case in Chapter 2, and then again in the widely varying bounds on simple extensions in

Chapter 3.

Graphs. Let us begin with the graph case, which turns out to be fairly straightforward.

Let the random variable Xk denote the number of intervals of size k in a random graph G

on n vertices. The probability that a given set of k vertices is an interval is 2n−k

2(
n
2)

, since each

of the n−k vertices outside the interval must look at every vertex inside the interval in the

same way. As there are
(

n
k

)

ways of choosing the set of k vertices, we have

E[Xk] =

(n
k

)

2n−k

2(
n
2)

.

Thus the probability that G is decomposable may be bounded above by the sum of the

expected number of proper intervals, i.e. it is bounded by E[X2 + X3 + · · · + Xn−1]. By

linearity of expectation, this yields

Pr(G is decomposable) ≤ 2n

2(
n
2)

n−1
∑

k=2

(n
k

)

2k
.

Observing that the sum is the binomial expansion of (1 + 1
2)n less the first two and final

terms, we obtain

Pr(G is decomposable) ≤ 2n

2(
n
2)

((

3

2

)n

− 1− n

2
− 1

2n

)

→ 0 as n→∞,

and hence almost all graphs are indecomposable. Möhring [91] shows this is also true for

several other cases, including tournaments, posets and structures defined on single asym-

metric relations. For the tournament version, see also Erdős, Fried, Hajnal and Milner [51].

Permutations. Proceeding as we did with graphs, let the random variable Xk denote the

number of intervals of size k in a random permutation π of length n. An interval of length

k may be viewed as a mapping from a contiguous set of positions to a contiguous set of
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values. The set of positions must begin at one of the first n−k+1 positions of π, and at the

same time the lowest point in the set of values must be one of the lowest n−k+1 values of

π. Of the
(

n
k

)

sets of values to which the contiguous set of positions may be mapped, only

one maps to the chosen contiguous set of values. Thus we have

E[Xk] =
(n− k + 1)2

(n
k

) =
(n− k + 1)(n− k + 1)!k!

n!
.

Already we can see some difficulties may arise; whereas in the graph case it was clear

that the denominator (being an exponential in n2) would always dominate the numerator,

here we see that this will not always hold. In particular, E[X2] = 2(n−1)
n → 2 as n →

∞, implying in fact that, asymptotically, we expect to find two intervals of size two in a

random permutation. Seeking the asymptotics of the other terms in
n−1
∑

k=2

E[Xk], we consider

the cases k = 3, k = 4, k = n− 2 (assuming n ≥ 4) and k = n− 1 separately:

E[X3] =
6(n− 2)

n(n− 1)
≤ 6

n
→ 0

E[X4] =
4!(n− 3)

n(n− 1)(n− 2)
≤ 24

n2
→ 0

E[Xn−2] =
3 · 3!

n(n− 1)
≤ 24

n2
→ 0

E[Xn−1] =
4

n
→ 0.

The remaining terms form a partial sum, which converges providing E[Xk+1]

E[Xk]
< 1. Sim-

plifying this equation gives 2k2− (3n+1)k +n2 +n+1 > 0, a quadratic in k, which yields

two roots. The smaller of these satisfies 0 < k− ≤ n, the larger k+ > n. Thus for k ≤ k−,

E[Xk] is decreasing, while for k− < k < n, E[Xk] is increasing, and hence E[Xk] ≤ 24/n2

for 4 ≤ k ≤ n− 2. Thus
n−2
∑

k=4

E[Xk] ≤ (n− 5)
24

n2
≤ 24

n
→ 0.

Subsequently, the only term of
n−1
∑

k=2

E[Xk] which is non-zero in the limit n → ∞ is k = 2.

Ignoring larger intervals, occurrences of intervals of size 2 in a random permutation π can

roughly be regarded as independent events, and as we know the expectation of X2 is 2,



1.5 INFLATIONS AND THE SUBSTITUTION DECOMPOSITION 15

the occurrence of any specific interval is relatively rare. Heuristically, this suggests that

X2 is asymptotically Poisson distributed with parameter 2. Using this heuristic, we have

Pr(X2 = 0) → e−2 as n → ∞, and so there are approximately n!
e2 simple permutations of

length n.

A formal argument for this is implicitly given in Uno and Yagiura [116], and was made

explicit by Corteel, Louchard, and Pemantle [37]. The method, however, essentially dates

back to the 1940s with Kaplansky [74] and Wolfowitz [121], who considered “runs” within

permutations – a run is a set of points with contiguous positions whose values are i, i +

1, . . . , i + r or i + r, i + r − 1, . . . , i, in that order.4

A non-probabilistic approach (but one still relying on the work of Kaplansky) produc-

ing more precise asymptotics is given by Albert, Atkinson, and Klazar [3]. They obtain

the following theorem, and note that higher order terms are obtainable given sufficient

computation:

Theorem 1.4 (Albert, Atkinson and Klazar [3]). The number of simple permutations of length

n is asymptotically given by

n!

e2

(

1− 4

n
+

2

n(n− 1)
+ O(n−3)

)

.

1.5 Inflations and the Substitution Decomposition

With the notion of simplicity established, we may now describe how all relational struc-

tures can be decomposed and written in terms of these simple objects. This is easier to

establish by first defining the reverse process. Given an L-structure S , an inflation of S
by the L-structures As for each s ∈ dom(S) — denoted S[As : s ∈ dom(S)] — is the L-

structure obtained by replacing each element s of dom(S) with a set of elements dom(As)

that form an interval in the L-structureA = S[As : s ∈ dom(S)], i.e. for every R ∈ L:

RA(a1, . . . , anR
)⇐⇒

{

RAs(a1, . . . , anR
) and a1, . . . , anR

∈ dom(As), s ∈ dom(S), or
RS(s1, . . . , snR

) where each si ∈ dom(S) and ai ∈ Asi
.

4Atkinson and Stitt [12] called permutations containing no runs strongly irreducible. Note that this is equiv-
alent to a permutation containing no intervals of size two.
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A deflation (or decomposition) of an L-structureA is the reverse. We writeA = S[As : s ∈
dom(S)] to mean any deflation of A by disjoint intervals As. We are primarily interested

in the case where S is simple – the following theorem gives the uniqueness of such an S ,

which will be called the skeleton.

Theorem 1.5 (The Substitution Decomposition). LetA be an L-structure for some language L.

Then there exists a unique simple L-structure S such that A = S[As : s ∈ dom(S)]. Moreover,

when |dom(S)| > 2, every As is defined uniquely.

Proof. Let M denote the set of all intervals, except dom(A), which are contained in no other

proper intervals.

If two intervals I, J ∈ M intersect, then Proposition 1.2.(b) shows that I ∪ J is also

an interval, which, unless I ∪ J = dom(A), contradicts the definition of M . If I ∪ J =

dom(A), then Proposition 1.2.(c) shows that J \ I is an interval, so A can be written as

the inflation of a two-element L-structure, all of which are simple. If A = S[As1 ,As2 ] and

A = T [At1 ,At2 ] are two different two-element decompositions, then we may assume that

in Awe have As1 ∩At1 6= ∅ andAs2 ∩At2 6= ∅. Thus relations in S between s1 and s2 must

agree with the relations in A between elements of the disjoint intervals As1 and As2 . Since

As1 ∩ At1 ⊆ As1 and As2 ∩ At2 ⊆ As2 are intervals, the relations between elements of As1

andAs2 correspond to the relations between the elements ofAs1∩At1 andAs2∩At2 , which,

by a similar argument must correspond to the relations between the elements of At1 and

At2 , and these are none other than the relations between t1 and t2 of dom(T ). Similarly,

relations involving just s1 (respectively, s2) correspond to relations involving just t1 (t2),

and so S and T are isomorphic.

Otherwise, the sets in M partition dom(A). For each I ∈ M choose a representative

xI ∈ I , and define the L-structure S on {xI} by A|{xI} = S . Clearly A is the inflation

of S by the structures A|I for I ∈ M . The simplicity of S follows from the observation

that if S contained a proper interval K , then
⋃

xI∈K I would be a proper interval of A
contradicting the definition of M . Furthermore, if A = T [At : t ∈ dom(T )] for any other

simple L-structure T , then each dom(At) is an interval of A and so is contained in an
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interval in M .

The non-unique cases which occur when |dom(S)| = 2 may be dealt with in a number

of ways, some of which are specific to particular types of structure, as we will see later. In

the general setting, however, we can still find a unique substructure ofA that is essentially

from one of three groups.

Proposition 1.6 (Möhring and Radermacher [95, Theorems 3.4.3, 4.1.2 and 4.1.3]). If A is

an L-structure whose skeleton S satisfies |dom(S)| = 2, then there exists a unique maximal L-

structure T for which A = T [At : t ∈ dom(T )] and, for every R ∈ L, RT is linear, complete or

empty.

Once we have established the substitution decomposition A = S[As : s ∈ dom(S)],

we may repeat the process on the substructures As for each s ∈ dom(S). Iterating this

decomposition, we may continue until we are left only with substructures on singleton

ground sets. We may represent this iterated substitution decomposition as a rooted tree

– the substitution decomposition tree. Each node corresponds to a substructure of A whose

ground set is an interval, with the root of the tree beingA and the leaves being the singleton

ground sets. For a given node with corresponding non-singleton structureA ′, the children

of A′ are the substructures A′
s in the decomposition A′ = S ′[A′

s : s ∈ dom(S)]. If S is a

unique simple with |dom(S)| ≥ 4, label the node corresponding to A′ with the symbol P

(short for “proper”); if the (binary) relations in the language of S are linear and all other

relations are complete or empty, label the node with the symbol L; if all the relations in the

language of S are complete or empty, label the node D (short for “degenerate”).

1.5.1 The Permutation Case

Restricting our attention to the permutation case, the substitution decomposition is some-

what easier to describe. Given a permutation σ of length m and nonempty permutations

α1, . . . , αm, the inflation of σ by α1, . . . , αm – denoted σ[α1, . . . , αm] – is the permutation

obtained by replacing each entry σ(i) by an interval that is order isomorphic to αi. For

example, 2413[1, 132, 321, 12] = 479832156 (see Figure 1.5). Conversely, a deflation of π is
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Figure 1.5: The plot of 479832156, an inflation of 2413.

any expression of π as an inflation π = σ[π1, π2, . . . , πm], and we will call σ a skeleton of π.

Theorem 1.5 then specialises to become:

Proposition 1.7 (Albert and Atkinson [2]). Every permutation may be written as the inflation

of a unique simple permutation. Moreover, if π can be written as σ[α1, . . . , αm] where σ is simple

and m ≥ 4, then the αis are unique.

The degenerate cases occur when a permutation can be written as an inflation of either

12 or 21, and we may choose a unique decomposition in these cases in a variety of ways.

The principal decomposition that we will use for the substitution decomposition, however,

is as described in Proposition 1.6.

The direct sum of two permutations α and β is the inflation 12[α, β], and is usually

denoted α ⊕ β. Similarly, the skew sum is the inflation 21[α, β], and is denoted α 	 β. The

direct sum operation acts as a dichotomy on the set of all permutations – dividing them

into those that are sum decomposable (i.e. they can be represented as a direct sum), and

those that are sum indecomposable. Similarly, the skew sum operation leads to the skew

decomposable permutations, while those that cannot be represented as a skew sum are skew

indecomposable.

With these definitions, if π can be written as a direct sum (i.e. an inflation of the simple

permutation 12), then we may write π = ιm[α1, . . . , αm] uniquely where m is maximal,

and each αi is sum indecomposable. Similarly, if π is an inflation of 21, we may write

π = δm[α1, . . . , αm] where each αi is skew indecomposable.

Alternatively, we may prefer to express π as the inflation of 12 or 21, in which case we

will specify which deflation we want; the one that follows will be the decomposition we
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452398167

4523
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4 5

23
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98
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1 67

6 7

Figure 1.6: The substitution decomposition tree of π = 452398167.

mostly use.

Proposition 1.8 (Albert and Atkinson [2]). If π is an inflation of 12, then there is a unique sum

indecomposable α1 such that π = 12[α1, α2] for some α2, which is itself unique. The same holds

with 12 replaced by 21 and “sum” replaced by “skew”.

The substitution decomposition tree for a permutation then follows immediately. For

example, consider the permutation π = 452398167. This is decomposed as

452398167 = 2413[3412, 21, 1, 12]

= 2413[21[12, 12], 21[1, 1], 1, 12[1, 1]]

= 2413[21[12[1, 1], 12[1, 1]], 21[1, 1], 1, 12[1, 1]]

and its substitution decomposition tree is given in Figure 1.6.





CHAPTER 2

DECOMPOSITION

2.1 Background

SINCE simple permutations may be used to construct all other permutations via the

substitution decomposition, it would be useful to know how simple permutations are

themselves constructed. In particular, our aim is to find smaller “fundamental” simple

permutations of some specified size within a given simple permutation. Some approaches

to this question can be found in Schmerl and Trotter [107], in which the following is proved

for all irreflexive binary relational structures.1 Here, however, we will state only the per-

mutation case, for which there is another proof by Murphy [97].

Theorem 2.1 (Schmerl and Trotter [107]). Every simple permutation of length n ≥ 2 contains a

simple permutation of length n− 1 or n− 2.

We will prove that long simple permutations must contain two long almost disjoint

simple subsequences. Formally:

Theorem 2.2. There is a function f(k) such that every simple permutation of length at least f(k)

contains two simple subsequences, each of length at least k, sharing at most two entries.

(The proof of Theorem 2.2 follows after establishing Theorem 2.14, found on Page 34.)

The second “two” in the statement of Theorem 2.2 is best possible, as is demonstrated by
1A version of this theorem for k-structures – structures defined on a single k-ary relation in which every

relation (a1, . . . , ak) has ai 6= aj for some i 6= j – can be found in Ehrenfeucht and McConnell [48].

21
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Figure 2.1: The plots of a wedge simple permutation. Note that every simple subsequence of length
at least 4 must contain its first two entries.

the family of simple permutations of the form

m(2m)(m − 1)(m + 1)(m− 2)(m + 2) · · · 1(2m− 1);

the permutation in Figure 2.1 is of this form. On the other hand, no attempt has been made

to optimise the function f ; our proof gives an f of order about kk.

This result alone, however, gives no real indication as to the underlying structure

within the simple permutation; rather it is the method by which we arrive at Theorem 2.2.

We give a Ramsey-type description of simple permutations in terms of some unavoidable

substructures, similar to the Erdős-Szekeres Theorem as applied to arbitrary permutations:

Theorem 2.3 (Erdős and Szekeres [53]). Every permutation of length n contains a monotone

increasing or monotone decreasing subsequence of length at least √n.

In particular, we will demonstrate how a sufficiently long simple permutation contains,

in the first instance, a “parallel alternation” of length k, a “wedge alternation” of length k

or a “pin sequence” of length k. By studying the decomposition of pin sequences, we can

go further to provide a more straightforward result, namely every sufficiently long simple

permutation contains either an “alternation” or an “oscillation”.

A major motivation of this study is the enumeration of particular permutation classes.

Although we will delay an in-depth discussion of this until Part II, it is worth noting that

establishing a method of classifying the simple permutations brings us much closer to

establishing what simple permutations lie in a given class.
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Figure 2.2: A pin sequence.

2.2 Pin Sequences

The core of the simple permutation decomposition is in understanding pin sequences. Em-

pirically, they encapsulate precisely what it means to be simple: in the plot of a simple

permutation, any set of points enclosed by an axis-parallel rectangle must be separated

by at least one point lying outside the box above, below, to the left or to the right, and

formalising the method of finding such a point is the motivation for defining pins, and

subsequently sequences of pins.

While the viewpoint above will regard pins in their motivational setting as points

within the plot of a permutation, when we come to discussing our final “unavoidable sub-

structures” result, we are going to need to decompose these pin sequences. To do this,

we will shift our viewpoint to building pin sequences from scratch by placing points in a

plane, each of which will correspond to a pin. We will also need to consider subsequences

of a given pin sequence, for which we will need to introduce “pin words”.

Let us begin, however, with a more detailed motivational definition of pin sequences
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in our original setting. Recall the graphical representation of a permutation as described in

Section 1.2. Given points p1, . . . , pm in the plane, we denote by rect(p1, . . . , pm) the smallest

axes-parallel rectangle containing them.

Choose two points p1 and p2 in the plot of a permutation π. If these two points do

not form an interval then there is at least one point which lies outside rect(p1, p2) and

slices rect(p1, p2) either horizontally or vertically. (This discussion is accompanied by the

sequence of diagrams shown in Figure 2.2.) We call such a point a pin. Choose a pin

and label it p3. Now consider the larger rectangle rect(p1, p2, p3). If this also does not

form an interval in π then we can find another pin, p4, which slices rect(p1, p2, p3) either

horizontally or vertically. Again, if rect(p1, p2, p3, p4) is not an interval then we can find

another pin p5. We refer to a sequence of pins constructed in this manner as a pin sequence.

Formally, a pin sequence is a sequence of points p1, p2, . . . in the plot of π such that for

each i ≥ 3,

• pi 6∈ rect(p1, . . . , pi−1), and

• if rect(p1, . . . , pi−1) = [a, b] × [c, d] and pi = (x, y), we have either a < x < b or c <

y < d, or, in other words, pi slices rect(p1, . . . , pi−1) either horizontally or vertically.

We describe pins as either left, right, up, or down based on their position relative to the

rectangle that they slice. Thus in the pin sequence from Figure 2.2, p3 and p7 are right pins,

p4 and p5 are up pins, p6 is a left pin, and p8 is a down pin (p1 and p2 lack direction).

A proper pin sequence is one that satisfies two additional conditions:

• Maximality condition: each pin must be maximal in its direction. For example, if

rect(p1, . . . , pi−1) = [a, b]× [c, d] and pi = (x, y) is a right pin, then it is the right-most

of all possible right pins for this rectangle, or, in other words, the region (x, n]× [c, d]

is devoid of points.

• Separation condition: pi+1 must separate pi from {p1, . . . , pi−1}. That is, pi+1 must lie

horizontally or vertically between rect(p1, . . . , pi−1) and pi.
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rect(p1, . . . , pi−2)

pi−1

pi

pi+1

rect(p1, . . . , pi−2)

pi−1

pi
pi+1

Figure 2.3: The two cases in the proof of Lemma 2.6.

For example, in the pin sequence shown in Figure 2.2, the choice of p4 violates the maxi-

mality condition, while the choices of p5, p7, and p8 violate the separation condition. The

ultimate goal of the following succession of lemmas is to show (in Theorem 2.7) that all or

all but one of the pins in a proper pin sequence themselves form a simple permutation. We

begin by observing that proper pin sequences travel by 90◦ turns only.

Lemma 2.4. In a proper pin sequence, pi+1 cannot lie in the same or opposite direction as pi (for

all i ≥ 3).

Proof. By the maximality condition, pi+1 cannot lie in the same direction as pi. It cannot lie

in the opposite direction by the separation condition.

Lemma 2.5. In a proper pin sequence, pi does not separate any two members of {p1, . . . , pi−2}.

Proof. If pi did separate rect(p1, . . . , pi−2) into two parts then pi−1 would lie on one side of

this divide, violating the separation condition.

Lemma 2.6. In a proper pin sequence, pi and pi+1 are separated either by pi−1 or by each of

p1, . . . , pi−2.

Proof. The lemma is vacuously true for i = 1 and i = 2, so let us assume that i ≥ 3. Without

loss we may assume that pi−1 is a right pin and pi is an up pin. By Lemma 2.4, pi+1 must

be either a right pin or a left pin. The remainder of the proof is evident from Figure 2.3.
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We are now ready to prove our main result about proper pin sequences.

Theorem 2.7. If p1, . . . , pm is a proper pin sequence of length m ≥ 5 then one of the sets of

points {p1, . . . , pm}, {p1, . . . , pm} \ {p1}, or {p1, . . . , pm} \ {p2} is order isomorphic to a simple

permutation.

Proof. We are interested in the possible intervals in the subsequence given by the pins

p1, . . . , pm; we shall call these intervals of pins. The bulk of our proof is devoted to establish-

ing the following claim: for any m, the only possible proper minimal nonsingleton inter-

vals of pins in the proper pin sequence {p1, . . . , pm} are {p1, pm}, {p2, pm}, {p1, p3, . . . , pm}
or {p2, . . . , pm}.

Take M ⊆ {p1, . . . , pm} to be a minimal non-singleton interval of pins. Note that M is

therefore order isomorphic to a simple permutation. If M contains a pair of pins pi and pj

with i < j < m then by the separation condition pj+1, . . . , pm ∈ M . Furthermore, because

j < m, Lemma 2.6 shows that M contains either pj−1 or p1, p2, . . . , pj−2. In the latter case,

if j ≥ 4 then separation gives pj−1 ∈M , as desired, while if j ≤ 3, we have already found a

minimal non-singleton interval of pins of the desired form. In the former case, the proof is

completed by iterating this process. Only the case M = {pi, pm} remains. If 3 ≤ i ≤ m− 1

then by the separation condition pi separates {p1, . . . , pi−1}, while Lemma 2.5 shows that

pm does not separate these points; thus at least one of them must lie in M , a contradiction

which completes the proof of the claim.

Returning to the proof of the theorem, suppose that {p1, . . . , pm} is not itself order

isomorphic to a simple permutation and that m ≥ 5. Thus, by the claim, at least one of

{p1, pm}, {p2, pm}, {p1, p3, . . . , pm} or {p2, . . . , pm} forms a minimal nonsingleton interval

of pins. The latter two cases give us a simple of the desired form, so now assume either

{p1, pm} or {p2, pm} is an interval of pins. (Note that we cannot have both intervals since

p3 separates p1 from p2.) We assume the former as the latter is analogous. Consider the pin

sequence {p2, . . . , pm}. By the claim, the only possible minimal nonsingleton intervals of

pins in this sequence are {p2, pm}, {p3, pm}, {p2, p4, . . . , pm} or {p3, . . . , pm}. The latter two

cases may be ignored since the only interval of pins in the original sequence {p1, . . . , pm}
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was {p1, pm}, and hence the points that p1 separated are the same as those separated by

pm. Thus it remains to eliminate the cases {p2, pm} and {p3, pm}. Since p3 separates p1

from p2 and {p1, pm} is an interval, p3 also separates p2 from pm, so {p2, pm} cannot form

an interval of pins for the sequence {p2, . . . , pm}. Similarly, {p3, pm} cannot be an interval

of pins for {p2, . . . , pm} because p4 separates p3 from p1 and thus also from pm because we

have assumed that {p1, pm} forms an interval. Thus {p2, . . . , pm} contains no nontrivial

intervals of pins and is therefore order isomorphic to a simple permutation, completing

the proof.

As a corollary of this theorem, we see that Theorem 2.2 (in fact, a stronger result) is true

for simple permutations with long pin sequences.

Corollary 2.8. If π contains a proper pin sequence of length at least 2k + 2 (with k ≥ 4) then π

contains two disjoint simple subsequences, each of length at least k.

Proof. Apply Theorem 2.7 to the two pin sequences p1, . . . , pk+1 and pk+2, . . . , p2k+2.

We say that the pin sequence p1, . . . , pm for the permutation π of length n is saturated if

rect(p1, . . . , pm) = [n]× [n]. For example, the pin sequence in Figure 2.2 is saturated. Any

two points p1 6= p2 in the plot of a simple permutation can be extended to a saturated pin

sequence, as we are forced to stop extending a pin sequence only upon finding an interval

or when the rectangle contains every point in π.

It is important to note that two points in a simple permutation need not be extendable

to a proper saturated pin sequence. For example, the permutation in Figure 2.2 does not

have a proper saturated pin sequence beginning with p1 and p2. For this reason we work

with a weaker requirement: the pin sequence p1, . . . , pm is said to be right-reaching if pm is

the right-most point of π.

Lemma 2.9. For every simple permutation π and pair of points p1 and p2 (unless, trivially, p1 is

the right-most point of π), there is a proper right-reaching pin sequence beginning with p1 and p2.
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Figure 2.4: A horizontal alternation (left) and its inverse, a vertical alternation (right).

Proof. Clearly we can find a saturated pin sequence p1, p2, . . . in π that satisfies the maxi-

mality condition. Since this pin sequence is saturated, it includes the right-most point; la-

bel it pi1 . Now take i2 as small as possible so that p1, p2, . . . , pi2 , pi1 is a valid pin sequence.

Note first that i2 < i1 because p1, . . . , pi1 is a valid pin sequence. Now observe that pi1

separates pi2 from rect(p1, . . . , pi2−1), because p1, . . . , pi2−1, pi1 is not a valid pin sequence.

Continuing in this manner, we find pins pi3 , pi4 , and so on, until we reach the stage where

pim+1 = p2. Then p1, p2, pim , pim−1 , . . . , pi1 is a proper right-reaching pin sequence.

2.3 Simple Permutations without Long Proper Pin Sequences

It remains only to consider those simple permutations without long proper pin sequences.

Lemma 2.9 shows that in such a permutation, any two points p1, p2 can be extended to

a short proper right-reaching pin sequence. Our goal in this section is to use several of

these short right-reaching sequences to prove that such permutations contain long “alter-

nations”.

We use the term horizontal alternation to refer to a permutation in which every odd

entry lies to the left of every even entry, or the reverse of such a permutation. A vertical

alternation is the group-theoretic inverse of a horizontal alternation. Examples are shown

in Figure 2.4. Every sufficiently long vertical alternation contains either a long parallel

alternation or a long wedge alternation (see Figure 2.5 for definitions):
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Figure 2.5: The two permutations on the left are wedge alternations, the two on the right are parallel
alternations.

Proposition 2.10. Every alternation of length at least 2k4 contains either a parallel or wedge

alternation of length at least 2k.

Proof. Let π be a vertical alternation of length 2n ≥ 2k4. By the Erdős-Szekeres Theo-

rem 2.3, the sequence π(1), π(3), . . . , π(2n− 1) contains a monotone subsequence of length

at least k2, say π(i1), π(i2), . . . , π(ik2). Applying the Erdős-Szekeres Theorem to the subse-

quence π(i1 + 1), π(i2 + 1), . . . , π(ik2 + 1) completes the proof.

Note that every parallel alternation of length 2k + 2 ≥ 10 contains two disjoint simple

permutations of length at least k. Thus Theorem 2.2 follows in the case where our simple

permutation contains a long parallel alternation.

Returning to pin sequences, the pin sequences p1, p2, . . . and q1, q2, . . . are said to

• be initially-nonoverlapping if rect(p1, p2) and rect(q1, q2) are disjoint,

• converge at the point x if there exist i and j such that pi = qj = x but {p1, . . . , pi−1} and

{q1, . . . , qj−1} are disjoint.

A collection of pin sequences converges or is initially-nonoverlapping if they pairwise

converge or are pairwise initially-nonoverlapping. Note that it is always possible to find

a collection of bn/2c initially-nonoverlapping proper pin sequences in a permutation π of

length n by taking proper pin sequences beginning with the first and second points, the

third and fourth points, and so on, reading left to right.

Lemma 2.11. If 16k initially-nonoverlapping proper pin sequences of π converge at the same point,

then π contains an alternation of length at least 2k.
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Proof. Suppose that 16k initially-nonoverlapping proper pin sequences converge at the

point x. Note that x can be the first or second pin for at most one of these sequences because

they are initially-nonoverlapping. Thus one of the following two possibilities must occur:

• at least 8k of the sequences have x as their third pin, or

• at least 8k of the sequences have x as their fourth or later pin.

Suppose that at least 8k of the sequences have x as their third pin. This point could be

variously functioning as a left, right, down, or up pin for each of these 8k sequences, but

x plays the same role for at least 2k sequences. Suppose, by symmetry, that x is a right

pin for at least 2k sequences. Since x is the third pin for these sequences, one of their first

two pins lies above x while the other lies below and because these sequences are initially-

nonoverlapping, an alternation of length at least 2k can be obtained by choosing one point

from each sequence.

Now suppose that at least 8k of the sequences have x as their fourth or later pin. Again

we may assume without loss that x is a right pin for at least 2k of these sequences. Now

consider the immediate predecessors to x in these sequences. These pins are either up

pins or down pins (by Lemma 2.4). By symmetry we may assume that for at least k of

these sequences the immediate predecessor to x is an up pin. Reading left to right, label

these immediate predecessor pins p(1), p(2), . . . , p(k) and let R(i) denote the rectangle for

which p(i) is a pin. Note that each R(i) lies completely below x, as otherwise the separation

condition would prevent x from following p(i) in the corresponding pin sequence. We now

have the situation depicted in Figure 2.6.

It suffices to show, for each i, that π contains a point lying horizontally between p(i) and

p(i+1) and below x since these points, together with the p(i)’s and x, will give an alternation

of length 2k. However, if there is no such point then p(i) and p(i+1) could each function

as up pins for both R(i) and R(i+1), and thus one of these choices would contradict the

maximality condition, completing the proof.
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R(1)

R(2)

R(3)

R(4)

x

p(1)

p(2)

p(3)

p(4)

Figure 2.6: The situation that arises in the proof of Lemma 2.11.

Lemma 2.12. Every simple permutation of length at least 2(16k4)2k contains either a proper pin

sequence of length at least 2k or a parallel or wedge alternation of length at least 2k.

Proof. Suppose that a simple permutation π of length n contains neither a proper pin se-

quence of length at least 2k nor a parallel or wedge alternation of length at least 2k. In

particular, π does not contain a proper right-reaching pin sequence of length 2k, and it

follows from Proposition 2.10 that π has no alternations of length 2k4.

It follows from our earlier observations that π contains a collection of bn/2c initially-

nonoverlapping proper right-reaching pin sequences. As these sequences are right-reach-

ing, they all have the same final (right-most) pin which we denote by p. By Lemma 2.11,

fewer than 16k4 of these pin sequences converge at p; equivalently, there are fewer than

16k4 distinct immediate predecessors to p, and we label these as p(1), p(2), . . . , p(m). Again,

fewer than 16k4 pin sequences converge at each of the p(i)’s, so there are fewer than (16k4)2

immediate predecessors to these pins. Continue this process until we reach the sequences

of length 2k, of which we have assumed there are none. We have thus counted all bn/2c of

our sequences, and have obtained the bound

bn/2c < 1 + 16k4 + (16k4)2 + (16k4)3 + · · · + (16k4)(2k−1),
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Figure 2.7: The two types of wedge simple permutations, type 1 (left) and type 2 (right).

so, simplifying,

n < 2(16k4)2k.

We are left to deal with simple permutations which do not have long proper pin se-

quences but do have long wedge alternations. We prove that these permutations contain

long wedge simple permutations, of which there are two types (up to symmetry). Examples

of these two types are shown in Figure 2.7.

Lemma 2.13. If a simple permutation contains a wedge alternation of length 4k2 then it contains

either a pin sequence of length at least 2k or a wedge simple permutation of length at least 2k.

Proof. Let π be a simple permutation containing a wedge alternation of length at least

4k2. By symmetry we may assume that this wedge alternation opens to the right (i.e.

it is oriented as <). We call these the wedge points of π. Label the two left-most wedge

points p1 and p2 and by Lemma 2.9 extend this into a proper right-reaching pin sequence

p1, p2, . . . , pm.

Let Ri denote the smallest rectangle in the plot of π containing p1, p2, and pi that is not

sliced by a wedge point outside the rectangle. Define the wedge sum of the pin pi, ws(pi),

to be the number of wedge points in Ri. For i ≥ 2 define the wedge contribution of pi by

wc(pi) = ws(pi) − ws(pi−1) and set wc(p1) = 1. Regarding these quantities we make four

observations:

(W1) the wedge sum of pm is equal to the total number of wedge points and also to
m

∑

i=1

wc(pi),
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pi−1

pi

pi−1
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Figure 2.8: The three cases in the proof of Lemma 2.13; the solid points form simple permutations.

(W2) it is not hard to construct examples in which pins have negative wedge contribu-

tions; indeed,

(W3) left pins cannot have positive wedge contributions, and finally,

(W4) if pi is an up pin, then the right-most wedge point in Ri is an upper wedge point.

We now claim that each pi lies in a wedge simple permutation of length at least wc(pi)+

2. This claim implies the theorem, because if no pin lies in a wedge simple permutation of

length at least 2k then wc(pi) ≤ 2k − 3, so by (W1),

4k2 ≤
m

∑

i=1

wc(pi) ≤ m(2k − 3),

and thus m ≥ 2k, giving the long pin sequence desired.

The claim is easily observed for i = 1 and, by (W3), vacuously true if pi is a left pin.

Thus by symmetry there are only three cases to consider: an up pin followed by a right

pin, a right pin followed by an up pin, and a left pin followed by an up pin. These three

cases are depicted in Figure 2.8.

Let us consider in detail the case of an up pin followed by a right pin. By (W4), the

left-most wedge point in Ri \Ri−1 lies below p1. By separation, pi−1 lies above pi, which is

itself the right-most point in Ri. Therefore the wedge points in Ri \ Ri−1 together with pi

and pi−1 constitute a type 1 wedge simple permutation. The other cases follow by similar

analysis; in the right-up case the wedge points in Ri \ Ri−1 together with p1 and pi give a
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wedge simple permutation of type 2, while in the left-up case a wedge simple permutation

of type 2 can be formed from the wedge points in Ri \Ri−1, pi−1, and pi.

We have therefore established the following theorem.

Theorem 2.14. Every simple permutation of length at least 2(256k8)2k contains a proper pin

sequence of length 2k, a parallel alternation of length 2k, or a wedge simple permutation of length

2k.

The proof of Theorem 2.2 now follows by analysing each of these cases in turn. A

parallel alternation of length 2k + 2 ≥ 10 contains two disjoint simple permutations of

length k. A type 1 wedge simple permutation of length 2k contains two type 1 wedge

simple permutations of length k with only one entry in common, and a type 2 wedge

simple permutation of length 2k contains two type 2 wedge simple permutations of length

k which share two entries. Finally, Corollary 2.8 shows that a permutation with a proper

pin sequence of length 2k + 2 contains two disjoint simple permutations of length k.

2.4 Pin Words

To explain how to expatiate Theorem 2.14 into a simpler “unavoidable substructures” re-

sult, we must first change our viewpoint so we can consider arbitrary proper pin sequences

and their subsets, rather than pin sequences within a given simple permutation. This treat-

ment will also be of use in Part II. To this end we extend the pin sequence definition to

allow us to place points in the plane as they are required. While the precise coordinates of

each pin will be far from unique, we do not encounter any difficulties as two sets of points

in the plane constructed by the same pin sequence will be order isomorphic.

The changing viewpoint requires that we replace the maximality condition with the

“externality” condition. Formally, a proper pin sequence is a sequence of points in the plane

satisfying:

• Separation condition: pi+1 must separate pi from {p1, . . . , pi−1}. That is, pi+1 must lie

horizontally or vertically between rect(p1, . . . , pi−1) and pi.
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• Externality condition: pi+1 must lie outside rect(p1, . . . , pi).

Note that, as we are now building proper pin sequences from scratch, the externality and

separation conditions together imply the maximality condition.

Proper pin sequences can essentially be described naturally by words over a four-letter

alphabet consisting of the directions {L,R,U,D} (standing for left, right, up and down).

This does not, of course, precisely define how the pin sequence begins, a detail which we

will deal with shortly.

A subsequence of a proper pin sequence, viewed in the same order as the original pin

sequence, consists of some points which still satisfy the separation condition and some

that do not. (Note that externality is always satisfied.) The points that do still separate

can be described by one of the letters L, R, U or D as before, since they are still proper

pins. Each point p not satisfying separation arose because its immediate predecessor pin

in the proper pin sequence was not included in the subsequence. By externality, however,

p must lie in one of the four quadrants as defined by the axis-parallel rectangle enclosing all

points of the subsequence coming before p (see Figure 2.9). We may now represent p with

a numeral corresponding to the quadrant in which it lies, and so to encode subsequences

of proper pin sequences, we append to the alphabet {L,R,U,D} the set of four numerals

{1, 2, 3, 4}, indicating a point is to be placed in the appropriate quadrant.

Before our formal definition of a pin word, it remains to give an informal description

of how to represent the start of a pin sequence. This may be done in a variety of ways,

but the most effective method for our purposes will be to fix the placement of the origin,

and regard it as a pin coming before the first pin of the original sequence. We can then

represent the first pin with a numeral denoting its quadrant in relation to the origin, and

thereafter proceed as already described.

Formally, the word w = w1 · · ·wm ∈ {1, 2, 3, 4, L,R,U,D}∗ is a pin word if it satisfies:

(W1) w begins with a numeral,

(W2) if wi−1 ∈ {L,R} then wi ∈ {1, 2, 3, 4, U,D}, and
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p

3 4

2 1

Figure 2.9: The point p lies in quadrant 2.
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Figure 2.10: The proper pin sequence p1, . . . , p15 shown corresponds to the strict pin word w =
3RDRDLULURDLDRD. The filled points correspond to the pin word u = 4RDL21DL, the
permutation corresponding to this word, i.e., the permutation order isomorphic to the filled points,
is 27453618.
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(W3) if wi−1 ∈ {U,D} then wi ∈ {1, 2, 3, 4, L,R}.

Pin words with precisely one numeral, which we term strict pin words, correspond to

proper pin sequences and it is this correspondence we formalise first. Let w = w1 · · ·wm

denote a strict pin word and begin by placing a point p1 in quadrant w1. Next take p2 to

be a pin in the direction w2 that separates p1 from the origin, denoted 0. Continue in this

manner, taking pi+1 to be a pin in the direction wi+1 that satisfies the externality condi-

tion and separates pi from 0, p1, . . . , pi−1. Upon completion, 0, p1, . . . , pm is a proper pin

sequence, and more importantly, p1, . . . , pm is as well; it is the latter pin sequence that we

say corresponds to w. Note that not only is this sequence unique up to order isomorphism,2

but also the quadrant that point pi lies in is determined by w (indeed, for i ≥ 2, this quad-

rant is determined by wi−1 and wi). We say that the permutation corresponding to w is the

permutation that is order isomorphic to the set of points p1, . . . , pm. See Figure 2.10 for an

example. Conversely, we have the following result.

Lemma 2.15. Every proper pin sequence corresponds to a strict pin word.

Proof. Let p1, . . . , pm be a proper pin sequence in the plane. It suffices to place a point

p0 (corresponding to the origin) so that p0, p1, . . . , pm form a proper pin sequence. By

symmetry, let us assume that p1 lies below and to the right of p2 and that p3 is a left or

right pin. Hence p3 lies vertically between p1 and p2, and by the separation condition, p3

is the only such pin. We place p0 vertically between p1 and p3 and minimally to the left of

p2, i.e., so that no pin lies horizontally between p2 and p0. Clearly p2 separates p1 from p0

while p3 separates p2 from {p0, p1}. Moreover, our placement of p0 guarantees that no later

pins separate {p0, p1, p2}, so since pi+1 separates pi from {p1, . . . , pi−1}, it will also separate

pi from {p0, p1, . . . , pi−1}.

It remains to construct the permutations that correspond to nonstrict pin words. Let-

ting w = w1 · · ·wm denote such a word, we begin as before. Upon reaching a later numeral,

say wi, we essentially collapse p1, . . . , pi−1 into the origin and begin anew. More precisely,
2It is for this reason that we refer to it as the proper pin sequence corresponding to w.
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we place pi in quadrant wi so that it does not separate any of 0, p1, . . . , pi−1. If wi+1 is a

direction, we take pi+1 to be a pin in the direction wi+1 that satisfies the externality con-

dition and separates pi from 0, p1, . . . , pi−1; if wi+1 is a numeral then we again place pi+1

in quadrant wi+1 so that it does not separate any of the former points. In this process we

build the sequence of points corresponding to w: p1, . . . , pm. The permutation corresponding to

w is again the permutation order isomorphic to this set of points. Again, Figure 2.10 gives

an example of a nonstrict pin word.

We can now define an order, �, on pin words. Let u and w be two pin words. Define

a strong numeral-led factor to be a sequence of contiguous letters beginning with a numeral

and followed by any number of directions (but no numerals) and begin by writing u in

terms of its strong numeral-led factors as u = u(1) · · · u(j). We then write u � w if w can be

chopped into a sequence of factors w = v(1)w(1) · · · v(j)w(j)v(j+1) such that for all i ∈ [j]:

(O1) if w(i) begins with a numeral then w(i) = u(i), and

(O2) if w(i) begins with a direction, then v(i) is nonempty, the first letter of w(i) corresponds

(in the manner described above) to a point lying in the quadrant specified by the first

letter of u(i), and all other letters (which must be directions) in u(i) and w(i) agree.

(It is trivial to check that� is reflexive and antisymmetric; transitivity requires only slightly

more effort.) Returning a final time to Figure 2.10, the division of u into strong numeral-led

factors is (4RDL)(2)(1DL), while w can be written (3R)(DRDL)(U)(L)(U)(RDL)(DRD).

We now match factors. Since w3 corresponds to p3 which lies in quadrant 4, (4RDL) can

embed as (DRDL); because p8 lies in quadrant 2, the (2) factor in u can embed as (L);

lastly, p10 lies in quadrant 1, so the (1DL) factor in u can embed as (RDL) in w. This

verifies that u � w.

This order is not merely a translation of the pattern-containment order on permutations

(consider the words 11, 13, 1L, 1D, 21, 23, 2R, 2U, . . . , which are incomparable under� yet

correspond to the same permutation), but ≤ and � are closely related:
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Lemma 2.16. If the pin word w corresponds to the permutation π and σ ≤ π then there is a pin

word u corresponding to σ with u � w. Conversely, if u � w then the permutation corresponding

to u is contained in the permutation corresponding to w.

Proof. If w = w1 · · ·wm corresponds to the sequence of points p1, . . . , pm then the sequence

p1, . . . , p`−1, p`+1, . . . , pm corresponds to the pin word w1 · · ·w`−1w
′
`+1w`+2 · · ·wm � w,

where w′
`+1 is the numeral corresponding to the quadrant containing p`+1. Iterating this

observation proves the first half of the lemma.

The other direction follows similarly. Write u in terms of its strong numeral-led factors

as u = u(1) · · · u(j) and suppose that the expression w = v(1)w(1) · · · v(j)w(j)v(j+1) satisfies

(O1) and (O2). Now delete every point in the sequence of points corresponding to w that

comes from a letter in a v(i) factor. By conditions (O1) and (O2) and the remarks in the pre-

vious paragraph, it follows that the resulting sequence of points corresponds to u. There-

fore the permutation corresponding to u is contained in the permutation corresponding to

w.

2.5 Unavoidable Substructures in Simple Permutations

With the representation of pin sequences and their subsets in terms of pin words estab-

lished, we may derive the promised unavoidable substructures result. Define the increasing

oscillating sequence to be the infinite sequence

4, 1, 6, 3, 8, 5, . . . , 2k + 2, 2k − 1, . . . .

A plot is shown in Figure 2.11; note that the sequence can be represented, for example, by

the proper pin sequence 1RURU · · · .
We define an increasing oscillation to be any simple permutation that is contained in

the increasing oscillating sequence, decreasing oscillation to be the reverse of an increasing

oscillation, and an oscillation to be any permutation that is either an increasing oscillation

or a decreasing oscillation.



40 2 DECOMPOSITION

. .
.

Figure 2.11: A plot of the increasing oscillating sequence.

Theorem 2.17. Every sufficiently long simple permutation contains an alternation of length k or

an oscillation of length k.

Proof. By Theorem 2.14, it suffices to prove that every sufficiently long proper pin sequence

contains an alternation or oscillation of length k. Take a proper pin sequence p1, . . . , pm. By

Lemma 2.15, we may assume that these pins lie in the plane in such a way that 0, p1, . . . , pm

is also a proper pin sequence, where 0 denote the origin.

We say that this sequence crosses an axis whenever pi+1 lies on the other side of the x-

or y-axis from pi, and refer to {pi, pi+1} as a crossing. First suppose that p1, . . . , pm contains

at least 2k crossings, and so crosses some axis at least k times; suppose that this is the y-

axis. Each of these y-axis crossings lies either in quadrants 1 and 2 or in quadrants 3 and

4. We refer to these as upper crossings and lower crossings, respectively. By the separation

and externality conditions, both pins in an upper crossing lie above all previous crossings,

while both pins in a lower crossing lie below all previous crossings. Thus we can find

among the pins of these crossings an alternation of length at least k.

Therefore we are done if the pin sequence contains at least 2k crossings, so suppose that

it does not, and thus that the pin sequence can be divided into at most 2k contiguous sets

of pins so that each contiguous set lies in the same quadrant. Each of these contiguous sets

is restricted to two types of pin (e.g., a contiguous set in quadrant 3 can only contain down

and left pins) and thus since these two types of pin must alternate, these contiguous sets of

pins must be order isomorphic to an oscillation (e.g., a contiguous set in quadrant 3 must
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be order isomorphic to an increasing oscillation). Thus we are also done if one of these

contiguous sets has length at least k, which it must if the original pin sequence contains at

least m ≥ 2k2 pins, proving the theorem.

2.6 Other Contexts

Although our proof is highly permutation-centric, these is no reason why analogues of

Theorem 2.2 cannot exist for other types of objects: we will shortly discuss the decompo-

sition problem in the graph case. In the context of general relational structures, however,

any analogue of Theorem 2.2 would need to allow for more intersection between the two

simple substructures. For example, let L consist of a 2-ary relation < and a k-ary rela-

tion R. Take A with dom(A) = [2n] where < is interpreted as the normal linear order on

[2n] and R(1, 3, 5, . . . , 2k − 3, i) precisely for even i ∈ [2k − 2, 2n]. This structure is sim-

ple, but all simple substructures (with at least two elements) of A must contain each of

1, 3, 5, . . . , 2k− 3, and then to prevent these elements from containing a nontrivial interval,

the simple substructure must also contain 2, 4, 6, . . . , 2k − 4.

2.6.1 Pin Sequences in Graphs

Our approach for indecomposable graphs3 follows the same principles as we used in the

case of permutations. We want to define pin sequences and a set of “exceptional indecom-

posable graphs” (analogous to parallel and wedge simple alternations) in order to prove:

Conjecture 2.18. Every sufficiently long indecomposable graph contains either a proper pin se-

quence of order k, or one of a finite number of families of exceptional indecomposable graphs with k

vertices.

We begin our discussion with some thoughts on pin sequences. Taking two vertices, p1

and p2 of an indecomposable graph G, {p1, p2} cannot be an interval and so there must be

a vertex p3 which is adjacent to precisely one of p1 or p2, corresponding to a pin. Now since

{p1, p2, p3} is not an interval, we may find a vertex p4 adjacent to some but not all of p1, p2

3Recall that “simple” graphs are more usually called indecomposable graphs.



42 2 DECOMPOSITION

and p3. We may continue in this manner to form a pin sequence, p1, . . . , pm for which pi is

adjacent to some but not all of {p1, . . . , pi−1}. Any pin sequence within an indecomposable

graph may be extended to form a saturated pin sequence, that is, one in which every vertex

appears. Note that here our definition differs slightly from the permutation case; there we

had defined saturated to mean that rect(p1, . . . , pm) encloses all of our simple permutation

π, while here we have no graphical representation where such an argument makes sense.

As an immediate consequence of saturation, however, we may state our equivalent to

“right reaching” pin sequences:

Lemma 2.19. Given any three distinct vertices p1, p2 and w in an indecomposable graph G, there

is a w-reaching pin sequence p1, p2, . . . , pm = w.

It remains to define proper pin sequences for graphs. In the permutation case, we

specified two conditions, namely separation and maximality (or externality in some view-

points). Since maximality is essentially a feature arising from the pictorial representation

of permutations, finding an equivalent for graphs is the first problem that arises. However,

separation is easily converted into the leaf condition: for all i ≥ 3, pi is either a

• Leaf: pi is adjacent to pi−1 and not to any of p1, . . . , pi−2, or an

• Antileaf: pi is adjacent to all of p1, . . . , pi−2 and not to pi−1.

It is worth noting that a similar construction called “reducing pseudopaths” can be

found in the recent work of Zverovich [122]. Delaying the issue of maximality for the time

being, we may proceed to derive results that look very similar to the permutation case.

First, we have an analogue of Theorem 2.7:

Proposition 2.20. If p1, . . . , pm is a proper pin sequence of length m ≥ 5, then one of the sets

of vertices {p1, . . . , pm}, {p1, . . . , pm} \ {p1} or {p1, . . . , pm} \ {p2} induces an indecomposable

graph.4

4Note that we still require m ≥ 5 as in the permutation case, as witnessed by the sequence {p1, p2, p3, p4}
with p1 ∼ p2, p3 a leaf and p4 an antileaf, whence {p1, p4} is an interval, but so is {p1, p3, p4}.
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We may also strengthen Lemma 2.19 in the desired way:

Lemma 2.21. Given any three distinct vertices p1, p2 and w in an indecomposable graph G, there

is a proper w-reaching pin sequence p1, p2, . . . , pm = w.

Both proofs follow in the same (in fact, somewhat easier) way as the permutation ver-

sions (Theorem 2.7 and Lemma 2.9, respectively), noting that maximality may be removed

without significant effect. However we now find that, without maximality, progress grinds

to a halt. If an indecomposable graph contains a long proper pin sequence, then we can

produce our sought-after substructure for Conjecture 2.18. On the other hand, if all the

pin sequences are short, we must explore convergence of pin sequences and hence derive

the set of “exceptional indecomposables”, but it is in convergence that maximality plays

its crucial rôle. We now present the current most promising definition of maximality, and

approaches to the question of convergence.

Given an indecomposable graph G on n vertices, we may fix a labelling of V (G) by

[n] = {1, . . . , n}. We are now concerned with a particular type of proper n-reaching pin

sequence, starting from p1, p2: the pin sequence p1, p2, . . . , pm = n is said to be a proper

quickly n-reaching pin sequence if, for all i ≥ 3, pi has the greatest label of all vertices v such

that p1, p2, . . . , pi−1, v can be extended to a proper n-reaching pin sequence. We may now

strengthen Lemma 2.19 yet further:

Lemma 2.22. In an indecomposable graph on n vertices labelled by [n], for any two vertices

p1, p2 6= n there is a proper quickly n-reaching pin sequence p1, p2, . . . , pm = n.

Two pin sequences p1, p2, . . . and q1, q2, . . . are said to converge at the vertex x if there

exists i and j such that pi = qj = x, but {p1, . . . , pi−1} and {q1, . . . , qj−1} are disjoint. As

we saw in the permutation case, however, convergence alone is not sufficient; we had to

use initially-nonoverlapping pin sequences to see that those converging at their third pin

still led to one of the exceptional simples. In the graph case, we may replace “initially-

nonoverlapping” with distinct third pins – i.e. we must find pin sequences that do not

converge until after their third pin. If this can be done, then together with the existing
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Kn or Kn Kn or Kn Kn or Kn Kn or Kn

Figure 2.12: Forming exceptional indecomposable graphs from converging pin sequences.

maximality definition we should be able to rule out the type (iv) graphs we will encounter

shortly in Figure 2.14, in which case Conjecture 2.18 would hopefully follow. Unfortu-

nately, there remains the question of whether or not we can find sufficiently many pin

sequences with distinct third pins:

Question 2.23. In an indecomposable graph on n vertices, how many proper quickly n-reaching

pin sequences with distinct third pins can be formed?

The problem that distinct third pins is needed to solve is that convergence does not

immediately lead us to exceptional indecomposables. In the permutation case we use the

points in the pin sequences prior to convergence to construct an alternation, knowing by

maximality that these sequences cannot “overlap”. In the graph case, this ceases to be true,

and even with our new notion of maximality we cannot rule out edges between vertices

of different pin sequences. Thus either we need to adjust the definition of maximality, or

introduce some further constraints on which pin sequences we select before any further

progress can be made.

The Exceptional Indecomposables. Considering how the “well behaved” pin sequences

converge, we may begin to describe the exceptional indecomposable graphs which contain

only short pin sequences. Suppose a (large) set of pin sequences converges at the vertex

x. By symmetry we may assume that for at least half of these sequences x is a leaf, so x
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(i) (ii) (iii) (iv)

Figure 2.13: The four interactions between pin sequences.

is adjacent to the preceding pin of each of these pin sequences but to none of the earlier

pins. Selecting these pin sequences, we now consider the set of immediate predecessor

pins, each of which was either a leaf or an antileaf. We pick, using Ramsey’s Theorem, the

largest subset of these pins which forms a complete or independent subgraph, and which

are all leaves or antileaves.

We now consider the pins occurring immediately before the predecessor pins in our

chosen uniform subset. Again using Ramsey’s Theorem, we may find a uniform subset

of these vertices, and again we restrict our attention to the pin sequences corresponding

to these vertices. Momentarily ignoring edge interactions between pin sequences at the

predecessor and pre-predecessor levels, we now have one of the situations depicted in

Figure 2.12.

We now consider the possible interactions between each pair of pin sequences, again

with an aim to choosing a uniform subset. Listing these sequences in some order (in Fig-

ure 2.12 we view the order as going from top to bottom), there are essentially four different

interactions between two pin sequences, types (i) — (iv) as shown in Figure 2.13.

A Ramsey-type argument may now be used to obtain a subset of these pin sequences

whose pairwise interactions are uniform. The resulting graph needs to be either indecom-

posable or nearly so – as in the permutation case, we allow the removal of one or two

points. In some cases the graph is immediately indecomposable (for example, the “double

star” in Figure 2.14), while in others the removal of one or two points is sufficient (the

“down and to the right” graph in Figure 2.14, the filled nodes form an indecomposable

graph). However, in certain cases no exceptional indecomposable seems to be obtainable,

and these structures are the ones that need to be ruled out by an appropriate definition
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Figure 2.14: From left to right, the “double star”, a “down and to the right” graph and a type (iv)
highly decomposable graph.

of maximality (the type (iv) interaction graph in Figure 2.14). Note that, if we have also

taken pin sequences with distinct third pins, we could, instead of looking at the penulti-

mate pins before convergence, look at the antepenultimate pins and there perhaps rule out

the existence of a large number of type (iv) interactions.



CHAPTER 3

SIMPLE EXTENSIONS

3.1 Introduction

OUR AIM in this chapter is to establish how we may embed any given L-structure A
into a simple L-structure B containing as few extra elements as possible. Formally,

we say that B is a simple extension ofA if B is simple, |dom(A)| < |dom(B)| and B|dom(A) =

A. Our aim then is to minimise |dom(B)\dom(A)|, writing it as a function of n = |dom(A)|.

This work is partly motivated by the result for tournaments dating back to 1972, when

Erdős, Fried, Hajnal and Milner [51] showed that every tournament may be extended to

a simple tournament requiring at most two extra vertices (we will review this result in

Section 3.4). Clearly, however, it will not be sufficient to consider just the two-point exten-

sions for every relational structure. Nor do we need to look far to find an example: there

is clearly no two-point simple extension of an arbitrary complete graph Kn. The permuta-

tion case is different again, while posets fall somewhere between the two. Thus asking for

a solution for an arbitrary relational structure is somewhat meaningless – as we will see,

even the well-known binary relational structures demonstrate a wide variety of results.

We may, however, follow a general approach by recalling the substitution decompo-

sition (Theorem 1.5 on Page 16) of A, and using induction. When the skeleton S of A
defines a unique deflation A = S[As : s ∈ dom(S)] into maximal intervals (i.e. when

|dom(S)| ≥ 3), we can embed A into B inductively by embedding each As into B in a pre-

scribed way. The degenerate and linear cases must in general be dealt with more carefully,

47
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although induction can still be used to produce the required result.

3.2 Permutations

We begin our study with the permutation case. Recall that, when viewing permutations

graphically, an interval of a permutation π can be seen as a set of points enclosed by an

axis-parallel rectangle with no other points above, below, to the left or to the right. To em-

bed a given π in a simple permutation, therefore, we must ensure that every axis-parallel

rectangle containing at least two points of π may be extended by a pin from the simple

extension.

Lemma 3.1. An increasing permutation of size n has a simple extension with d n+1
2 e additional

points.

Proof. For n = 2 the increasing permutation 12 is embeddable in the simple permutation

2413, so now suppose n ≥ 3. Let π = 12 · · · n. For n = 2k, we claim the permutation

k + 1, 1, k + 3, 2, . . . , 3k − 1, k, 3k + 1, k + 2, k + 4, . . . , 3k

is simple and contains 12 · · · n. For n = 2k + 1, we claim

k + 2, 1, k + 4, 2, . . . , 3k + 2, k + 1, k + 3, k + 5, . . . , 3k + 1

is simple. That both of these permutations are simple follows easily by checking Figure 3.1.

Note also that m = dn+1
2 e is the best possible bound. Every adjacent pair i, i+1 must be

“separated” either horizontally or vertically by one of the additional points, and the points

π(1) = 1 and π(n) = n of π must not lie in the “corners” of the simple extension — a total

of n + 1 gaps to be filled. The bound on the number of additional points is then obtained

by observing that each can fill at most two gaps (one horizontally, one vertically).

By symmetry, decreasing permutations may be extended in the same way:
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Figure 3.1: Simple permutations containing 12 · · ·n, for n = 12 (left) and n = 13 (right).

Lemma 3.2. A decreasing permutation of size n has a simple extension with d n+1
2 e additional

points.

We are now ready to state the result in the general case.

Theorem 3.3. Every permutation π on n symbols has a simple extension with at most d n+1
2 e

additional points.

Proof. We proceed by induction on n ≥ 2, claiming that for each permutation π of length n

we may construct two extensions, π(M) and π(m), satisfying:

• Viewed as extensions, both π(M) and π(m) have a new leftmost point which is neither

a new maximum nor a new minimum, called the entry point.

• Both π(M) and π(m) have a new exit point; for π(M) this is a new maximum while for

π(m) this is a new minimum, and in both cases it is neither a new leftmost point nor

a new rightmost point.

• The only minimal non-singleton intervals of π(M) and π(m) contain the new exit

point.

• At least one of π(M) and π(m) is simple.
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In the base case n = 2, either π = 12 or π = 21. When π = 12, π(M) = 2413 is simple,

and the only minimal non-singleton interval of π(m) = 3124 is 12, which contains the exit

point. The case π = 21 is dealt with by symmetry.

So now suppose n ≥ 3. If π is an increasing (respectively, decreasing) permutation, then

Lemma 3.1 (resp., Lemma 3.2) proves the existence of a simple extension of the required

size. Note further that the simple extension satisfies the requirements to act as π (M) (resp.,

π(m)), using symmetry if required. When π is an increasing permutation, we obtain π (m)

from π(M) by changing the new maximum for a new minimum using the mapping

π(m)(i) = π(M)(i) + 1 mod |π(M)|.

For decreasing permutations, π(M) is created similarly.

We may therefore assume that π is neither an increasing nor a decreasing permutation.

Write π as the substitution decomposition, π = σ[π1, π2, . . . , πm] where the simple skeleton,

σ, is of length m ≥ 2, and π1, π2, . . . , πm are permutations of size |πi| = pi for each i. First

suppose m > 2 so that the substitution decomposition is unique. If pi = 1 for all i, then

π = σ is already simple. We construct π(M) and π(m) by adding precisely two points. The

first is a new leftmost point, which may be inserted vertically anywhere except as a new

maximum, minimum, or adjacent to π(1). The new maximum or minimum is inserted

similarly, preserving simplicity.

So now suppose that at least one πi contains at least two points. For every such πi,

the inductive hypothesis allows us to extend to either π
(M)
i or π

(m)
i by adding at most

dpi+1
2 e points. Our choice between π

(M)
i or π

(m)
i is made according to the location of the

next leftmost non-singleton block, πj say (i.e. j > i and no k with j > k > i and πk non-

singleton); if σ(j) > σ(i), then we choose π
(M)
i , while if σ(j) < σ(i), we choose π

(m)
i . In

either case, the exit point of π
(M)
i or π

(m)
i is simultaneously used as the entry point for the

extension of πj to π
(M)
j or π

(m)
j . In this way, we work left-to-right through σ connecting the

non-singleton blocks πi (see Figure 3.2). For the rightmost such block πr, we use π
(M)
r to

form π(M), and π
(m)
r to form π(m), the exit point being used as the new maximum for π(M)

or the new minimum for π(m), respectively.
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Figure 3.2: Connecting entry and exit points in the substitution decomposition.

These extensions will fail to be simple if the rightmost non-singleton block πr is also

the maximal or minimal block by value in the cases π(M) and π(m) respectively, and only

then if π
(M)
r or π

(m)
r was not simple. Since πr can only satisfy at most one of these, we may

turn to the other for our simple extension. By symmetry, therefore, let us suppose that the

rightmost non-singleton block πr was not maximal in value.

Letting I be a non-singleton interval of π(M), first consider the case where I contains

points from two distinct original (non-extended) blocks πi and πj . In this case the original

simple skeleton σ of π forces us to include every such block, and subsequently all the ex-

tended points too. If on the other hand I contains two points in some extended block π
(M)
i

or π
(m)
i , then it must contain the exit point of that block and a point of the original πi (else

π
(M)
i or π

(m)
i did not satisfy the minimal proper interval property). Unless πi was the right-

most non-singleton block, this exit point acts as the entry point of the extension of some

other block πj , which then requires us to include at least one other point of this extended

block, and hence a point of the original block πj , returning us to the previous case. Finally,

if πi was in fact the rightmost non-singleton block, then it was not the maximal block by

value, and so the exit point of π
(M)
i forces us to include the entirety of some other πj block

(note that such a πj can be a singleton), again reducing to our first consideration.

In the case where m = 2 the substitution decomposition is not unique. Without loss

we may assume that σ = 12, and so we may write π = 12[π1, π2], where π1 and π2 may be

chosen in a number of different ways. We begin by choosing π1 to be as large as possible.
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Unless π2 is now a singleton, we will use this decomposition and proceed by extending

π1 to π
(M)
1 and π2 to π

(M)
2 or π

(m)
2 , and connecting the exit point of the first to the entry

point of the second. If π2 is a singleton and π1 is not sum decomposable, we continue as

above but with the exit point of π
(M)
1 placed above π2. When π1 is itself decomposable as

π1 = 12[π′
1, 1], we look at the decomposition π = 12[π ′

1, 12]. If again π′
1 = 12[π′′

1 , 1], then

we repeat, so that π = 12[π′′, 123]. Repeat this process, noting that it must terminate before

we reach the end of π, as otherwise π is increasing, and at termination proceed as before.

Simplicity follows in a similar manner to the unique decomposition case.

The number of points added in every one of the above cases is at most
∑m

i=1

⌈

pi+1
2

⌉

−
(m− 1) ≤ dn+1

2 e, noting that
∑m

i=1 pi = n.

3.3 Graphs

Recall that, in a graph G, an interval is a set of vertices X ⊆ V (G) such that N(v) \ X =

N(w) \ X for every v, w ∈ X , and instead of “simple” we use the word indecomposable to

describe a graph containing no proper intervals. We begin by specialising the Substitution

Decomposition Theorem 1.5 for the context of graphs:

Proposition 3.4. Let G be any graph. Then one of the following holds:

(1) G = H[Jv : v ∈ V (H)] where H is the simple skeleton of G, and this decomposition is

unique.

(2) G is disconnected and can be written possibly non-uniquely as G = K2[J1, J2].

(3) G is disconnected, and G can be written possibly non-uniquely as G = K2[J1, J2].

Our approach now follows the same pattern as the permutation case. We first consider

simple extensions of the complete graph Kn, which is once more the “worst case” scenario.

This result first appeared in Sumner’s Ph.D. Thesis [115].

Lemma 3.5 (Sumner [115, Theorem 2.45]). Kn has a simple extension with dlog2(n + 1)e addi-

tional vertices.
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Figure 3.3: The two cases of Lemma 3.5.

Proof. We proceed by induction on n. The case n = 1 is trivial. For n = 2, we must

add two new vertices. Regardless of whether the subgraph formed by the new vertices is

connected or not, there is a way to add edges between the new and old vertices to form a

graph isomorphic to P4, the path of length four.

Now suppose G ∼= Kn for n > 2. There are two cases (these discussions are accompa-

nied by Figure 3.3):

(1) dlog2(n +1)e = dlog2 ne. Choose a vertex v ∈ V (G), and use induction to add a set of

vertices B with edges to G− v so that (G− v) ∪B is simple. The remaining vertex v

can be assigned a neighbourhood in B different to the neighbourhood of every other

vertex in G − v, and so that N(v) ∩ B 6= B. Since v has a different neighbourhood

to every other vertex, it cannot lie in an interval with any other vertices, and so the

graph is simple.

(2) dlog2(n + 1)e = dlog2 ne + 1. Choose a vertex v ∈ V (G), and use induction to add a

set of vertices B with edges to G− v so that (G− v)∪B is simple. For the remaining

vertex v, we add a new vertex b∗ and connect it to v.

Since (G−v)∪B is simple, any proper interval in the extended graph G∪B∪{b∗}will

need to involve either v or b∗ (or both). We claim that any interval I in the extended

graph of size ≥ 2 containing v also contains b∗. If I contains a vertex x ∈ G− v, then

b∗ /∈ N(x), so b∗ ∈ I . The other case is where I contains a vertex b ∈ B, and then



54 3 SIMPLE EXTENSIONS

there is some x ∈ G− v not connected to b, so x ∈ I , reducing to the previous case.

Now suppose we have an interval I ⊇ {x, b∗} for x ∈ (G−v)∪B. Since the only vertex

in G connected to b∗ is v, and x is connected to at least one other vertex y ∈ G − v,

we have y ∈ I , and x, y ∈ I implies (G− v) ∪B ⊂ I . The vertex v, if not already in I ,

must be included as N(v) ∩B = ∅.

Note that the above proof does not specify the internal edges of B, nor edges between

any vertex in B and b∗, and so we may use any graph of size dlog2(n + 1)e that we choose.

Furthermore, by taking the complement, this immediately implies the following:

Lemma 3.6. Kn has a simple extension with dlog2(n + 1)e additional vertices.

The bound m = dlog2(n +1)e is also the smallest possible, for if we were to add a set B

of m vertices, with n > 2m−1, then either two vertices in G have the same neighbourhood

in G∪B, or one vertex of G is connected to every other vertex in G∪B, both of which give

an interval.

Theorem 3.7. Every graph G has a simple extension with at most m = dlog2(|V (G)| + 1)e
additional vertices.

Proof. We proceed by induction on n = |V (G)|. The base cases n = 1 and n = 2 are covered

by Lemmas 3.5 and 3.6, so now suppose n ≥ 3. Write G = H[Jv : v ∈ V (H)] where H is

the simple skeleton of G. There are two cases when |V (H)| = 2; we will assume without

loss in this case that H = K2, i.e. that G is disconnected. Further, we will choose the Jvs so

that at least one of them is connected and has at least two vertices (having established the

result for independent sets in Lemma 3.6).

If H = G then the graph is already simple, but for the induction to work we must

be able to extend to a larger simple graph. This we do by adding a single vertex, noting

that the only intervals that need to be avoided in this case are either all of the old graph or

intervals of size two involving the new vertex. The new vertex cannot therefore be adjacent
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to all or none of the old vertices, and it must also not have the same neighbourhood as any

other vertex, but any other set of adjacencies is permitted (giving 2n − 2n − 2 possible

one-point simple extensions).

Now assume that at least one interval Jv is non-trivial. Suppose first that |V (H)| ≥ 4

so the substitution decomposition is unique. For each Jv we may add a set of vertices Bv

which are connected to vertices in Jv so that Jv ∪ Bv is simple by induction. Fix an x ∈ H

for which Bx is of maximal size (note that 2 ≤ |V (Bx)| ≤ m). For every other interval Jv ,

identify Bv with any subset of Bx, unless |V (Jv)| = 1, in which case we set Bv = ∅. Then

we specify the edges between Jv and Bx \ Bv such that:

(G1) Every pair of vertices a ∈ Jv and b ∈ Bx \ Bv disagree on at least one vertex of

Jx ∪ Jv ∪Bx \ {a, b}.

First consider the case where Jv is not a singleton. If there is a vertex in Jv that is

adjacent to every other vertex in Jv , then we can satisfy (G1) by adding none of the edges

between Jv and Bx \Bv . Otherwise we can satisfy (G1) by adding all of the edges between

Jv and Bx \Bv .

If Jv = {a} is a singleton, let us suppose v 6∼ x in H by symmetry. Here we achieve

(G1) by connecting a to no vertex of Bx; if b ∈ Bx is connected to at least one vertex of Jx

then a and b disagree on Jx, while if b ∈ Bx is connected to no vertex of Jx then, to prevent

Jx ∪Bx \ {b} from being an interval of Jx ∪ Bx, there must be a vertex of Bx to which b is

adjacent and on which a and b will disagree.

We claim the resulting graph is simple. Consider an interval I with at least two vertices

a and b. There are four cases:

• a, b ∈ Jx∪Bx: simplicity implies that Jx∪Bx ⊆ I . Then for any Jv such that |V (Jv)| ≥
2, there are at least two vertices of Bv in the interval, which forces Jv ∪Bv ⊆ I . When

|V (Jv)| = 1, by (G1) the single vertex is adjacent to some but not all of Jx ∪ Bx and

so must be included in I .

• a, b ∈ Jv ∪ Bv , v 6= x: by the construction |V (Jv)| ≥ 2, and by simplicity Jv ∪ Bv ⊆
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I . There are now two vertices in I from Bv ⊆ Bx, a case which has already been

considered.

• a ∈ Ju and b ∈ Jv , u 6= v: first, if |V (H)| ≥ 4 then the simplicity of H implies that

V (G) ⊆ I , and in particular Jx ⊆ I , reducing to the first case above. Thus we have

H = K2 and (say) Ju connected with at least two vertices, by our assumptions at the

beginning of the proof. We then get that a has a neighbour in Ju while b does not,

leading to the case above.

• a ∈ Jv , v 6= x, and b ∈ Bx \ Bv: by (G1) there must be at least one more vertex in I ,

and thus one of the other cases applies.

Although we know this bound is necessarily tight for complete or independent graphs,

there does remain the question of whether or not we can do any better for an arbitrary

graph G on n vertices, i.e. is there a smaller simple extension? Letting ω(G) denote the size

of the largest clique (complete subgraph) of G, and α(G) the size of the largest independent

set of G, we pose (without further discussion here) the following conjecture:

Conjecture 3.8. Every graph G has a simple extension with at most dlog2(m + 1)e additional

vertices, where m = max[ω(G), α(G)] is the size of the largest clique or independent set in G.

3.4 Tournaments

Recall that a tournament is a complete oriented graph, and an interval of a tournament T is

a set A ⊆ V (T ) such that for all v /∈ A, either v → A or v ← A. Given a tournament, we may

define an abstract algebra (for a formal definition of abstract algebras, see Subsection 5.3.1)

with two idempotent binary operations AT = 〈T,∨,∧〉, so that if x→ y, then x∨y = y∨x =

x and x ∧ y = y ∧ x = y. A tournament is simple if and only if its corresponding abstract

algebra is also simple, i.e. the kernel of every homomorphism of an abstract algebra is

either the whole structure or a single element. Simple extensions in tournaments have
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thus received some attention, and in particular it is known that at most two vertices are

required in every case, while one vertex is sufficient in all but a certain family of cases.

Theorem 3.9 (Erdős, Fried, Hajnal and Milner [51]). Every tournament has a simple extension

with at most 2 additional vertices.

Proposition 3.10 (Erdős, Hajnal and Milner [52]). A tournament T has a one-vertex simple

extension unless |T | = 3 or it has an odd number of vertices and is transitive.

Note that these results hold for tournaments of arbitrary cardinality, though they had

previously been proved for finite tournaments by Moon [96]. We give here a proof of the

finite case using the substitution decomposition. Observe that the non-unique decompo-

sitions correspond precisely to transitive tournaments, i.e. tournaments for which x → y

and y → z implies x→ z.

Proof. First observe that there are no simple tournaments on 4 vertices, and so a simple

extension of a tournament on 3 vertices requires at least two vertices. There are, up to

isomorphism, only two 3-vertex tournaments, and checking each case in turn shows that

two vertices is sufficient.

Now suppose T is a finite transitive tournament, so we may label the vertices of T as

1, 2, . . . so that i → j if and only if i < j. We add a single vertex x to the tournament

satisfying x→ i if i is odd and i→ x if i is even. Unless T has an odd number of vertices,

it is straightforward to check that the resulting tournament is simple. In the case where

|T | = 2n + 1, we observe that the set of vertices with labels {1, 2, . . . , 2n, x} is an interval,

as they all look at the vertex labelled 2n + 1 in the same way. If alternatively we added

a vertex y satisfying y → i if i is even and i → y if i is odd, then we find that the set

{2, 3, . . . , 2n + 1, y} forms an interval. Note that for any other single vertex extension, z

say, there must exist a label i for which z → i and z → i + 1 or i → z and i + 1 → z,

and in either case {i, i + 1} is an interval. Thus T has no single vertex simple extension. A

2-vertex simple extension is easily formed by, say, adjoining both the vertices x and y, as

in Figure 3.4.
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Figure 3.4: A 2-vertex simple extension of a transitive tournament on 7 vertices.

Having covered the transitive and 3-vertex cases, we claim that any other finite tour-

nament T may be extended by a single vertex x to form a simple tournament. The substi-

tution decomposition allows us to write T = S[As : s ∈ S], where the skeleton S is either

simple or transitive.

Where S is simple, if every As contains just one vertex then T = S. Unless |T | = 3 (a

case that has already been covered), the addition of x will preserve simplicity providing it

does not have the same connections as any existing vertex of T . (Note that if |T | = n, there

are 2n − n different ways of choosing x.) Where there is at least one non-singleton block

As, we still attach x to every singleton block as before, ensuring x does not end up with

the same adjacency as any of them.

This leaves just the non-singleton blocks, which we attach to x as follows. Any such

As which is neither transitive of odd degree nor satisfies |As| = 3 may, by induction, be

connected to x so that As ∪ {x} is simple. If, however, As is transitive and |As| = 2n + 1,

then, labelling the vertices of As with 1, 2, . . . , 2n + 1 as before, set x → i if i is odd and

i → x for i even. This makes the set {1, 2, . . . , 2n, x} a candidate to be an interval, but

we may check that either (1) there is another non-singleton block As′ satisfying As → As′

or As′ → As, but x looks at elements of As′ differently, or (2) all the other blocks of the

substitution decomposition are singletons, but since x is already attached to all such blocks

preserving simplicity there is a singleton block on which x and As disagree. A similar

argument applies to the case where |As| = 3. The simplicity of the skeleton S now ensures

this one-point extension is simple.

If the skeleton is transitive then we may take S maximally so that each As is uniquely

defined. Moreover, at least one such As is not a singleton (as T is not transitive), and no
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non-singleton block can be transitive. The vertices of S may be labelled 1, 2, . . . as before,

but let us further identify the unique vertex s∗ of S for which s → s∗ for all s ∈ S \ {s∗}.
We attach x to every non-singleton block in any way so that:

• If A1 is a singleton, then x→ A1.

• If As∗ is a singleton, then As∗ → x.

• The vertex x looks at every pair Ai and Ai+1 of adjacent singleton blocks differently.

This leaves the non-singleton blocks, which, by induction, are attached to x so that the

resulting extension of each such block is simple. It is then easily checked that the resulting

one-point extension of T is simple.

3.5 Posets

Posets again give a different result, arising from the non-unique cases of the substitution

decomposition – we encounter a “mix” of the results in the non-unique cases of permu-

tations and graphs. For the former, recall that these cases correspond to the increasing

and decreasing permutations, which (viewing them as relational structures) occur when

the two linear orders agree – i.e. they correspond to a single linear order. For the latter,

the non-uniqueness comes in the form of complete and independent graphs, arising from

complete or empty edge sets – these are degenerate cases. Posets can be decomposed non-

uniquely either through linearity or through degeneracy, and the simple extension in each

case is significantly different.

We begin with the case where a poset (P,<) is a linear order. This case is essentially

identical to the increasing permutation case of Lemma 3.1. Indeed, there is a mapping

between permutations and posets: letting π be a permutation on [n], we may form the

poset (P,≺) where P = [n], and i ≺ j if and only if both i < j and π(i) < π(j). While poset

intervals do not always correspond to permutation intervals, simple permutations do map

to simple posets:
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n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Figure 3.5: Simple extensions of short linear orders.

Lemma 3.11. A permutation is simple if and only if its corresponding poset is simple.

Proof. Suppose first that π is a simple permutation, that (P,≺) is its corresponding poset

and that A is an interval in the poset. The corresponding set of points Aπ of π cannot

form an interval, so there must exist some point (i, π(i)) of π not in Aπ which separates

the points in rect(Aπ) either horizontally or vertically. However, the element i of the poset

corresponding to (i, π(i)) must then disagree on the elements of A, a contradiction since A

was an interval.

Conversely, suppose (P,≺) is a simple poset corresponding to the permutation π, but

that π contains some proper interval I . The set of elements IP of P corresponding to I

cannot form an interval, so there exists some element p ∈ P \IP for which p is not related to

every element of IP in the same way. However, the point (p, π(p)) of π (which corresponds

to p ∈ P ) must then separate some points of I , a contradiction since I was an interval.

Observe that, although this mapping is not injective, increasing permutations map

uniquely to linear orders, and thus:

Lemma 3.12. A linear order (P,<) on n elements has a simple extension containing at most

m =

⌈

n + 1

2

⌉

additional elements.
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Figure 3.6: A 3-element simple extension of a 7-element antichain.

Proof. The linear order (P,<) corresponds to an increasing permutation. By Lemma 3.1,

an increasing permutation on n points has a simple extension with at most m =

⌈

n + 1

2

⌉

additional points. By Lemma 3.11 the corresponding poset is also simple, completing the

proof.

See Figure 3.5 for examples of the first few cases of this construction. Note that, as in

Lemma 3.1, the case n = 2 must be handled separately, the resulting simple poset corre-

sponding exactly to the permutation 2413.

Meanwhile, the degenerate case is an antichain, i.e. a poset containing no non-trivial

relations. Recalling that every poset has a corresponding comparability graph, we may

proceed in the same way as the graph case.

Lemma 3.13. An n-element antichain has a simple extension requiring at most dlog2(n + 1)e
additional elements.

Proof. The comparability graph of the poset (P,<) is the independent graph Kn, which,

by Lemma 3.6, has a simple extension with dlog2(n + 1)e additional vertices. Furthermore,

the edges between these additional vertices are unspecified, so we may choose any set of

edges that is transitively orientable. The extension for the graph was indecomposable, so

by Lemma 1.1 (on Page 11) the corresponding poset will be simple.

For example, Figure 3.6 shows a three-element simple extension of an antichain with

seven elements, where the additional elements were taken to be incomparable. By the re-

sult for graphs, it follows that this is the best possible bound. Note also that the linear

case of Lemma 3.12 is not easily solved by considering the corresponding comparability
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graph (equal to Kn) since any extension of the graph would need to be transitively ori-

entable. Of course, the bound in Lemma 3.12 is also the best possible by its connection to

the permutation case.

We now consider simple extensions of an arbitrary poset. Our approach takes much the

same form as the permutation case, inductively “connecting” entry and exit points from

the simple extensions of the intervals in the substitution decomposition.

Theorem 3.14. A poset (P,<) on n elements has a simple extension with at most m =

⌈

n + 1

2

⌉

additional elements.

Sketch of proof. We proceed by induction on n, using the substitution decomposition. Our

claim is that we may form three extensions P (mm), P (MM) and P (Mm) of a poset (P,<),

satisfying:

• Each of the three extensions has two new distinguished elements. For P (mm) these are

both new minima, for P (MM) new maxima, and for P (Mm) there is one maximum

and one minimum.

• The only minimal non-singleton intervals of P (mm), P (Mm) and P (MM) contain one

of the distinguished elements.

• At least one of P (mm), P (Mm) and P (MM) is simple.

The base case is n = 2, in which case the poset is either linear or an antichain. Sim-

ple extensions have already been exhibited in Lemmas 3.12 and 3.13, and the extensions

P (mm), P (Mm) and P (MM) are easily formed in each case.

So now suppose n > 2 and, by the Substitution Decomposition Theorem 1.5, our poset

may be expressed as a deflation P = S[As : s ∈ S] where (S,<) is simple, linear or an

antichain. When S is simple, we proceed in essentially the same way as the permutation

case. If every As is a singleton, then (P,<) is already simple, but for the purposes of the

induction we can add two elements to form P (mm) and P (MM) in any way we choose,

noting that any minimal non-singleton interval will necessarily involve at least one of the
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Figure 3.7: A 2-element simple extension of an arbitrary simple poset.

distinguished elements. Meanwhile, we may ensure that P (Mm) is a simple extension by

adjoining two elements to any chosen element of P in the way shown in Figure 3.7.

When at least one As has more than one element, induction may be used on each such

interval to form the three extensions A
(mm)
s , A(Mm)

s and A
(MM)
s . We choose the appropriate

extension according to the following set of rules. Fix an order on the elements s of S for

which the corresponding block As is not a singleton, labelling them as 1, 2, . . . , k. For

1 ≤ i < k, we pick the distinguished elements of the extension of Ai as follows:

• One of the distinguished elements is predetermined (for i > 1) by the extension of

Ai−1. When i = 1, the distinguished element will act as one of the distinguished

elements in the extension of P , and so must be chosen accordingly.

• If Ai > Ai+1, create a distinguished element that is both a new minimum for Ai and

a new maximum for Ai+1.

• If Ai < Ai+1, create a distinguished element that is both a new maximum for Ai and

a new minimum for Ai+1.

• If Ai and Ai+1 are incomparable, create a distinguished element that is either a new

maximum or a new minimum for both Ai and Ai+1.

The final distinguished element of Ak forms the other distinguished element in the exten-

sion of P , and so must be chosen accordingly. An argument similar to the permutation

case proves that one of the extensions P (mm), P (Mm) or P (MM) is simple and of the re-

quired size. In the non-unique cases, pick S maximally so that S deflates P uniquely, and

proceed as above.
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In the way that simple extensions of posets seem to lie somewhere between the solution

for permutations and graphs, we may be tempted to pose a result similar to Conjecture 3.8.

Certainly the above bound can be improved when the skeleton turns out to be a linear

order or an antichain by connecting more than two distinguished points together at a time,

as dictated by Lemmas 3.12 and 3.13. Precisely how this improves the bound, though, is not

clear. Even when the skeleton is not degenerate there are times when several distinguished

points can be combined, but the rules for this seem difficult to establish. All we can do at

this stage is to ask the following question:

Question 3.15. How is the size of a minimal simple extension of a poset affected by the length of

the largest chain or antichain in the poset?



CHAPTER 4

SUBSTITUTION DECOMPOSITION
ALGORITHMS

MUCH OF THE EMPHASIS in the study of the substitution decomposition has been

placed in its computation in optimal time. Finding an algorithm that is optimal

for an arbitrary relational structure is possibly a worthy goal, though one that is likely

to be difficult to achieve. For example, as we will shortly see the method used to derive

an optimal algorithm to decompose permutations relies very heavily on their graphical

presentation, which really is not extendable to more general structures. Although this

doesn’t rule out the discovery of an all-encompassing algorithm, it does indicate that such

a method would be overly-complicated and most probably unenlightening.

We thus restrict our attention predominantly to the permutation case, though we will

later discuss the same problem for graphs. The first algorithm which could compute the

substitution decomposition of a permutation in linear time was given by Uno and Yag-

iura [116]. We will present a more recent and straightforward algorithm first published by

Bergeron, Chauve, Montgolfier and Raffinot [17], and here rewritten to fit our treatment of

permutations better.

In addition to the linear time substitution decomposition, Bergeron et al. [17] provide

an optimal algorithm to compute the “common intervals” of a set of permutations on n

elements, where a common interval is a set of (not necessarily contiguous) integers that,

in each permutation π, is the image π([i, j]) of a contiguous set of positions. Our notion

65
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of interval is recovered from this definition by considering the common intervals of the

set {ι, π}, and our treatment here will be restricted just to this variety of interval. Note

that, as there can be N = n(n− 1)/2 intervals in a permutation π of length n (consider, for

example, the intervals of an increasing permutation), we cannot expect to find an algorithm

to compute all of these intervals in linear O(n) time. Instead, the best-possible algorithm

which we present works in O(n + N) time. Despite it not being computable in linear time,

this algorithm is interesting because of the importance intervals play in biomathematics,

as mentioned in Chapter 1.

However, in order to compute the substitution decomposition of a permutation, we

do not actually need to compute all the intervals; it is sufficient to compute the “strong

intervals” (defined in Section 4.3, though essentially they may be viewed as the intervals

occurring in the substitution decomposition tree), and there can be at most 2n− 1 of these.

Thus we are able to hope for a linear time O(n) algorithm, which is precisely what we

obtain.

4.1 One- and Three-sided Intervals

We begin by considering an alternative way to view intervals; we may think of an interval

of a permutation π as a set of points {p1, . . . , pn} which may be enclosed by the rectangle

rect(p1, . . . , pn) such that, in the plot of π,

• rect(p1, . . . , pn) contains no points other than p1, . . . , pn, and

• there are no pins separating any of p1, . . . , pn extending from rect(p1, . . . , pn) in any

direction (left, right, up or down).

If we weaken this second restriction by allowing pins to extend only in specified di-

rections, we can obtain sets of points that are not intervals but look like intervals on the

sides out of which pins are forbidden. For example, we may obtain a three-sided right-open

interval by specifying that pins extending from rect(p1, . . . , pn) can only be right pins. Our

linear-time algorithm commences by first determining particular left-up-down- and right-
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Figure 4.1: The shaded region denotes rect(Irud(π; 4)) of π = 289576314.

up-down-open intervals and using these to find the related right- and left-open intervals,

which can then be used to “generate” the four-sided intervals.

Denote by Irud(π; i) the largest right-up-down-open interval of π for which i is the

smallest (i.e. leftmost) position, i.e. (i, π(i)) defines the left edge of rect(Irud(π; i)). For ex-

ample, if π = 289576314, then Irud(π; 4) = {(4, 5), (5, 7), (6, 6), (7, 3), (9, 4)} (see Figure 4.1).

Also, denote by Ir(π; i) the largest right-open interval of π for which i is the smallest po-

sition. Returning to the previous example, Ir(π; 4) = {(4, 5), (5, 7), (6, 6), (7, 3)}. Similarly,

I`ud(π; i) is the largest left-up-down-open interval, and I`(π; i) the largest left-open inter-

val of π for which i is the greatest position. Since throughout this section we will be dealing

only with a single permutation π, we will write Irud(π; i) more briefly as Irud(i), Ir(π; i) as

Ir(i) and so on.

Our algorithm begins by computing Irud(i) and I`ud(i) for each i. Since the values of

the points in each of Irud(i) and I`ud(i) form a contiguous set, it is sufficient to compute the

points whose values are maximal and minimal for each. For a set of points P , denote by

maxval(P ) the position of the point in P whose value is maximal, and by minval(P ) the posi-

tion of the point whose value is minimal. Thus, our first step is to compute minval(Irud(i)),

maxval(Irud(i)), minval(I`ud(i)) and maxval(I`ud(i)). The first of these is done using Algo-

rithm 4.1, the others may be determined similarly.

Proposition 4.1 (Bergeron et al. [17, Proposition 4]). Let π be a permutation of length n. Then

Algorithm 4.1 computes minval(Irud(i)) for all i ∈ [n] in O(n) time.

Proof. We assume that π−1 has been precomputed – a process which is easily done in O(n)
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Algorithm 4.1 Computing minval(Irud(i))

S a stack recording point values, with topmost element s
π−1(0)← 0
push 0 on S
for i from 1 to n do

while π−1(i) < π−1(s) do
pop s from S

end while
minval(Irud(π

−1(i)))← π−1(s + 1)
push i on S

end for

time. At the beginning of the ith iteration of the for loop, the stack S contains, from top

to bottom, a decreasing sequence of values whose sequence of corresponding positions as

points in π is also decreasing. Among this sequence of values must be the largest value

j < i such that π−1(j) < π−1(i), as the only way j could have been popped is if there

were some j ′ with j < j′ < i and π−1(j′) < π−1(j), contradicting the definition of j.

Furthermore, minval(Irud(π
−1(i))) = π−1(j +1), and so after popping all the values on top

of j in the stack, the algorithm can return the position of the point whose value is j + 1.

Since S stores every value i ∈ [n] precisely once, it immediately follows that the algorithm

has complexity O(n).

The next step is to find the three-sided intervals Ir(i) and I`(i) for each i ∈ [n]. Note

first that the set of positions in each Ir(i) forms a contiguous set with smallest position

equal to i, so for each i we only need to find the point in Ir(i) whose position is greatest

(i.e. the rightmost point). Similarly, the set of positions in I`(i) also forms a contiguous set,

with maximum equal to π(i), so here it is sufficient to find the point in I`(i) whose position

is minimal.

Thus, for a set of points P let minpos(P ) denote the position of the minimum (i.e. left-

most) element, and maxpos(P ) the position of the maximum (rightmost) element. Given

the four bounds minval(Irud(i)), maxval(Irud(i)), minval(I`ud(i)) and maxval(I`ud(i)), we

now seek maxpos(Ir(i)) and minpos(I`(i)). The first of these is computed using Algo-
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rithm 4.2, while the second is done similarly.

Proposition 4.2 (Bergeron et al. [17, Proposition 3]). Let π be a permutation of length n. Then,

given minval(Irud(i)) and maxval(Irud(i)), Algorithm 4.2 computes maxpos(Ir(i)) for all i ∈ [n]

in O(n) time.

Algorithm 4.2 Computing maxpos(Ir(i))

for i from 1 to n do
ri ← i

end for
π(10)← 10
for i from n to 1 do

while π(minval(Irud(i))) ≤ π(ri + 1) ≤ π(maxval(Irud(i))) do
ri ← rri+1

end while
maxpos(Ir(i))← ri

end for

Proof. Note first that Ir(i) consists precisely of those points of Irud(i) whose positions form

the longest contiguous sequence [i,maxpos(Ir(i))] for all i ∈ [n]. At the beginning of the

ith iteration of the second for loop, we have found maxpos(Ir(i
′)) = ri′ for all i′ > i, and

ri is still set to i. At all stages, ri denotes the position of a point in Ir(i), and hence [i, ri] ⊆
[i,maxpos(Ir(i))]. We next test whether the point with position immediately following ri

(i.e. ri + 1) lies in Irud(i). If so, then ri + 1 also lies in Ir(i), as indeed does all of the right-

open interval Ir(ri + 1). Thus we may now replace ri with maxpos(Ir(ri + 1)) = rri+1 and

consider the new ri + 1 at the start of the while loop. If, on the other hand, ri + 1 /∈ Irud(i),

then ri is the rightmost point of Ir(i) and we have found maxpos(Ir(i)) whence we may

move on to consider the (i − 1)th iteration. The complexity follows by observing that the

contents of the while loop must be executed precisely n− 1 times in total.

In the case of our ongoing example, π = 289576314, our list of bounds looks like:

i 1 2 3 4 5 6 7 8 9
minpos(I`(i)) 1 2 2 4 5 2 7 7 1
maxpos(Ir(i)) 9 7 3 7 6 6 7 8 9
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There remains one final prerequisite before we can show how to find intervals. For a

permutation π of length n and position i ∈ [n], define the r-support of i, denoted suppr(π; i),

to be the largest position j < i such that Ir(i) ⊂ Ir(j). Similarly, define the `-support,

supp`(π; i), to be the smallest position j > i such that I`(π; i) ⊂ I`(π; j). Again we will use

the more brief notation suppr(i) and supp`(i) since we are always working with the single

permutation π. The r- and `-supports will play a central role in finding the “strong inter-

vals” of Section 4.3, and in Section 4.2 the r-support will reduce the number of candidate

sets which we need to inspect in listing all the intervals. Given the bounds minpos(I`(i))

and maxpos(Ir(i)), we may compute suppr(i) for all i ∈ [n] using Algorithm 4.3, which

clearly achieves this in O(n) time.

Algorithm 4.3 Computing suppr(i)

S a stack recording positions, with topmost element s
push 1 on S
suppr(1)← 1
for i from 2 to n do

while maxpos(Ir(s)) < i do
pop s from S

end while
suppr(i)← s
push i on S

end for

The algorithm to find supp`(i) is analogous. For the example π = 289576314, we obtain:

i 1 2 3 4 5 6 7 8 9
supp`(i) 7 3 6 6 6 9 8 9 9
suppr(i) 1 1 2 2 4 5 4 1 4

There are now two avenues of exploration, each of which we will consider in turn. Sec-

tion 4.2 computes all the intervals of a permutation π on [n], which, if there are N such

intervals, we show can be computed in O(n + N) time. Section 4.3 shows how to search

for the “strong intervals” of π (the intervals that define the substitution decomposition)

showing that it can be done in O(n) time, and from there compute the substitution decom-

position of π.
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Figure 4.2: The intersection of Ir(4) and I`(6) forms an interval of π = 289576314.

4.2 Generating Intervals

We have shown how to compute certain one- and three-sided intervals in linear time; it

remains to show how these may be used to compute the (four-sided) intervals. Essentially,

this is done by intersecting pairs of the three-sided intervals we computed in the previous

subsection, and showing that what results is an interval (see Figure 4.2).

Proposition 4.3 (Bergeron et al. [17, Proposition 2]). Let π be a permutation of length n, and

let i < j ∈ [n]. Then the set of points with contiguous positions [i, j] is an interval of π if and only

if i ≥ minpos(I`(j)) and j ≤ maxpos(Ir(i)).

Proof. Suppose first that [i, j] is a set of positions whose points in π form an interval P .

Since P is an interval, we have both [i, j] ⊆ [i,maxpos(Ir(i))] and [i, j] ⊆ [minpos(I`(j)), j],

whence it follows that

[i, j] ⊆ [i,maxpos(Ir(i))] ∩ [minpos(I`(j)), j].

Conversely, suppose that for some i < j ∈ [n] we have i ≥ minpos(I`(j)) and j ≤
maxpos(Ir(i)). The set of points P with contiguous positions [i, j] cannot be separated by a

left pin since (i, π(i)) defines the left edge of Ir(i), and it cannot be separated by a right pin

since (j, π(j)) defines the right edge of I`(j). Finally, (j, π(j)) ∈ Ir(i) and (i, π(i)) ∈ I`(j),

and so, by the definitions of Ir(i) and I`(j), P cannot be separated by up or down pins and

hence forms a four-sided interval of π.

Proposition 4.3 alone will let us compute the intervals by examining the points with

positions [i, j] for every i, j with 1 ≤ i ≤ j ≤ n. We can reduce the number of these that
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need to be inspected, however, by making use of the r-support, a consideration which

yields the sought-after O(n + N) complexity.

Theorem 4.4 (Bergeron et al. [17, Theorem 2]). The N intervals of a permutation π of length n

can be computed in O(n + N) time.

Proof. For brevity, let us first set `(i) = minpos(I`(i)), r(i) = maxpos(Ir(i)) and s(i) =

suppr(i) for each i ∈ [n]. We must show that the output of Algorithm 4.4 is a complete list

of the intervals of π. Suppose first that for some i < j ∈ [n], the algorithm has printed [i, j].

This was output during the jth iteration of the for loop, and and within a while loop that

ensures i ≥ `(j). Hence we only need to show that j ≤ r(i), as then Proposition 4.3 tells us

that the points whose set of positions is [i, j] will form an interval. This follows by studying

how i evolved within the jth iteration before it was output; it was initiated by being set

equal to j, and then was successively replaced by s(j) finitely many times (possibly zero).

Thus i is one of j, s(j), s(s(j)), . . ., and j ≤ r(i) then follows by considering the chain

j ≤ r(j) ≤ r(s(j)) ≤ r(s(s(j))) ≤ . . . .

Conversely, for i ≤ j, given the set of positions [i, j] defines an interval of π, Proposi-

tion 4.3 implies that we have i ≥ `(j) and j ≤ r(i). Note that if i = j then Algorithm 4.4

is guaranteed to return [i, j] at the very start of the jth iteration, so we now assume i < j.

Moreover, since i ≥ `(j), the algorithm will print [i, j] providing we encounter the posi-

tion i in the jth iteration of the for loop (as such an i will satisfy the while loop). Let i ′ be

the smallest position such that i < i′ ≤ j and [i′, j] was printed by the algorithm. By the

minimality of i′, we have s(i′) ≤ i. Now observe that Ir(i
′) ⊂ Ir(i) as i < i′ ≤ r(i), and

so r(i′) > r(i) would contradict the maximality of Ir(i). This implies that s(i′) ≥ i, and so

s(i′) = i, completing this part of the proof.

Finally, the complexity follows immediately since Algorithms 4.1, 4.2, and 4.3 have

complexity O(n), and the O(n+N) complexity of Algorithm 4.4 follows by noting that the

while loop will operate precisely N times.
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Algorithm 4.4 Computing the intervals of π

for j from n to 1 do
i← j
while i ≥ minpos(I`(j)) do

print [i, j]
i← suppr(i)

end while
end for

4.3 Strong Intervals and the Substitution Decomposition

Although we can now find all the intervals of π in optimal O(n + N) time, we may prefer

instead to find an O(n) algorithm that is capable of telling us all that we really need to

know, namely the substitution decomposition of π, and hence whether it is simple. To this

end, define a strong interval of a permutation π to be an interval I of π for which every other

interval J satisfies precisely one of J ⊆ I , I ⊆ J or J ∩ I = ∅ (i.e. I does not overlap with

any other interval). The strong intervals of π are then precisely the intervals arising in the

substitution decomposition, including both the whole of π and all the singleton intervals.

Note that a permutation of length n has at most 2n− 1 strong intervals.

Up to now we have been working primarily with the three-sided intervals I`(i) and

Ir(i) for each i ∈ [n] of a permutation π of length n. We have seen that they can be used to

find all the intervals of π, but in order to restrict our attention to the strong intervals, we are

going to want to replace our three-sided intervals with four-sided ones. Define, therefore,

the left-maximum interval of a position i ∈ [n] to be the largest interval of π whose rightmost

point has position i, and write the leftmost position of this interval as lmax(π; i). Similarly,

let rmax(π; i) denote the rightmost position of the largest interval of π whose leftmost point

has position i (the right-maximum interval). Again we will abbreviate these to lmax(i) and

rmax(i).

Trivially, we have lmax(i) ≥ minpos(I`(i)) and rmax(i) ≤ maxpos(Ir(i)), and this sug-

gests a starting point for finding the left-maximum and right-maximum intervals. How-

ever a direct search through the sets I`(i) and Ir(i) cannot necessarily be performed in
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optimal time, so again we rely on the `- and r-supports to reduce our search.

Proposition 4.5 (Bergeron et al. [17, Theorem 3]). For a permutation π of length n, rmax(i)

can be computed in O(n) time.

Proof. Note first that Algorithm 4.5 begins by setting rmax(i) = i for each i, with the ex-

ception of rmax(1) which is set to n, as expected. Note next that the if statement simply

checks to see whether [suppr(i), rmax(i)] is a set of positions corresponding to an interval.

If true, then rmax(j) for j = suppr(i) is changed to rmax(i) if it is larger than the existing

rmax(j). In either case, the set of points with positions [j, rmax(j)] will still correspond to

an interval, so we need only check that the algorithm at some stage encounters the largest

interval of π whose leftmost point is j.

Suppose for j ∈ [n] that the set of points with positions [j, j ′] correspond to the largest

interval with leftmost point j, and that the algorithm has correctly found rmax(i) for all

i such that supp(i) > j. We may assume j ′ > j as otherwise it is easy to see that Al-

gorithm 4.5 correctly outputs rmax(j) = j. By the maximality of j ′, we have Ir(j
′) =

{(j′, π(j′))} and rmax(j ′) = j′, so we are done if suppr(j
′) = j. (Note suppr(j

′) < j is im-

possible since [j, j ′] corresponds to an interval.) Let us therefore assume that suppr(j
′) =

j′′ > j, and note that the rightmost point in Ir(j
′′) has position j ′, giving rmax(j ′′) = j′

(since Ir(j
′′) cannot be extended by a right pin). If suppr(j

′′) = j then we are done, so

instead suppose supp(j ′′) = j′′′ > j, and observe that again we must have rmax(j ′′′) = j′.

This process can only be repeated a limited number of times before we find some i > j with

supp(i) = j and rmax(i) = j ′. The complexity of Algorithm 4.5 follows immediately.

The computation for lmax(i) is similar, and for our running example π = 289576314

this gives:

i 1 2 3 4 5 6 7 8 9
lmax(i) 1 2 2 4 5 2 7 8 1
rmax(i) 9 6 3 6 6 6 7 8 9

Moving from the left-maximum and right-maximum intervals to the strong intervals

is now a fairly straightforward process. We begin by listing the leftmost and rightmost
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Algorithm 4.5 Computing rmax(i)

rmax(1)← n
for i from 2 to n do

rmax(i)← i
end for
for i from n to 2 do

if suppr(i) ≥ minpos(Ir(rmax(i))) and rmax(i) ≤ maxpos(Ir(suppr(i))) then
rmax(suppr(i))← max(rmax(i), rmax(suppr(i)))

end if
end for

positions of the left-maximum and right-maximum intervals, marking right bounds with

a bar, i.e. the set {i, i, lmax(i), rmax(i) : i ∈ [n]} containing 4n bounds.

Next we sort this list into increasing order, {a1, a2, . . . , a4n}, listing left bounds before

right bounds, noting that this can be done in linear time since there are only 2n possible

values that the entries can take, each being either i or i for some i ∈ [n]. The sort can be

further simplified by also noting that for each i ∈ [n] we are guaranteed to see both i and i

at least once. For our example (π = 289576314), this list is

{1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9}.

We now work from left to right through this list, storing left bounds on a stack as they

appear, and when we see a right bound r we take the top element s off the stack and return

[s, r] as a set of positions corresponding to a strong interval.

Theorem 4.6 (Bergeron et al. [17, Proposition 8]). The strong intervals of a permutation π of

length n can be computed in O(n) time.

Proof. If Algorithm 4.6 outputs an interval of the form [i, rmax(i)], then every interval

whose positions are of the form [lmax(j), j] must have trivial intersection with [i, rmax(i)]

(either [lmax(j), j] ⊆ [i, rmax(i)] or [lmax(j), j] ∩ [i, rmax(i)] is empty). Subsequently,

[i, rmax(i)] must intersect trivially with every interval of π since every interval is contained

within a left-maximum or a right-maximum interval, and so [i, rmax(i)] is a strong inter-
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Algorithm 4.6 Computing the strong intervals of π

S a stack recording positions, with topmost element s
for i from 1 to 4n do

if ai is a left bound then
push ai on S

else
print [s, ai]
pop s from S

end if
end for

val. A similar argument can be applied if the algorithm outputs an interval of the form

[lmax(j), j].

Now suppose the algorithm outputs the set of contiguous positions [i, j] for which

neither lmax(j) = i nor rmax(i) = j. It follows that [i, j] = [lmax(j), j]∩ [i, rmax(i)], and so

[i, j] corresponds to a set of points of π forming an interval. If [i, j] does not correspond to

a strong interval, then there exists a k for which either i < k ≤ j < rmax(k) or lmax(k) <

i ≤ k < j. In the former case, every interval [k ′, rmax(k′)] with i < rmax(k′) ≤ k must

satisfy k′ ≥ k, and so the algorithm would only permit the output of j as a right bound

when paired with left bounds at least as big as k, a contradiction, proving that [i, j] was

strong.

Conversely, let [i, j] correspond to a set of positions forming a strong interval of π,

so there are no intervals of π whose positions have non-trivial intersection with [i, j]. To

ensure the algorithm outputs [i, j], we must find a left bound i and a right bound j in the

ordered list of 4n bounds between which every left bound is matched by a right bound.

Let x denote the number of positions k for which lmax(k) = i and k < j, and y the number

of positions k for which rmax(k) = j and i < k. In the list of bounds {a1, a2, . . . , a4n}, there

are y − x more left bounds than right between the last occurrence of the left bound i and

the first occurrence of the right bound j. There are, however, at least x + 1 left bounds i

and y + 1 right bounds j in this list, and so Algorithm 4.6 will output [i, j].
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289576314
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Figure 4.3: The substitution decomposition tree of π = 289576314.

For π = 289576314, after removing duplicates the output is

[1, 1], [2, 2], [3, 3], [2, 3], [4, 4], [5, 5], [6, 6], [5, 6], [4, 6], [2, 6], [7, 7], [8, 8], [9, 9], [1, 9].

We obtain the substitution decomposition tree by reading from right to left through

our list of positions of strong intervals as output by Algorithm 4.6, noting that the strong

intervals have been ordered as they would be output by a depth first search algorithm,

working from right to left. Figure 4.3 shows the tree obtained for π = 289576314. Note

that, by the definition of the strong intervals, in the cases where our permutation π is sum

or skew decomposable, each sum or skew component will occupy a separate node. Where

π is not sum or skew decomposable, the simple skeleton of π is easily obtained by taking

the permutation order isomorphic to any chosen set of node representatives from the first

level of the tree.

4.4 Graph Substitution Decomposition

The substitution decomposition has probably been studied most intensively in the context

of graphs. It should come therefore as no great surprise that much time has been devoted

to finding efficient algorithms to compute the substitution decomposition. Since 1972 algo-

rithms that can compute the substitution decomposition tree for a graph with a variety of

complexities ranging from O(|V |4) [73] to O(|V |+ |E| log |V |) [38] have been found, while

linear O(|V | + |E|) complexity algorithms were found in 1994 by McConnell and Spin-

rad [88] and Cournier and Habib [39]. The former of these was later presented in more
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detail in [90]. A simpler divide-and-conquer algorithm was given by Dahlhaus, Gustedt

and McConnell [41].

A related problem, and one that often appears alongside the substitution decomposi-

tion, is the transitive orientation of comparability graphs. The first O(|V |+ |E|) algorithm

appears in McConnell and Spinrad [89], with a second algorithm by the same authors

given in [90]. Armed with linear-time substitution decomposition and transitive orienta-

tion, one can solve many combinatorial problems in linear time. For example, the recogni-

tion of permutation graphs and two-dimensional posets (posets which are the intersection

of two linear orders), and finding the maximum clique or minimum vertex colouring in

comparability graphs. For further examples see [90].



PART II

PERMUTATION CLASSES





CHAPTER 5

CONTAINMENT AS A PARTIAL ORDER

AS MENTIONED in Chapter 1, the pattern containment order is easily shown to be re-

flexive, transitive and antisymmetric, and hence forms a partial order on the set of

all permutations (see Figure 5.1). Downsets of permutations under this order are called

permutation classes. In other words, if C is a permutation class and π ∈ C, then for any

permutation σ with σ ≤ π we have σ ∈ C. These sets have in the past also been labelled

closed classes or pattern classes.

Permutation classes may be traced as far back as MacMahon [78], where Av(321) was

enumerated by means of the study of “lattice permutations”, though the more popular

origin lies in Knuth [76]. It is not, however, until the last fifteen years that their study has

become more intense, with a wide variety of questions being answered pertaining both to

their structure and to their enumeration. These two varieties of question are not, of course,

independent; greater knowledge of how permutation classes are constructed can often lead

quickly to enumerative consequences, while the question of enumeration is frequently the

motivation for the study of their structure. The structural work on simple permutations

in Part I fits, to some extent, this mould; while their study was initially motivated by

an enumeration problem, the consequences of the study extend well beyond the original

question.

81



82 5 CONTAINMENT AS A PARTIAL ORDER

1234 1243 1324 1342 1423 1432 2134 · · · 4321

123 132 213 231 312 321

12 21

1

Figure 5.1: The start of the containment partial order.

5.1 Defining Permutation Classes

Permutation classes arise naturally in a variety of settings, ranging from sorting (see, for

example, Bóna’s survey [21]) to algebraic geometry (see, for example, Lakshmibai and

Sandhya [77]). Typically, a permutation class is defined in one of the following ways:

• Pattern avoidance. A permutation class C can be regarded as a set of permutations

which avoid certain patterns. The set B of minimal permutations not in C is known

as the basis of C. We write C = Av(B) to mean the class C = {π | β 6≤ π for all β ∈ B}.
Bases need not be finite – see the examples in Subsection 5.1.2 and the discussion on

antichains in Section 5.3.

• Permuting machines. As already mentioned, permutation classes arise naturally as

a result of machines which permute an input stream of symbols. Indeed, the set of

stack-sortable permutations dates back to the major origin of permutation classes,

Knuth [76]. Their study remains an area of active interest to this day – see the discus-

sion at the end of Example 5.3.

• Constructions. New permutation classes can be formed using constructions involv-

ing one or more old classes (e.g. the union of two classes). See Subsection 5.1.2 for
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extensive examples.

• Closures. We may also define a class by taking the closure of some set of permuta-

tions, or even a set of functions that are order isomorphic to permutations. For two

linearly ordered sets A and B and a bijection f : A → B, we define the closure of

f to be the permutation class C = Sub(f : A → B) as follows.1 A permutation π

of length n lies in C if there exists a sequence a1 < a2 < . . . < an of A for which

f(a1), f(a2), . . . , f(an) is order isomorphic (under the linear order of B) to π. Simi-

larly, we may define the closure of a set of bijections {fi : Ai → Bi, i ∈ I} simply by

taking the union,

Sub(fi : Ai → Bi, i ∈ I) =
⋃

i∈I

Sub(fi : Ai → Bi).

Waton [118] introduced a geometrical approach to this notion of closure in his PhD

thesis, whereby a permutation class is defined by the set of permutations which may

be drawn by taking points that lie on a specified geometrical shape.

Once we have specified our chosen permutation class, we may wish to know answers

to one or more of a wide variety of properties which the class may or may not possess. In

all but the first case, our first problem is likely to be to find its basis, or at least whether

the basis is finite or not, as this is arguably the most convenient way to represent a class.

We will present many properties in the next two sections, but first, however, let us review

some specific examples of permutation classes, the ways in which they may arise, and

compute their bases.

5.1.1 Examples

Example 5.1 (Finite Classes). By the Erdős-Szekeres Theorem 2.3, a class C is finite if and

only if its basis B contains both an increasing permutation and a decreasing permuta-

tion. For example, the class C = {1, 12, 21, 132, 213, 231, 312, 2143, 2413, 3142, 3412} has

basis B = {123, 321}.
1This is a special case of “ages” for classes of relational structures – see the discussion on atomicity in the

general setting in Section 5.5.
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4213 213

4

13

2
4

3

1
2
4

31

2
4

312

4

12

3
4

123

4

Figure 5.2: Sorting 4213 with a stack.

Example 5.2 (The set of Increasing Permutations). The “smallest” infinite class is the set of

increasing permutations I = {1, 12, 123, 1234, 12345, . . .}. It can easily be seen that every

permutation in I avoids the permutation 21, and also that 21 is the only basis element, so

that I = Av(21).

Example 5.3 (The set of Stack-Sortable Permutations). A stack is a one-dimensional array

into which symbols may be “pushed”, one on top of the other, with only the topmost

symbol being available to be “popped” at each stage. A permutation of length n is stack

sortable if it can be sorted into the increasing permutation 12 · · · n by passing it through a

stack, symbol by symbol (see, for example, Figure 5.2).

The set of stack sortable permutations clearly satisfies downward closure under the

containment order, and so forms a permutation class. We next seek its basis, and first note

that 231 is not stack sortable, since either the 2 must be popped before the 1 is pushed, or

the 3 must be popped before the 2 can be popped. It is then fairly straightforward to show

that every permutation that is not stack-sortable contains a copy of 231, and so Av(231)

represents the set of stack sortable permutations.

There are many variants to this problem, several of which are discussed in Bóna’s sur-

vey [21]. For example, we may connect two or more stacks in parallel or in series; we may

restrict the depth of the stack by allowing it to contain at most m symbols at any one given
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time. The answers to some of these questions are immediate, while others remain open,

and, indeed, some varieties do not form closed classes.

For example, in the case of connecting two stacks in series the general case is shown

by Murphy [97] to be infinitely based with shortest basis elements of length 7, though a

description of the complete basis is unknown. Atkinson, Murphy and Ruškuc [10] provide

the complete but infinite basis for the subclass formed by imposing the condition that the

stacks must be ordered – that is, from top to bottom the elements in each stack must form

an increasing sequence. To achieve a finitely based class, we may restrict our attention

to connecting a stack of depth 2 and an infinite stack in series, which has just 20 basis

elements variously of lengths 5, 6, 7 and 8 [49].

Considerable study has been devoted to the West-t-stack sortable permutations [119],

formed by adding a greedy algorithm to a sequence of ordered stacks: take the earliest

available “push” onto a stack in the series if it exists, otherwise “pop” a new output sym-

bol. However, the West-t-stack sortable permutations do not, in general, form a permuta-

tion class – for example, 35241 is West-2-sortable but 3241 is not.

Example 5.4 (The Separable Permutations). We define the class S of separable permuta-

tions constructively. A permutation is separable if and only if it can be obtained by repeated

application of direct and skew sums, starting with the permutation 1. For example,

354621 = 1324 	 21

= (132 ⊕ 1)	 1	 1

= (1⊕ 21⊕ 1)	 1	 1

= (1⊕ (1	 1)⊕ 1)	 1	 1.

(Note the omission of certain brackets, which follows by the associativity of ⊕ and 	.)

It is then clear that the set of separable permutations is closed downwards under the

containment order. It was shown by Bose, Buss and Lubiw [24] that the class of sepa-

rable permutations is equal to Av(2413, 3142), and we may derive this result easily after

considering Proposition 5.28 (see Page 106). Note that 2413 and 3142 are the two simple
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permutations of length 4, and that subsequently the only simple permutations in this class

are 1, 12 and 21, which is precisely what we expect to see when we consider the substitu-

tion decomposition of a separable permutation.

The separable permutations seem to have made their first appearance as the permuta-

tions that can be sorted by pop-stacks in series, see Avis and Newborn [13]. Shapiro and

Stephens [108] showed that the separable permutations are those that fill up under boot-

strap percolation.2 They are essentially the permutation analogue of series-parallel posets

(see Stanley [113, Section 3.2]) and complement reducible graphs (see Corneil, Lerchs, and

Burlingham [36]).

5.1.2 New Classes from Old

There is virtually an endless number of ways to define new sets of permutations from

old, and only slightly fewer which construct permutation classes. Besides the obvious

constructions given by the intersection and union of two classes, we can look at ways

in which permutations themselves may be combined. For example, we may place per-

mutations next to one another (horizontal juxtaposition) or one above the other (vertical

juxtaposition); we may mix two permutations together (merge), or use inflations to place

permutations inside one another (wreath product).

The Intersection of two Permutation Classes. Given two permutation classes defined

by their bases C = Av(A) and D = Av(B), consider their intersection C ∩ D. It is trivial

to see that C ∩ D forms a permutation class, and also that its basis is given by the union

A ∪ B. If, therefore, C and D are finitely based, then so is C ∩ D. Little more needs to be

said – Murphy [97] “awaits questions about intersections that are worthy of attention!”

The Union of two Permutation Classes. Given two classes C = Av(A) and D = Av(B),

the union C ∪ D is again a permutation class. Its basis is also easily determined; a per-
2Bootstrap percolation is a process defined on n × n 0-1 matrices, in which at each stage of the process

every zero entry in the matrix becomes one if two or more of its neighbours are non-zero, while entries with
value one remain the same. The process terminates when no more entries can be changed. Given an n × n

permutation matrix, it will completely fill up with ones if and only if the permutation is separable.
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mutation in the basis of C ∪ D must contain a copy of some α ∈ A and β ∈ B, and by

its minimality it follows that such a basis element can contain no points other than these

(such a permutation is known as a minimal merge of α and β). Thus, if C and D are finitely

based, then so is C ∪ D.

For example, letting C = I = Av(21) and D = Av(12), then

C ∪ D = {1, 12, 21, 123, 321, 1234, 4321, . . . },

and its basis consists of the minimal merges of 21 and 12, which are 132, 213, 231 and 312.

Thus C ∪ D = Av(132, 213, 231, 312).

Juxtaposition. Given two permutation classes C and D, their horizontal juxtaposition, de-

noted
[

C D
]

, consists of all permutations π that can be written as a concatenation στ

where σ is order isomorphic to a permutation in C and τ is order isomorphic to a per-

mutation in D. In other words, the horizontal juxtaposition of C and D consists of those

permutations π whose plot may be divided with a vertical line, so that the points on the left

are order isomorphic to a permutation in C while those on the right are order isomorphic

to a permutation in D.

The question of finite basis is immediately answerable, and may be derived by follow-

ing a similar argument to the one above for the union of two classes.

Proposition 5.5 (Atkinson [7]). Let C and D be permutation classes. The basis elements of the

class
[

C D
]

can all be written as concatenations ρστ where either:

• σ is empty, ρ is order isomorphic to a basis element of C, and τ is order isomorphic to a basis

element of D, or

• |σ| = 1, ρσ is order isomorphic to a basis element of C, and στ is order isomorphic to a basis

element of D.

(In particular, if two classes are finitely based then their juxtaposition is also finitely based.)
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There is an obvious symmetry to this operation. The vertical juxtaposition of the classes

C and D is denoted
[

C
D

]

, and consists of those permutations π whose plot may be di-

vided with a horizontal line, so that the points above the line are order isomorphic to a

permutation in C while those below are order isomorphic to a permutation in D.

Merge. A permutation π is a merge of the permutations α and β if π consists of two

subsequences, one order isomorphic to α, the other to β. This may be written π = α t β.

Little is known about the basis of the merge C t D of two classes – there are no counter

examples to contradict the suggestion that C t D is always finitely based if C and D are

finitely based, but neither are there sufficient results to support such a conjecture. The

merge of two permutations corresponds – somewhat roughly – to connecting permuting

machines in parallel (see Atkinson and Beals [8]).

Grid Classes. An m× n-gridding of a permutation π is a collection of m− 1 distinct hori-

zontal lines and n− 1 vertical lines that divide the plot of π into mn cells.3 Given an m×n

matrix M of permutation classes, the grid class of M is the class C of all permutations π for

which π is m×n-griddable, with the points in each cell of the gridding being order isomor-

phic to a permutation from the class in the corresponding entry of the matrix. Grid classes

may be considered to be a generalisation of the juxtaposition construction, though they

are not merely compositions of juxtapositions. We may, however, ask the same questions.

Pertinently:

Question 5.6. If M is a matrix of permutation classes all of which are finitely based, when is the

grid class of M finitely based?

Obviously for matrices of dimensions m × 1 or 1 × n, grid classes are equivalent to

vertical and horizontal juxtapositions, respectively, and so the question of basis is known.

In general it is not finitely based, consider, for example, the 2× 2 matrix

M =

(

∅ Av(321654)
Av(321654) ∅

)

.

3Most authors switch m and n to consider vertical lines first. Here, to avoid redefining the order in which
the dimensions of a matrix are written for this brief review, we go against this convention.
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The basis for the grid class of M is infinite – see Murphy [97]. There is more hope if we

restrict M to contain only the monotone classes {1, 12, 123, . . .} or {1, 21, 321, . . .}, but even

here results can only be proved for a few specific 2×2 matrices. See Waton [118] for further

discussion.

Conversely, we may ask when a given class may be gridded. Given two permutation

classes C and D, C is said to be D-griddable if, for some m and n, C is a grid class of the

m × n matrix M all of whose entries are D. Huczynska and Vatter [70] characterise the

D-griddable classes where D is taken to consists precisely of the monotone permutations,

while the following more general result appears in Vatter [117]:

Theorem 5.7 (Vatter [117]). The permutation class C has a D-gridding if and only if it does not

contain arbitrarily long sums or skew sums of basis elements of D, i.e. there exists a constant m so

that C contains neither β1 ⊕ · · · ⊕ βm nor β1 	 · · · 	 βm for basis elements βi of D.

Direct and Skew Sums. There are several ways to use direct and skew sums to define

new permutation classes. Naı̈vely, there is of course the set C⊕D = {α⊕β : α ∈ C, β ∈ D},
though this is only a permutation class if we force the empty permutation to be a member

of both C and D.

Of greater use is the “sum completion” of a class C; a permutation class C is said to be

sum complete if α, β ∈ C implies α⊕β ∈ C, and the sum completion of a class C is the smallest

sum complete class containing C. Similarly, we may define skew complete and the skew

completion by replacing the operation ⊕ with 	. We may also mix these two operations; a

class C is said to be strongly complete if C is both sum and skew complete. Accordingly, the

strong completion of a permutation class C is the smallest strongly complete class containing

C.

We can tell if a class is sum, skew or strongly complete by looking at its basis.

Proposition 5.8. A class C is sum (respectively, skew, strongly) complete if and only if every basis

element is sum (respectivey skew, strongly) indecomposable.
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Proof. If we were to find a sum decomposable basis element π of the sum complete class

C, then we could write π = α⊕ β for some α and β, both of which necessarily lie in C. But

then, by its sum completion, C contains α ⊕ β, a contradiction. Conversely, if all the basis

elements of C are sum indecomposable, then if for some α and β in C there is a copy of a

basis element π in α⊕ β, we would have either π ≤ α or π ≤ β, a contradiction.

The cases for skew complete and strongly complete classes are similar.

Computing the basis of a sum, skew or strong completion of a class is not straightfor-

ward – in particular, if the class is finitely based then the sum, skew and strong completions

need not be finitely based, examples of which we will see in Chapter 8.

The Wreath Product. The wreath product of two permutation classes C and D is the set

C o D of all permutations which can be expressed as an inflation of a permutation in C by

permutations in D, i.e. the set of permutations of the form π[α1, α2, . . . , αn] with π ∈ C and

α1, α2, . . . , αn ∈ D.

It is easy to check that the wreath product of two permutation classes is again a per-

mutation class. For example, the sum completion of a class C corresponds to the wreath

product I o C, while the strong completion of C is the wreath product S o C where S =

Av(2413, 3142) is the class of separable permutations.

The question of finite basis has been answered in only a few cases – if C and D are

finitely based, when is C o D finitely based? We take up this question in Chapter 8, estab-

lishing a more general finite basis result for wreath products.

Wreath Closure. A class C of permutations is wreath-closed if σ[α1, . . . , αm] ∈ C for all

σ, α1, . . . , αm ∈ C. The wreath-closure of a set X , W(X), is defined as the smallest wreath-

closed class containing X . (This concept is well-defined because the intersection of wreath-

closed classes is wreath-closed, and the set of all permutations is wreath-closed.)

Letting Si(C) denote the set of simple permutations in the class C, we observe that

Si(C) = Si(W(C)) and indeed W(C) is the largest class with this property.4 For example,
4While this claim may appear intuitively obvious, there are some technical subtleties. Every permutation
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the wreath closure of Av(132) is the largest class whose only simple permutations are 1,

12, and 21, which is precisely the class of separable permutations of Example 5.4.

It is quite easy to decide if a permutation class given by a finite basis is wreath-closed:

Proposition 5.9 (Atkinson and Stitt [12]). A permutation class is wreath-closed if and only if

each of its basis elements is simple.

One may also wish to compute the basis ofW(C). This is routine for classes with finitely

many simple permutations (see Proposition 5.28), but much less so in general. An example

of a finitely based class whose wreath closure is infinitely based is Av(4321) – its wreath

closure contains a variant of the increasing oscillating antichain, which we will define in

Example 5.14.

The natural question is then:

Question 5.10. Given a finite basis B, is it decidable whetherW(Av(B)) is finitely based?5

5.2 Enumeration

Probably the largest active area in the study of permutation classes is enumeration: given a

class C, how many permutations are there of length n, and is this sequence well-behaved?

Once these questions are answered, we may be interested in finding out what other com-

binatorial structures are enumerated by this sequence, and whether bijections can be es-

tablished between them. In the first instance, this may be done by looking at the Online

Encyclopaedia of Integer Sequences [110].

For a permutation class C, we denote by Cn the set C ∩ Sn, i.e. the permutations in C of

length n, and we refer to f(x) =
∑ |Cn|xn as the generating function for C. The generating

function f is algebraic if it solves an equation of the form pn(x)fn + pn−1(x)fn−1 + · · · +
p0(x)f0 = 0 for polynomials pi. Similarly, a rational generating function is one that may

in C is an inflation of a member of Si(C) so it follows (e.g., inductively) that C ⊆ W(Si(C)). Thus W(C) ⊆
W(Si(C)), establishing that Si(C) = Si(W(C)). As wreath closed classes are uniquely determined by their sets
of simple permutations, W(C) is the largest class with this property.

5The analogous question for graphs was raised by Giakoumakis [60] and has received a sizable amount of
attention, see for example Zverovich [122].
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be written as a rational function, i.e. a function of the form p(x)

q(x)
where p(x) and q(x) are

polynomials in x over the field of rational numbers.

As a trivial first example, consider the class I = {1, 12, 123, . . .}. There is precisely one

permutation of each length, and so its generating function is f(x) =

∞
∑

n=0

xn = 1+x+x2+· · · ,

or, in other words, f =
1

1− x
, a rational function. Note that here our sum begins at n = 0,

implying that we are including the single permutation of length zero in the class. This

is a convention that may or may not always be used – there are cases where including

the empty permutation is convenient (particularly when considering recursive structures),

while in other cases we may specifically not want it. It will be our convention to include

the empty permutation unless required to do otherwise.

Our next example is somewhat more complicated, and the method employed to derive

the enumeration is a classic recursive technique relying on knowledge of the structure of

a permutation in the specified class. This is, of course, precisely where the rôle of simple

permutations and the substitution decomposition will become invaluable.

Example 5.11 (The Stack Sortable Permutations). As seen in Example 5.3, the set of stack

sortable permutations is precisely the class Av(231). Within this class, the permutations

of lengths 1, 2, 3, 4, 5 . . . are enumerated by the sequence 1, 2, 5, 14, 42, . . . , which looks en-

couragingly like the sequence of Catalan Numbers (sequence A000108 of [110]), with gen-

eral term (2n)!

n!(n + 1)!
.

We prove this fact by considering a permutation π ∈ Av(231) of length n. Since π

must avoid 231, every point coming before the value n in π must lie below every point

coming after the value n, i.e. π = α⊕ (1	 β) for some α and β, which also of course must

themselves avoid 231 (see Figure 5.3). Thus α and β must lie in Av(231), but there are no

other restrictions on α and β save that we must of course have |α|+ |β|+ 1 = n. Note also

that this decomposition into α and β is unique, and hence can be used to decompose (or

construct) every permutation in Av(231).

In terms of generating functions, if f(x) is the generating function for C = Av(231),
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β ∈ Av(132)

α ∈ Av(132)

Figure 5.3: Generic structure of a 231-avoider.

then we can use the above consideration to derive the recursion

f = xf2 + 1.

Note that here we have included the empty permutation, as we must allow α and/or β

to be empty. Note further that the empty permutation cannot be decomposed as we did

above because it has no maximum entry, hence the appearance of the “+1” term. Solving

this algebraic equation is then straightforward, and gives

f =
1−
√

1− 4x

2x
= 1 + x + 2x2 + 5x3 + 14x4 + . . .

as required.

Central to the enumeration problem is the classification of permutation classes with the

same enumeration. We say that two permutations α and β are Wilf equivalent if |Av(α)n| =
|Av(β)n| for all n, i.e. the classes Av(α) and Av(β) are enumerated by the same gener-

ating function. We may also say that the permutations α and β belong to the same Wilf

class. For example, the permutations 231 and 123 are Wilf equivalent, a fact which may

be proved using several different bijections – see Richards [102], Rotem [104], Simion and

Schmidt [109] or West [120] for various approaches to this problem. Since enumeration is

then preserved under symmetry, this proves that all the permutations of length 3 belong

to the same Wilf class. The computation of the Wilf classes up to length 7 were completed

in 2001 by Stankova and West [112].
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This term has since been extended in the natural way to sets of permutations – the

permutation sets A and B are Wilf-equivalent if |Av(A)n| = |Av(B)n|. While this may

open up an endless but for the most part uninteresting variety of problems, there are some

very surprising results. Notably, Bóna [18] shows that the class Av(1342) has generating

function f =
32x

−8x2 + 20x + 1− (1− 8x)3/2
. This is the same as the class of permutations

which may be sorted with two ordered stacks in series, whose basis is infinite:

B = {(2, 2m − 1, 4, 1, 6, 3, 8, 5, . . . , 2m, 2m− 3)|m = 2, 3, 4, . . . }.

(This problem was previously discussed at the end of Example 5.3.)

Another approach to the problem of enumeration is that of asymptotics – how many

permutations of length n are there in a given permutation class as n approaches infinity?

In other words, we want to be able to say something about lim
n→∞

|Cn|, or, somewhat more

usefully, lim
n→∞

n
√

|Cn|. As a first step, we have the “Stanley-Wilf conjecture”, namely that

for a given class C not containing every permutation, there exists a constant K such that

lim sup
n→∞

n
√

|Cn| = K.

This result was proved in 2004 by Marcus and Tardos [87]. The constant K is known as the

upper growth rate of the permutation class. We may similarly define the lower growth rate,

lim infn→∞
n
√

|Cn| = K . This naturally begs the question whether the upper and lower

growth rates coincide, in which case limn→∞
n
√

|Cn| = K is called the growth rate of C.

It is conjectured that the growth rate always exists, a fact that has been shown in some

cases. Arratia [6] proves this for sum or skew complete classes, among which are all of the

permutation classes defined by a single basis element.

For example, the growth rate of the stack sortable permutations Av(231) is 4, a fact

easily seen by recalling that |Av(231)n| =
(2n)!

n!(n + 1)!
, and using Stirling’s approximation

n! ≈
√

2nπ
(n

e

)n
.
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5.3 Antichains, Partial Well Order and Atomicity

In any partial order, an antichain is a set of pairwise incomparable elements. Immedi-

ate from its definition, the basis of any permutation class is an antichain. As previously

mentioned, there are infinitely based permutation classes, and hence there are infinite

antichains. These have been widely studied – see for example Atkinson, Murphy and

Ruškuc [9] and Murphy and Vatter [98].

An attempt at the classification of “fundamental” antichains was given in Murphy’s

PhD Thesis [97], though little progress has been made since. An infinite antichain A is said

to be fundamental if its closure, Sub(A), contains no infinite antichains, except subsets of A

itself. Other authors (see, for example, Gustedt [66]) refer to such antichains as minimal,

because they are minimal under the following order on infinite antichains: A � B if A

is contained in the closure of B. The need for identifying the fundamental antichains will

become apparent when we introduce partial well order. Meanwhile, we offer the following

conjecture:

Conjecture 5.12. Every member of a fundamental infinite antichain contains at most two proper

intervals.

Example 5.13 (The Increasing Oscillating Antichain). Let us consider the antichain based

on the increasing oscillating sequence from Section 2.5. The first few elements of this an-

tichain are 51234, 4127356, 412639578, . . ., with nth term 4126385 · · · 2n + 3, 2n − 1, 2n +

1, 2n + 2. The sixth term of this sequence is plotted in Figure 5.4); note the underlying

pin sequence construction and the pair of points at either end of the sequence which form

anchors, preventing its involvement in any other member of the antichain.

To prove that this is an antichain, we must show that no member is contained in any

other. This may be done in a variety of ways, but a particularly neat method can be found

in Klazar [75]. The graph of a permutation π of length n is the graph Gπ whose vertex set

is V = [n], with i ∼ j if and only if i < j and π(i) > π(j) or vice versa (j < i and

π(j) > π(i)), i.e. if and only if there is a descent in π between i and j. For example, the
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Figure 5.4: The sixth term of the increasing oscillating antichain.

Figure 5.5: Forming the graph of the sixth term of the increasing oscillating antichain.

increasing permutation 12 · · · n corresponds to the independent graph on n vertices, while

the decreasing permutation n · · · 21 corresponds to the complete graph Kn.

Although we lose uniqueness (for example, G213 = G132), the pattern containment

order translates to graph containment under taking induced subgraphs, that is, σ ≤ π im-

plies Gσ ≤ Gπ . To show that two arbitrary members of the increasing oscillating antichain

are not comparable under pattern containment, therefore, it is sufficient to show that their

corresponding graphs are incomparable in the graph containment partial order. In some

cases this may not make the containment problem any easier, but here the required result

follows almost immediately.

The graph of the sixth term of the antichain is shown in Figure 5.5. Note that the nth

member of the antichain will thus correspond to a graph consisting of a path of length 2n−
1 with a pair of leaves attached to each end. It is then clear that if we were to superimpose
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Figure 5.6: A basis element of the wreath closure of Av(4321).

the graph of a smaller member of the antichain onto the graph of a larger one, the end

nodes of the smaller must correspond to the end nodes of the larger, leaving a path which

cannot be superimposed onto the longer path without losing an edge. Thus the graphs are

pairwise incomparable, and hence the permutations are pairwise incomparable.

Finally, we may observe that the antichain is fundamental since every subpermutation

of an element of the antichain is either sum decomposable or lacks at least one anchor.

We may, of course, vary the anchors of the increasing oscillating sequence – and, in-

deed, most other antichains – to produce a complete variety of different antichains. We

will use this fact in Chapter 8 to exhibit several antichains which lie in the basis of par-

ticular classes. Meanwhile, let us return to considering the basis of the wreath closure of

Av(4321):

Example 5.14 (A Variant of the Increasing Oscillating Antichain). We present here the vari-

ant of the increasing oscillating antichain, which, instead of having a pair of points at the

top of the sequence to form an anchor, has a single point acting, essentially, as a left pin.

The first two elements are 542163 and 74216385, and its nth term is (2n+3)4216385 · · · (2n+

4)(2n + 1) (see Figure 5.6). A similar argument to Example 5.13 may be used to prove that

it is an antichain.
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5.3.1 Partial Well Order

While every basis forms an antichain, be it finite or infinite, we may also be interested in

whether a class contains infinite antichains. A partial order is said to be a partial well or-

der if it contains neither an infinite properly decreasing sequence nor an infinite antichain.

In the case of permutation classes this first condition is always true (by the existence of a

smallest element), and so a permutation class is partially well ordered if it contains no infi-

nite antichain. For example, Knuth [76] shows that the set of stack sortable permutations,

Av(231) is partially well ordered.

The decidability problem of whether a given permutation class is partially well ordered

remains open:

Question 5.15. Is it possible to decide if a permutation class given by a finite basis is partially well

ordered?6

Indeed there has been no recent major progress on the general problem. Alongside

a variety of specific examples, Atkinson, Murphy and Ruškuc [9] showed that Av(β) is

partially well ordered if and only if β ∈ {1, 12, 21, 132, 213, 231, 312}.

Showing that a class is not partially well ordered is simply a case of spotting an an-

tichain inside it. For example, the class Av(321) contains the increasing oscillating an-

tichain presented above. A non-partially well ordered class may contain many infinite

antichains, but among them there must be at least one fundamental antichain.

Proposition 5.16 (Gustedt [66]). Every non-partially well ordered permutation class contains an

infinite fundamental antichain.

Proof. With an eye toward applying Zorn’s lemma, take an infinite descending chain A1 �
A2 � · · · of infinite antichains and define

A∞ = {α : α is an element of all but finitely many Ais}.
6This question is considered in more generality by Cherlin and Latka [34].
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First observe that A∞ is an antichain, and that A∞ � Ai for all i. We claim that it is

also infinite. Suppose to the contrary that A∞ is finite. Thus A∞ is a subset of all but

finitely many of the Ais; without loss let us assume that it is contained in all the Ais. Now

choose α1 ∈ A1 \ A∞. For each i ≥ 2, because Ai � Ai−1, we may choose αi ∈ Ai such

that αi ≤ αi−1. This gives a descending chain α1 ≥ α2 ≥ . . ., so because permutation

classes have no infinite strictly descending chains, there is some α∞ and integer I such

that αi = α∞ for all i ≥ I . However, this implies that α1 ≥ αI = α∞ ∈ A∞ ⊆ A1, which

requires (because A1 is an antichain) α1 = α∞, a contradiction to our choice of α1. Thus

Zorn’s Lemma shows that the set of infinite antichains in a non-partially well ordered class

has a minimal element under�, as desired.

Note that if A is a fundamental antichain then its strict closure, {π : π < α ∈ A}, is

partially well ordered.

On the other hand, showing that a class is partially well ordered is a considerably

harder task. The primary tool here is a result of Higman [67], which we now state. We

say that (A,M) is an abstract algebra if A is a set of elements and M a set of operations, for

which each µ ∈ M is a k-ary operation, µ : Ak → A, for some positive integer k. Denote

the set of k-ary operations by Mk, and suppose that Mk is empty for every k > n for some

n. (Note that we will allow 0-ary operations.) The abstract algebra (A,M) is said to be

minimal if no subset B of A allows (B,M) to be an abstract algebra.

A partial order ≤A on the set of elements A is a divisibility order on (A,M) if every

operation µ ∈Mk, k = 0, 1, . . . , n, satisfies,

• a ≤A b implies µ(x, a,y) ≤A µ(x, b,y),

• a ≤A µ(x, a,y),

where x and y are arbitrary sequences comprising elements of A whose lengths sum to

k − 1. Furthermore, given partial orders ≤Mk
on Mk, k = 0, 1, . . . , n, we say that ≤A is

compatible with these partial orders if, for λ, µ ∈Mk,

• λ ≤Mk
µ implies λ(x) ≤A µ(x) for all x ∈ Ak.
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Theorem 5.17 (Higman [67]). Suppose that (A,M) is a minimal abstract algebra for which, for

some n, the set Mk of k-ary operations in M is partially well ordered for each k = 0, 1, . . . , n and

empty for k > n. Then (A,M) is partially well ordered under any divisibility ordering compatible

with the orders of Mk.

Higman’s Theorem is applied to prove that a given permutation class is partially well

ordered by showing how we may “build” the class from a smaller (very possibly finite)

set.

Example 5.18. By our definition in Example 5.4, the class Av(2413, 3142) of separable per-

mutations is precisely the strong completion of the class {1}, i.e. the class formed from

the permutation 1 using the binary operations ⊕ and 	. Higman’s Theorem may now

immediately be applied to show that Av(2413, 3142) is partially well ordered.

A permutation class C is strongly finitely based if it is finitely based and every closed

subset of C is also finitely based.7 Recalling that the basis of a class is an antichain, this

definition immediately returns us to partial well order, and indeed we have a variety of

equivalent conditions. A formal proof is provided by Atkinson, Murphy and Ruškuc [9].

Proposition 5.19. Let C be a permutation class. Then the following are equivalent:

(1) C is strongly finitely based.

(2) C has at most countably many closed subsets.

(3) C contains no infinite antichain.

(4) The subclasses of C satisfy the descending chain condition.

Partial well order also plays a rôle in some enumeration attempts. Klazar [75] shows

that the smallest growth rate which admits uncountably many closed permutation classes

lies between 2 and 2.33529 . . . . This growth rate is determined by the smallest growth rate

that a non-partially well ordered class can have – by Proposition 5.19, such a class will
7Higman [67] refers to this as the “finite basis property.”
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have uncountably many closed subsets, each of which cannot have a growth rate larger

than the parent class. The lower bound arises by showing all classes with growth rate

under 2 contain only finitely long alternations and oscillations, and these classes – via

Higman – are partially well ordered. The upper bound arises by considering the class

Av(321, 4123, 3412, 23451), and noting that it contains the increasing oscillating antichain

(hence is not partially well ordered). This class has rational generating function

f(x) =
x5 + x4 + x3 + x2 + x

1− x− 2x2 − 2x3 − x4 − x5

and the growth rate 2.33529 . . . arises as the reciprocal of the smallest real root of the de-

nominator (in fact, it is the only real root). Klazar mentions that Vatter and Murphy [pri-

vate communication] can improve the upper bound to 2.20556 . . . . The class which satis-

fies this is formed by appending the basis elements 134526, 134625, 314526 and 314625 to

Av(321, 4123, 3412, 23451), and its growth rate is the dominant root of x3 − 2x2 − 1.

More recently, Vatter [117] proved that the bound is precisely 2.20556 . . . by computing

the growth rates of all partially well ordered classes, a task relying on Proposition 5.22. He

also makes the following conjecture:

Conjecture 5.20. Every growth rate of permutation classes is also the growth rate of a partially

well ordered permutation class.

5.3.2 Atomicity

Recall in Subsection 5.1.2 how the union of two finitely based classes is again finitely based.

It follows (by considering symmetries, if necessary) that the union of two strongly finitely

based classes is again strongly finitely based, and subsequently we have the following.

Proposition 5.21 (Atkinson, Murphy and Ruškuc [9, Lemma 2.1]). The union of a finite num-

ber of finitely based partially well ordered permutation classes is partially well ordered and finitely

based.

Conversely, how can we “break up” partially well ordered classes into a union of

smaller “unbreakable” classes? This question motivates the study of atomic classes; a per-
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mutation class is atomic if it cannot be expressed as the union of two proper subclasses.

This definition then allows us to provide a converse, as introduced in [9], though here we

present an alternative proof based on the descending chain condition, first seen in Mur-

phy’s PhD thesis [97].

Proposition 5.22 (Atkinson, Murphy and Ruškuc [9, Theorem 2.2] and Murphy [97, Propo-

sition 188]). Every partially well ordered permutation class can be written as a finite union of

atomic classes.

Proof. Consider the binary tree whose root is the partially well ordered class C, whose

leaves are all atomic classes, and in which the children of the non-atomic class D are two

proper subclassesD′,D′′ ⊆ D such thatD′∪D′′ = D. Because C is partially well ordered its

subclasses satisfy the descending chain condition by Proposition 5.19, so this tree contains

no infinite paths and thus is finite. Its leaves give the desired atomic classes.

In some sense, atomic classes can therefore be considered as the elemental classes from

which all others are constructed by taking unions. In practice, however, outwith the com-

fortable realm of partial well order, atomicity does not behave as elegantly as we might

hope – we can, for example, encounter atomic classes that are the union of infinitely many

pairwise incomparable atomic classes (see Proposition 170 of Murphy [97]), while there

are non-atomic finitely based classes which contain infinitely based maximal atomic sub-

classes (Proposition 186 of Murphy [97]). In its defence, however:

Proposition 5.23 (Murphy [97, Proposition 171]). Every permutation class can be written as a

union of maximal atomic classes.

The question of uniqueness for this decomposition, however, falls short of what we

would like. To ensure a union
⋃

i∈I Ci of maximal atomic classes is unique, we must ensure

that they are independent, that is, for every i ∈ I we have
⋃

j 6=i

Cj ⊂
⋃

j

Cj ,

and this is not always obtainable. Meanwhile, there remains the question of decidability:
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Question 5.24. Is it possible to decide whether a permutation class given by a finite basis is atomic?

As with partial well-order, a general answer to this seems far off, though answers in

specific cases are often obtainable. Cherlin, Shelah and Shi [33], however, suggest that the

problem for general relational structures is not decidable.

Our toolbox for this question consists of a variety of equivalent definitions for atomic-

ity. A class C is said to satisfy the joint embedding property if, for any two permutations α

and β in C, there exists π such that α ≤ π and β ≤ π.

Theorem 5.25 (Fraı̈ssé [56]). The following conditions on a permutation class C are equivalent:

(1) C = Sub(f : A→ B) for some linearly ordered sets A,B and bijection f .

(2) C cannot be expressed as a union of two proper closed subsets.

(3) C satisfies the joint embedding property.

(4) C contains permutations α1 ≤ α2 ≤ . . . such that for every π ∈ C we have π ≤ αn for some

n.

Every sum, skew or strongly complete class is atomic. For example, given α and β

in a sum complete class C, we have α ⊕ β ∈ C and so C satisfies the joint embedding

property. Since every permutation must be either sum or skew decomposable, it follows

by Proposition 5.8 that every class having just one basis element is sum or skew complete,

and hence atomic. Beyond that, however, decidability is not known – for example, we may

write the class Av(321, 2143) as Av(321, 2143, 3142) ∪Av(321, 2143, 2413).

Restricting our view to natural classes – that is, atomic classes defined via bijections of

the natural numbers f : N → N – Atkinson, Murphy and Ruškuc [11] proved that it is

decidable whether a finitely based permutation class is natural. It may also be decidable

in other special cases; the author tried – and failed – to derive similar conditions for the

“rational” case, namely f : Q→ Q.
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5.4 Permutation Classes and Simple Permutations

By the central rôle which simple permutations take in forming the building blocks of per-

mutations, it is not surprising that they also perform a similarly crucial job within permu-

tation classes. Clearly every permutation of a class C may be broken down by means of its

substitution decomposition, using only Si(C), the simple permutations from C. For exam-

ple, in the class S = Av(2413, 3142) of separable permutations, we have Si(S) = {1, 12, 21},
and every permutation in S can be formed by repeated inflations of 12 and 21.

The converse, of course, is not true in general: we cannot reconstruct a class C by tak-

ing every possible inflation of the simple permutations Si(C) (for example, Si(Av(231)) =

{1, 12, 21}, but 231 = 21[12, 1]). This can only be done when a permutation class is wreath

closed, as such a class then contains every inflation by its very definition.

When the set of simple permutations is infinite, there is not a great deal more that can

be said. There is, however, a seemingly vast array of permutation classes that contain only

finitely many simple permutations, and in this case there is much to say. In this section we

will review a number of the known results, before contributing several more new results

in Chapters 6 and 7.

Counting Simple Permutations. A first step towards determining whether a class con-

tains only finitely many simple permutations is to use the Schmerl-Trotter Theorem 2.1

(found on page 21). By simply counting the simple permutations of size n = 1, 2, . . ., if

we encounter two consecutive lengths where there are no simple permutations, then the

class can contain no longer simple permutations. For example, the number of simple per-

mutations in Av(1324, 2143, 4231) of lengths 1 to 7 is 1, 2, 0, 2, 4, 0, 0, and so the longest

simple permutations in this class are of length 5. We will present a complete answer to this

decidability problem in Chapter 7.
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5.4.1 Finitely Many Simples

Classes with only finitely many simple permutations have nice properties. To name the

three most significant: these classes have algebraic generating functions, are partially well

ordered, and are finitely based. We will consider each of these topics in turn.

Algebraic Generating Functions. Albert and Atkinson [2] showed how every class con-

taining only finitely many simple permutations is enumerated by an algebraic generating

function, and this function is readily computable. This should come as no great surprise –

expressing all permutations in such a class as the inflation of a simple skeleton gives us a

recursive construction, in much the same way as when we enumerated the stack sortable

permutations (Example 5.11), and such recursions immediately suggest that we should ex-

pect an algebraic generating function. We prove this fact, and a much more general result,

in Chapter 6.

Partial Well Order. Since antichains (or, at least, fundamental antichains) rely heavily on

the structure of simple permutations to maintain their incomparability (as witnessed by

the statement of Conjecture 5.12), we can reasonably expect a permutation class containing

only finitely many simple permutations to be partially well ordered. Before showing this,

however, we exhibit an observation about partial well order that we will need.

Proposition 5.26. The product (P1,≤1)×· · ·×(Ps,≤s) of a collection of partial orders is partially

well ordered if and only if each of them is partially well ordered.

Without further ado, we may now proceed to the desired result. Our proof follows

Gustedt [66], although note that Albert and Atkinson [2] give a different proof, using Hig-

man’s Theorem 5.17.

Proposition 5.27 (Gustedt [66]). Every permutation class with only finitely many simple per-

mutations is partially well ordered.

Proof. Suppose to the contrary that the class C contains an infinite antichain but only

finitely many simple permutations. By Proposition 5.16, C contains an infinite fundamental
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antichain. Moreover, there is an infinite subset A of this antichain for which every element

is an inflation of the same simple permutation, say σ. Let D denote the strict closure of A

and note that A is also fundamental, so D is partially well ordered. It is easy to see that the

permutation containment order, when restricted to inflations of σ, is isomorphic to a prod-

uct order: σ[α1, . . . , αm] ≤ σ[α′
1, . . . , α

′
m] if and only if αi ≤ α′

i for all i ∈ [m]. However,

this implies that A is an infinite antichain in a productD×· · ·×D of partially well ordered

posets, contradicting Proposition 5.26.

Finitely Based. That a class containing only finitely many simple permutations is finitely

based arises by first considering its wreath closure. Our first task is to compute the basis

of a wreath closed class containing only finitely many simple permutations, which may be

done using the Schmerl-Trotter Theorem 2.1 (Page 21):

Proposition 5.28. If the longest simple permutations in C have length k then the basis elements of

W(C) have length at most k + 2.

Proof. The basis of W(C) is easily seen to consist of the minimal (under the pattern con-

tainment order) simple permutations not contained in C (cf. Proposition 5.9). Let π be such

a permutation of length n. Theorem 2.1 shows that π contains a simple permutation σ of

length n − 1 or n − 2. If n ≥ k + 3, then σ /∈ C, so σ /∈ W(C) and thus π cannot lie in the

basis ofW(C).

For example, using this Proposition it can be computed that the wreath closure of 1,

12, 21, and 2413 is Av(3142, 25314, 246135, 362514) – we will encounter this class again in

Example 6.10.

By Proposition 5.27, any permutation class – and in particular any wreath closed class

– containing only finitely many simples is partially well ordered. Subsequently:

Theorem 5.29 (Albert and Atkinson [2]). Every permutation class containing only finitely many

simple permutations is finitely based.
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Proof. Let C be a class containing only finitely many simple permutations. By Proposi-

tion 5.28, W(C) is finitely based, and by Proposition 5.27 it is partially well ordered. The

class C must therefore avoid all elements in the basis ofW(C), together with the minimal

elements ofW(C) not belonging to C, which form an antichain. By its partial well ordering

any antichain in W(C) is finite, and so there can only be finitely many basis elements of

C.

5.5 The Containment Partial Order in Other Structures

We may, of course, define the containment order on any relational structure and treat it

as a partial order. Expanding upon the notion of extensions in Chapter 3, if A and B are

relational structures over a common language L then an embedding of A into B is an injec-

tion ϕ : dom(A) → dom(B) so that B|ϕ(dom(A)) is isomorphic to A. If such an embedding

exists, then we say A ≤ B, a quasi order from which we may induce a partial order by

considering the equivalence classes A ∼= B, arising if and only if A ≤ B and B ≤ A.

In theory, one may then study any closed class of relational structures for a given lan-

guage in the same way as one might study permutation classes. Formally, a set C of rela-

tional structures over a common relational language L is an L-class if A ∈ C and B ≤ A
implies B ∈ C. We might then if we wished define an L-class in terms of structure avoid-

ance and try to compute its generating function. We could consider intersections, unions

and, by recalling the definition of inflation in this general setting, wreath products and

wreath closures.

Antichains, partial well order and atomicity are notions taken from the theory of posets.

Antichains are merely sets of pairwise incomparable elements; see Gustedt [66] for notions

of minimality in antichains and some considerations on the existence of infinite antichains.

Since every L-class has a minimal element on one point, no L-class can contain an infinite

properly decreasing sequence. Thus an L-class C is partially well ordered if it contains no

infinite antichains, and Higman’s Theorem can be used in the general setting. Atomicity in

the permutation class case is merely a special case of the “γ classes” of Fraı̈ssé [56]; many
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of the results that are true for permutation classes are also true in the general case. For

example, an atomic L-class C satisfies the joint embedding property, and is also expressible

in a way analogous to the Sub(π : A → B) notation. See Fraı̈ssé [56], Hodges [68, Section

7.1], and, for a survey of more recent results, Pouzet [101].

Finitely many Simples. By means of the substitution decomposition, L-classes which

contain only finitely many simple L-structures will have a recursive construction much as

in the permutation class case. However in the general setting this does not correspond to

an algebraic generating function, since structures in the partial order are defined only up

to equivalence. In fact, it seems that having an algebraic generating function is special to

the permutation case (for example, it is not true in the graph case).

All such L-classes are, however, partially well ordered. As in the permutation case,

antichains are instrinsically linked to simple permutations, and Proposition 5.27 is proved

in the general case by Gustedt [66].

To answer the question of whether these classes are finitely based, we may obtain a

partial answer by considering the most general setting of the Schmerl-Trotter Theorem 2.1

given in [107], namely that of binary, irreflexive relational structures, a set which includes

graphs, tournaments and posets. Ehrenfeucht and McConnell [48] show that, for k ≥ 3,

a simple structure defined on a single k-ary relation must contain a simple substructure

with k, k−1 or k−2 fewer points, and this was improved to just k−1 or k−2 fewer points

by Bonizzoni and McConnell [23]. Further generalisations remain unknown.

The Graph Case. The “graph containment order” is in fact the order defined by induced

subgraphs, and has been extensively studied. As with many other relational structures,

classes of graphs closed under taking induced subgraphs are more often referred to as

hereditary properties. A stronger condition is obtained by considering sets of graphs closed

under taking subgraphs (rather than induced subgraphs), and these are referred to as

monotone properties.

Properties need not be hereditary – consider, for example, the property consisting of all
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regular graphs. Examples of hereditary properties include the set of triangle-free graphs,

all graphs of chromatic number at most k and the set of split graphs (graphs which may be

partitioned into an independent set and a clique).

As with permutation classes, much of the study of hereditary graph properties is in

their asymptotic enumeration. For a property P , let Pn denote the set of graphs in P with

n vertices, whence the function |Pn| defines the speed of the property. While little can be

said about the speed of an arbitrary property, Scheinerman and Zito [106] prove that the

speed of hereditary graph properties must, for sufficiently large n, be constant, polyno-

mial, exponential, factorial or superfactorial. Subsequent study – in particular Balogh,

Bollobás and Weinreich [15, 16] – has shown that there are many “jumps” within this al-

ready broken spectrum of speeds.





CHAPTER 6

ALGEBRAIC GENERATING FUNCTIONS

6.1 Introduction

WHEN A CLASS is enumerated by an algebraic generating function, we intuitively

expect to find some recursive description of the permutations in the class. Such de-

scriptions may arise in a variety of ways, but one of the most important is the substitution

decomposition.

In a class which has only finitely many simple permutations, therefore, any long per-

mutation must map nontrivial intervals onto intervals, and hence all the permutations of

the class are constructed recursively via the substitution decomposition. With only finitely

many simple permutations on which to “build”, we expect the class to have an algebraic

generating function:

Theorem 6.1 (Albert and Atkinson [2]). A permutation class with only finitely many simple

permutations has a readily computable algebraic generating function.

Our aim in this chapter is to establish a generalisation of Theorem 6.1. We do this by

observing that the recursive construction given by the substitution decomposition is not

a feature merely of pattern avoidance in the containment order, but can be extended to

enumerate a wide variety of other sets of permutations. In essence it can be extended to

enumerate any set of permutations which can be built in the same way from a finite set

of simple permutations, though we will still require that the set lies within a permutation

class with only finitely many simple permutations.

111
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Theorem 6.2. Let C be a permutation class containing only finitely many simple permutations,

P a finite query-complete set of properties, and Q ⊆ P . The generating function for the set of

permutations in C satisfying every property in Q is algebraic over Q(x).

The next section establishes the terminology required by Theorem 6.2, which we will

then prove in Section 6.3. Section 6.4 shows how to describe some common families of

permutations as query-complete sets of properties and hence demonstrates the scope of

Theorem 6.2, with specific worked examples given in Section 6.5. In Sections 6.6 and 6.7 we

adapt these techniques to enumerate two further families, namely involutions and cyclic

closures, respectively. Some closing remarks are given in Section 6.8.

6.2 Properties and Query-completeness

As we saw at the end of Chapter 5, the term “property” has been used extensively in

the study of other relational structures, and particularly in graph theory. It is natural,

therefore, to use this term in the context of permutations in a similar way. To this end,

define a property, P , to be any set of permutations, and say that a permutation π satisfies P

if π ∈ P . Note that a permutation class is now simply an example of a property.

A setP of properties is query-complete if, for each simple permutation σ of length m and

property P ∈ P , there is a procedure to determine whether σ[α1, . . . , αm] satisfies P based

only on the knowledge of which properties of P each αi satisfies. For example, the set of

properties consisting of the 132-avoiding permutations, {Av(132)}, is not query-complete,

as witnessed by the fact that 12[1, 1] ∈ Av(132) but 12[1, 21] /∈ Av(132), while both 1 and

12 avoid 132. However, {Av(132),Av(21)} is query-complete:

12[α1, α2] ∈ Av(132) ⇐⇒ α1 ∈ Av(132) and α2 ∈ Av(21),

21[α1, α2] ∈ Av(132) ⇐⇒ α1 ∈ Av(132) and α2 ∈ Av(132),

σ[α1, . . . , αm] /∈ Av(132) if σ /∈ {1, 12, 21} is simple,

12[α1, α2] ∈ Av(21) ⇐⇒ α1 ∈ Av(21) and α2 ∈ Av(21),

σ[α1, . . . , αm] /∈ Av(21) if σ /∈ {1, 12} is simple.
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Note that since σ[α1, . . . , αm] is uniquely determined by σ and the αis, every property

P lies in some query-complete set, e.g., {P} ∪ {{π} : π a permutation} is query-complete

for every P . Thus the finiteness condition in Theorem 6.2 is essential. Another observation

about query-complete sets, which will be liberally applied, is the following.

Proposition 6.3. A union of query-complete sets of properties is itself query-complete.

6.3 Proof of Main Result

We begin by recalling the substitution decomposition for permutations, which is encapsu-

lated in two propositions from Chapter 1.

Proposition 1.7. Every permutation may be written as the inflation of a unique simple permuta-

tion. Moreover, if π can be written as σ[α1, . . . , αm] where σ is simple and m ≥ 4, then the αis are

unique.

Proposition 1.8. If π is an inflation of 12, then there is a unique sum indecomposable α1 such that

π = 12[α1, α2] for some α2, which is itself unique. The same holds with 12 replaced by 21 and

“sum” replaced by “skew”.

Given a permutation class C and set P of properties, we write CP for the set of permu-

tations in C that satisfy every property in P , and write fP for the generating function of CP .

Before beginning the proof of Theorem 6.2 we consider the case where C is wreath-closed

and P = ∅, which contains many of the main ideas of the proof in a more digestible form.

(This presentation borrows heavily from Albert and Atkinson [2].)

We begin by introducing two properties,
�

= {sum indecomposable permutations} and
�

= {skew indecomposable permutations}.

Note that both {
�
} and {

�
} are query-complete, because for simple σ,

σ[α1, . . . , αm] ∈
�
⇐⇒ σ 6= 12 and

σ[α1, . . . , αm] ∈
�
⇐⇒ σ 6= 21.
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We also introduce the notation

σ[C1, . . . , Cm] = {σ[α1, . . . , αm] : αi ∈ Ci for all i ∈ [m]}.

By Propositions 1.7 and 1.8 and the assumption that C is wreath-closed, C can be written

as

C = {1} ] 12[C �
, C] ] 21[C �

, C] ]
⊎

σ∈Si(C)
|σ|≥4

σ[C, . . . , C],

while C � and C � have the expressions

C �
= {1} ] 21[C �

, C] ]
⊎

σ∈Si(C)
|σ|≥4

σ[C, . . . , C] = C \ 12[C �
, C],

C �
= {1} ] 12[C �

, C] ]
⊎

σ∈Si(C)
|σ|≥4

σ[C, . . . , C] = C \ 21[C �
, C].

These give the system






















































f = x + f
�

f + f
�

f +
∑

σ∈Si(C)
|σ|≥4

f |σ|,

f
�

= x + f
�

f +
∑

σ∈Si(C)
|σ|≥4

f |σ| = f − f
�

f =
f

1 + f
,

f
�

= x + f
�

f +
∑

σ∈Si(C)
|σ|≥4

f |σ| = f − f
�

f =
f

1 + f
.

If we now let s denote the generating function for the simple permutations of length at

least 4 in C, we find that

f = x +
2f2

1 + f
+ s(f),

so if s is algebraic, a fortiori if s is polynomial, f is algebraic. In particular, note that

the separable permutations correspond to s = 0; substituting this value for s leaves f =

x + 2f2/(1 + f), and so we have proved that the generating function for the separables is

f =
1− x−

√
1− 6x + x2

2
= x + 2x2 + 6x3 + 22x4 + 90x5 + . . .

giving the large Schröder numbers (sequence A006318 of [110]).
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The following brief review of algebraic systems is a specialisation of the more general

treatment in Stanley [114, Section 6.6]. Let A = {a1, . . . , an} denote an alphabet. A proper

algebraic system over Q[x1, . . . , xm] is a set of equations ai = pi(x1, . . . , xm, a1, . . . , an) where

each pi is a polynomial with coefficients from Q, has constant term 0, and contains no terms

of the form caj where c ∈ Q. The solution to such a system is a tuple (f1, . . . , fn) of formal

power series from Q[[x1, . . . , xm]] such that for all i, fi is equal to pi(x1, . . . , xm, a1, . . . , an)

evaluated at (a1, . . . , an) = (f1, . . . , fn).

Theorem 6.4 (Stanley [114, Proposition 6.6.3 and Theorem 6.6.10]). Every proper algebraic

system (p1, . . . , pn) over Q[x1, . . . , xm] has a unique solution (f1, . . . , fn). Moreover, each of these

fis is algebraic over Q(x1, . . . , xm).

The proof of Theorem 6.2 now follows, modulo the result of Lemma 6.5.

Theorem 6.2. Let C be a permutation class containing only finitely many simple permutations,

P a finite query-complete set of properties, and Q ⊆ P . The generating function for the set of

permutations in C satisfying every property in Q, i.e., fQ, is algebraic over Q(x).

Proof. Let B denote the basis of C, which is finite by Theorem 5.29 (on Page 106). Lemma 6.5

shows that for every β ∈ B, the property Av(β) lies in a finite query-complete set. Thus

the set {Av(β) : β ∈ B} is contained in a finite query-complete set, and we have

C =W(C){Av(β):β∈B}.

Therefore it suffices to prove the theorem for wreath-closed classes. Furthermore, if P is

query-complete then P ∪ {
�

,
�
} is also query-complete, so we may assume without loss

that
�

,
�
∈ P .

Let P(π) denote the set of properties in P satisfied by π and, avoiding inclusion-

exclusion, let gR denote the generating function for the set of π ∈ C with P(π) = R,

so

fQ =
∑

Q⊆R⊆P

gR.
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AsP is query-complete, for each simple σ, P(σ[α1, . . . , αm]) is completely determined by σ

and P(α1), . . . ,P(αm). Thus for each simple σ of length m, there is a finite collection of m-

tuples of sets of properties such that P(σ[α1, . . . , αm]) = R precisely if (P(α1), . . . ,P(αm))

lies in this collection. If m ≥ 4 then Proposition 1.7 implies that the generating function

for all inflations π of σ with P(π) = R can be expressed nontrivially as a polynomial in

{gS : S ⊆ P} of degree m. If m = 2, suppose σ = 12 without loss. By Proposition 1.8,

all inflations of 12 have a unique decomposition as 12[α1, α2] where α1 ∈
�

. Thus the

generating function for inflations π of 12 with P(π) = R can be expressed as a sum of

terms of the form gSgT where
�
∈ S .

Therefore gR can be expressed as a polynomial in x (depending on whether P(1) = R)

and {gS : S ⊆ P}. Moreover, these polynomials have no constant terms and no terms of

the form cgS for constant c 6= 0. Thus they form a proper algebraic system, so Theorem 6.4

implies that each gS is algebraic.

6.4 Finite Query-Complete Sets

We exhibit several query-complete sets of properties in this section. The first of these is

necessary for the proof of Theorem 6.2, the others for Corollary 6.21.

Lemma 6.5. For every permutation β, the set {Av(δ) : δ ≤ β} is query-complete.

Proof. We prove the lemma by induction on the length of β. The base case β = 1 being

trivial, let us suppose that β is of length at least 2. By induction, {Av(γ) : γ ≤ δ} is query-

complete for all δ < β, and thus by appealing to Proposition 6.3 it suffices to prove that

whether π = σ[α1, . . . , αm] satisfies Av(β) can be decided entirely by knowing, for each i,

which permutations δ satisfy δ ≤ αi and δ ≤ β.

We define a lenient inflation to be an inflation σ[γ1, . . . , γm] in which the γis are allowed



6.4 FINITE QUERY-COMPLETE SETS 117

to be empty. List all expressions of β as a lenient inflation of σ as

β = σ[γ
(1)
1 , . . . , γ(1)

m ],

...

β = σ[γ
(t)
1 , . . . , γ(t)

m ].

Clearly if we have, for some s ∈ [t], αi ≥ γ
(s)
i for all i ∈ [m], then π ≥ β. Equivalently, to

have π ∈ Av(β), for every s ∈ [t] there must be at least one i ∈ [m] for which αi 6≥ γ
(s)
i .

Conversely, every embedding of β into π gives one of the lenient inflations in the list above,

which completes the proof.

In a barred permutation, one or more of the entries is barred; for π to avoid the barred

permutation σ means that every set of entries of π order isomorphic to the nonbarred

entries of σ can be extended to a set order isomorphic to σ itself. For example, 24315 avoids

213 because every inversion (i.e., copy of 21) can be extended to a copy of 213 (append the

5), but 24315 contains 312 because the 3 and 1 of 24315 are order isomorphic to 32, but there

is no way to extend this to a copy of 312. Barred permutations have arisen several times in

the permutation pattern literature. For example, under West’s notion of 2-stack sorting (see

Example 5.3 on page 84) the permutations that can be sorted are those that avoid 2341 and

35241, while Bousquet-Mélou and Butler [25] characterise the permutations corresponding

to locally factorial Schubert varieties in terms of barred permutations.

A blocked permutation is a permutation containing dashes indicating the entries that

need not occur consecutively (in the normal pattern-containment order, no entries need

occur consecutively), or in the case of the beginning or trailing dashes, entries that need not

occur at the beginning or end of the permutation, respectively. For example, 24135 contains

only one copy of -1-23-, namely 235; the entries 245 do not form a copy of -1-23- because the

4 and 5 are not adjacent. Babson and Steingrı́msson [14] introduced blocked permutations

(although they called them generalised patterns, and implicitly assumed that their patterns

had beginning and trailing dashes) and showed that they could be used to express most
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Mahonian statistics. For example, the major index1 of π is equal to the total number of

copies of -1-32-, -2-31-, -3-21-, and -21- in π.

The proof of Lemma 6.5 extends in a straightforward manner to show that the property

of avoiding a blocked or barred permutation (or, for that matter, a permutation combining

these restrictions) also lies in a finite query-complete set, although the sets are not so easily

described.2

The permutation π ∈ Sn is said to be alternating if for all i ∈ [2, n − 1], π(i) does not lie

between π(i− 1) and π(i + 1).

Lemma 6.6. The set of properties consisting of

• AL = {alternating permutations},

• BR = {permutations beginning with a rise, i.e., permutations with π(1) < π(2)},

• ER = {permutations ending with a rise}, and

• {1}.

is query-complete.

Proof. Clearly {{1}, BR,ER} is query-complete:

σ[α1, . . . , αm] ∈ BR ⇐⇒ α1 ∈ BR or (α1 = 1 and σ ∈ BR) ,

σ[α1, . . . , αm] ∈ ER ⇐⇒ αm ∈ ER or (αm = 1 and σ ∈ ER) .

For π = σ[α1, . . . , αm] to be an alternating permutation, we first need α1, . . . , αm ∈ AL.

Now suppose that the entries of π up to and including the σ(i) interval are alternating (we

have this for i = 1 from the above). If σ(i) > σ(i + 1) then π contains a descent between its

σ(i) interval and its σ(i + 1) interval. Thus αi is allowed to be 1 (i.e., αi ∈ {1}) only if i = 1

1The major index is more commonly defined as the sum of the descents of π,
X

π(i)>π(i+1)

i.

2Consider, e.g., the problem of deciding whether π = 3142[α1, α2, α3, α4] avoids -1-23-. First, each of
the αi’s must avoid -1-23-. Then we also need α3 and α4 to not contain ascents (i.e., avoid -12-) since α2 is
nonempty, and α2 to avoid -1-2, since otherwise the third element of the -1-23- could be chosen from α3.
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or σ(i − 1) < σ(i), while if αi 6= 1 then we must have αi ∈ ER, and whether or not αi is 1

we must have αi+1 ∈ BR ∪ {1}. The case where σ(i) < σ(i + 1) is analogous, completing

the proof.

Recall that an even permutation is one that can be written as the product of an even

number of transpositions, or (much more conveniently for our purposes) a permutation

with an even number of inversions.

Lemma 6.7. The set of properties consisting of

• EV = {even permutations} and

• EL = {permutations of even length}

is query-complete.

Proof. We have

σ[α1, . . . , αm] ∈ EL ⇐⇒ an even number of αi’s fail to lie in EL,

so {EL} is query-complete. To see that {EV,EL} is query-complete, we divide the inver-

sions in σ[α1, . . . , αm] into two groups: inversions within a single σ(i) interval and inver-

sions between two intervals σ(i) and σ(j). We need to compute the parity of each of these

numbers. The parity of the first type of inversions depends only on whether αi ∈ EV . For

the second type, suppose i < j. If σ(i) < σ(j) then there are an even number of inversions

(more specifically, 0) between the intervals σ(i) and σ(j) while if σ(i) > σ(j) then the num-

ber of inversions between these intervals is |αi||αj |, which is even if αi or αj lie in EL and

odd otherwise.

We say that the entry π(i) begins a descent if π(i) > π(i + 1) and begins an ascent if

π(i) < π(i+1). A permutation is Dumont of the first kind if each even entry begins a descent

and each odd entry either begins an ascent or occurs last (this dates back to Dumont [42]).

For example, 5642137 is a Dumont permutation of the first kind. We further say that a

permutation is almost Dumont if every non-terminal even entry begins a descent and every
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non-terminal odd entry begins an ascent, or anti-almost Dumont if every non-terminal odd

entry begins a descent and every non-terminal even entry begins an ascent.

Lemma 6.8. The set of properties consisting of

• DU = {Dumont permutations of the first kind},

• AD = {almost Dumont permutations},

• AAD = {anti-almost Dumont permutations},

• EO = {permutations which end with an odd entry} and

• EL = {permutations of even length}

is query-complete.

Proof. First note that DU = AD ∩ EO, so it suffices to show that {AD,AAD,EO,EL}
is query-complete. By the proof of Proposition 6.7 we have that {EL} is query-complete.

Using the EL property, we can determine the parity of the number of entries of lesser value

than any given interval; there are an even number of entries below the σ(i) interval if and

only if an even number of the permutations ασ−1(1), ασ−1(2), . . . , ασ−1(σ(i)−1) fail to lie in

EL. From this, it follows readily that the set {EO,EL} is query-complete: σ[α1, . . . , αm] ∈
EO if αm ∈ EO and an even number of entries lie below the σ(m) interval, or if αm /∈ EO

and an odd number of entries lie below the σ(m) interval.

We are reduced to the problem of determining membership in AD and AAD. As

the cases are analogous, we consider only the former. Consider the permutation π =

σ[α1, . . . , αm]. We divide our task into two parts: first, we check that the entries corre-

sponding to each σ(i) interval satisfy the desired properties, and second, we check that the

“transitions” between successive intervals satisfy these properties. To resolve the first, for

π to lie in AD, we must have that each αi lies in AD (resp., AAD) if and only if there are an

even (resp., odd) number of entries below the σ(i) interval. For the second, if σ(i) < σ(i+1)

then the σ(i) interval must end in an odd entry. This requires that αi ∈ EO if there are an
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even number of entries below the σ(i) interval, and αi /∈ EO otherwise. The σ(i) > σ(i+1)

case follows similarly, completing the proof.

The imaginative reader should at this point have no trouble constructing many other

properties that lie in finite query-complete sets. Examples include the property of begin-

ning with a 1, or more generally of mapping any fixed i to any fixed j, or of having major

index congruent to 1 mod 3, or of having an odd number of left-to-right minima.

6.5 Examples

While we have already shown how to enumerate the separable permutations in Section 6.3,

here we use the approach of Theorem 6.2.

Example 6.9 (Separable permutations). With the notation from the proof of Theorem 6.2,

we have that for the separable permutations:






g
�

,
�

= x,

g
�

= (g
�

,
�

+ g
�

)(g
�

,
�

+ g
�

+ g
�

),

g
�

= (g
�

,
�

+ g
�

)(g
�

,
�

+ g
�

+ g
�

),

where our universe of propertiesP is {
�

,
�
}. We are interested in f = g

�
,

�
+g

�
+g

� . By

summing the three equalities above and simplifying one obtains f = x + (x + f)f , which

leads, reassuringly, to the generating function for the large Schröder numbers,

f =
1− x−

√
1− 6x + x2

2
.

This system does not change dramatically when another simple permutation is intro-

duced, as shown by the next example.

Example 6.10 (The wreath closure of 1, 12, 21, and 2413). Here we again take P = {
�

,
�
}

and the system is






g
�

,
�

= x + (g
�

,
�

+ g
�

+ g
�

)4,

g
�

= (g
�

,
�

+ g
�

)(g
�

,
�

+ g
�

+ g
�

),

g
�

= (g
�

,
�

+ g
�

)(g
�

,
�

+ g
�

+ g
�

).
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The generating function for this class, f = g
�

,
�

+ g
�

+ g
� , satisfies

f5 + f4 + f2 + (x− 1)f + x = 0,

and the first terms of the sequence are 1, 2, 6, 23, 102, 492, . . . (sequence A120346 of [110]).

Example 6.11 (Av(132)). The wreath closure of Av(132) is the class of separable permu-

tations, so to enumerate Av(132) we need to refine Example 6.9. While Proposition 6.5

shows that {Av(1),Av(12),Av(21),Av(132)} is query-complete, it is sufficient to set P =

{
�

,
�

,Av(21),Av(132)} by our remarks in Section 6.2. Our system is then


















g
�

,
�

,Av(21) = x,

g
�

,Av(21) = g
�

,
�

,Av(21)(g
�

,
�

,Av(21) + g
�

,Av(21)),

g
�

= (g
�

,
�

,Av(21) + g
�

,Av(21) + g
�

)(g
�

,
�

,Av(21) + g
�

,Av(21) + g
�

+ g
�

),

g
�

= g
�

(g
�

,
�

,Av(21) + g
�

,Av(21)).

(As we are only interested in 132-avoiding permutations we have suppressed the subscript

Av(132), which would otherwise be present in all these terms.) Setting

f = g
�

,
�

,Av(21) + g
�

,Av(21) + g
�

+ g
�

and solving yields

f =
1− 2x−

√
1− 4x

2x
,

the generating function for the Catalan numbers, as expected.

Example 6.12 (Av(2413, 3142, 2143)). Here we take P = {
�

,
�

,Av(21),Av(2143)} and our

system is


















g
�

,
�

,Av(21) = x,

g
�

,Av(21) = g
�

,
�

,Av(21)(g
�

,
�

,Av(21) + g
�

,Av(21)),

g
�

= (g
�

,
�

,Av(21) + g
�

,Av(21) + g
�

)(g
�

,
�

,Av(21) + g
�

,Av(21) + g
�

+ g
�

),

g
�

= g
�

,
�

,Av(21)(g
�

+ g
�

) + g
�

(g
�

,
�

,Av(21) + g
�

,Av(21)),

where here we have suppressed the Av(2143) subscript. This gives the generating function

1− 3x + 2x2 −
√

1− 6x + 5x2

2x(2 − x)
,
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and thus the number of permutations of length n in this class is
∑

(n
k

)

Fn−k (sequence

A033321 of [110]), where Fn denotes the nth term in Fine’s sequence.3

Example 6.13 (Alternating separable permutations). Lemma 6.6 shows that we need to

introduce the properties AL (alternating permutations), BR (permutations beginning with

a rise), ER (permutations ending with a rise), and {1}. In the separable case {1} =
�
∩

�

so we take P = {
�

,
�

, BR,ER,AL}, and as AL occurs in each of the terms of our system

we suppress it. We then have


























































g
�

,
�

= x,

g
�

= (g
�

,
�

+ g
�

,ER)(g
�

,
�

+ g
�

,BR + g
�

,BR),

g
�

,BR = g
�

,BR,ER(g
�

,
�

+ g
�

,BR + g
�

,BR),

g
�

,ER = (g
�

,
�

+ g
�

,ER)(g
�

,BR,ER + g
�

,BR,ER),

g
�

,BR,ER = g
�

,BR,ER(g
�

,BR,ER + g
�

,BR,ER),

g
�

= g
�

(g
�

+ g
�

),

g
�

,BR = (g
�

,
�

+ g
�

,BR)(g
�

+ g
�

),

g
�

,ER = g
�

(g
�

,
�

+ g
�

,ER + g
�

,ER),

g
�

,BR,ER = (g
�

,
�

+ g
�

,BR)(g
�

,
�

+ g
�

,ER + g
�

,ER).

The generating function for these permutations satisfies

f3 − (2x2 − 5x + 4)f 2 − (4x3 + x2 − 8x)f − (2x4 + 5x3 + 4x2) = 0,

and the first few terms of the sequence are 1, 2, 4, 8, 20, 48, . . . (sequence A121703 of [110]).

6.6 Involutions

Unfortunately, involutionhood lies just outside the scope of our query-complete-property

machinery: letting I denote the set of involutions we have that 12[α1, α2] ∈ I ⇐⇒
α1, α2 ∈ I , but when is 21[α1, α2] ∈ I?

We begin by considering the effect of inversion on the substitution decomposition. First

observe that

(σ[α1, . . . , αm])−1 = σ−1[α−1
σ−1(1)

, . . . , α−1
σ−1(m)

].

3Fine’s sequence is defined by 2Fn + Fn−1 = Cn for n ≥ 1, where Cn denotes the nth Catalan number (se-
quence A000957 of [110]).
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Recalling the first part of Proposition 1.7 (“every permutation is the inflation of a unique

simple permutation”), we have that if π is an involution then it must be the inflation of a

simple involution. By the second part of Proposition 1.7 we then obtain the following:

Proposition 6.14. If π = σ[α1, . . . , αm] is an involution and σ 6= 21 is a simple permutation then

σ is an involution and αi = α−1
σ−1(i)

= α−1
σ(i) for all i ∈ [m].

The case σ = 21 must be handled separately but is not any more difficult.

Proposition 6.15. The involutions that are inflations of 21 are precisely those of the form

• 21[α1, α2] for skew indecomposable α1 and α2 with α1 = α−1
2 , and

• 321[α1, α2, α3], where α1 and α3 are skew indecomposable, α1 = α−1
3 , and α2 is an involu-

tion.

Define the inverse of the property P by P −1 = {π−1 : π ∈ P}, and for a set of properties

P , P−1 = {P−1 : P ∈ P}.

Theorem 6.16. Let C be a permutation class containing only finitely many simple permutations,

P a finite query-complete set of properties, and Q ⊆ P . The generating function for the set of

involutions in C satisfying every property inQ is algebraic over Q(x).

Proof. We assume (without loss) both that
�

,
�
∈ P and that P = P−1. As in the proof

of Theorem 6.2, let P(π) denote the set of properties in P satisfied by π and gR denote the

generating function for the set of π ∈ C with P(π) = R. Also let hR denote the generating

function for the set of involutions π ∈ C with P(π) = R. It suffices to show that each hR is

algebraic over Q(x).

As Propositions 6.14 and 6.15 indicate, we need to count pairs (α, α−1) where α and

α−1 satisfy certain sets of properties. To this end define

pR =
∑

α∈C
P(α)=R

x|α|+|α−1|.

Note that pR is nothing other than gR(x2).
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Now take σ to be a simple permutation. We need to compute the contribution to

hR of inflations of σ. If σ is not an involution, Proposition 6.14 shows that this contri-

bution is 0. Otherwise since P is query-complete, P(σ[α1, . . . , αm]) = R if and only if

(P(α1), . . . ,P(αm)) lies in a certain collection of m-tuples of sets of properties. Choose

one of these m-tuples, say (R1, . . . ,Rm), and suppose first that m = |σ| ≥ 4. It suffices

to calculate the contribution of involutions of the form σ[α1, . . . , αm] with P(αi) = Ri for

all i ∈ [m]. If there is some j ∈ [m] for which Rj 6= R−1
σ(j) then this contribution is 0 by

Proposition 6.14. Otherwise the contribution is a single term in which each fixed point

j corresponds to an hRj
factor and each non-fixed-point pair (j, σ(j)) corresponds to a

pRj
factor. A similar analysis of inflations of 12 and 21 — in the latter case appealing to

Proposition 6.15 — allows us to compute their contributions.

Therefore each hR can be expressed nontrivially as a polynomial in x, {hS : S ⊆ P},
and {pS : S ⊆ P}. Viewing x and {pS : S ⊆ P} as variables, Theorem 6.4 implies that each

hR is algebraic over Q(x, {pS : S ⊆ P}). Furthermore, pS = gS(x2), so Q(x, {pS : S ⊆ P})
is an algebraic extension of Q(x) by Theorem 6.2, proving the theorem.

One could adapt the proof of Theorem 6.16 to count the permutations in C that are

invariant under other symmetries. For example, the permutations invariant under the

composition of reverse and complement studied by Guibert and Pergola [64]. Egge [43]

considers the enumeration of restricted permutations invariant under other symmetries.

Example 6.17 (Separable involutions). We take P = {
�

,
�
}. Using the notation from the

proof of Theorem 6.16, we wish to find f = h
�

,
�

+ h
�

+ h
� . These generating functions

are related to each other and to the p generating functions by







h
�

,
�

= x,

h
�

= (p
�

,
�

+ p
�

) + (p
�

,
�

+ p
�

)(h
�

,
�

+ h
�

+ h
�

),

h
�

= (h
�

,
�

+ h
�

)(h
�

,
�

+ h
�

+ h
�

).
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From Example 6.9 it can be computed that

p
�

,
� − x2 = 0,

2p2� + (3x2 − 1)p
�

+ x4 = 0,

2p2� + (3x2 − 1)p
�

+ x4 = 0.

Combining these with the system above and solving as usual shows that

x2f4 + (x3 + 3x2 + x− 1)f 3 + (3x3 + 6x2 − x)f2 + (3x3 + 7x2 − x− 1)f + x3 + 3x2 + x = 0,

and the first few terms of the sequence are 1, 2, 4, 10, 24, 64, . . . (sequence A121704 of [110]).

6.7 Cyclic Closures

In order to demonstrate that the framework developed here can be applied in less obvious

situations, we present an application which differs in flavour from our previous examples.

The permutation τ is said to be a cyclic rotation (or simply, rotation) of the permutation π,

both of length n, if there is an i ∈ [n] for which τ = π(i + 1) . . . π(n)π(1) . . . π(i). Given a

permutation class C, its cyclic closure, cc(C), consists of all rotations of members of C. This

operation has been studied by the Otago group [1], who proved several basis and enumer-

ation results. The main result of this section, Theorem 6.19, shows that the cyclic closure

of a class with finitely many simple permutations has an algebraic generating function.

The cyclic closure of the class C can be partitioned into orbits of permutations under

rotation. As the orbit of a permutation of length n has precisely n elements, to enumerate

a cyclic closure it suffices to count orbits. We do this by distinguishing one permutation

per orbit and then counting these permutations. For us, a distinguished member of cc(C) is

a permutation π that satisfies:

(1) π ∈ C (this can clearly be achieved, because every orbit in cc(C) contains at least one

element of C) and

(2) among all permutations in its orbit satisfying (1), π is the one in which the entry 1

lies furthest to the left.
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For example, one orbit in cc(Av(132)) is

12534, 41253, 34125, 53412, 25341.

Only two of these permutations avoid 132, 34125 and 53412. Since the entry 1 lies further

to the left in 34125, this is the distinguished permutation of its orbit.

Our goal is to show that the property of distinction lies in a finite query-complete set

of properties. We begin by offering a different viewpoint in which instead of rotating per-

mutations we divide them into two parts. A divided permutation is a permutation equipped

with a divider |, i.e., π1|π2, and we refer to π1|π2 as a division of the concatenation π1π2.

We say that the divided permutation σ1|σ2 is contained in the divided permutation π1|π2 if

π1π2 contains a subsequence order isomorphic to σ1σ2 in which the entries corresponding

to σ1 come from π1 and the entries corresponding to σ2 come from π2. For example, 513|42
contains 32|1 because of the subsequence 532, but 32|1 is not contained in 51|342.

Suppose now that we are given a permutation π ∈ C = Av(B) and we wish to decide

if π is a distinguished member of cc(C). According to (2) above, we need to check all

rotations of π in which the 1 lies further to the left. Instead, let us consider all divisions

π1|π2 of π in which π1 is nonempty and π2 contains the entry 1, thinking of such a division

as corresponding to the rotation π2π1. For π to be distinguished, each of these divisions

must contain β2|β1 for some β1β2 ∈ B, because that will imply that the corresponding

rotation contains β1β2 and thus fails to lie in C.

For a set of divided permutations ∆, let us therefore define the property DP1(∆) to

consist of all permutations π for which every division π1|π2 where π1 is nonempty and the

1 lies in π2 contains at least one of the divided permutations in ∆. Our set of distinguished

permutations for cc(C) will then consist of those permutations from C which satisfy

DP1({β2|β1 : β1β2 ∈ B}).

We also need a similar family: DP (∆) consists of all permutations π for which every divi-

sion π1|π2 of π in which π1 is nonempty contains at least one of the divided permutations

in ∆. (Note that we allow π2 to be empty.)
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Lemma 6.18. For any finite set B of permutations, the property DP1({β2|β1 : β1β2 ∈ B}) lies in

a finite query-complete set of properties.

Proof. The finite query-complete set we take consists of

{Av(δ) : δ ≤ β for some β ∈ B}

and the properties DP (∆) and DP1(∆) for all ∆ ⊂ {δ2|δ1 : δ1δ2 ≤ β for some β ∈ B}.
Let π = σ[α1, . . . , αm]. Propositions 6.3 and 6.5 show that the Av properties form a

query-complete set, so it suffices to prove that membership in the DP and DP1 can be

decided based on σ and which of these properties each αi satisfies. Since these properties

are very similar, we consider only the DP1(∆) case.

Suppose that σ(`) = 1, so that the entry 1 in π occurs in its σ(`) interval. First, for each

k < `, we need to consider divisions of π which slice its σ(k) interval (or slice between

this interval and the next). As in the proof of Proposition 6.5 we consider lenient inflations

(inflations in which intervals are allowed to be empty), although we now insist that the

divider occur in the kth interval of the lenient inflations (we allow that interval to contain

the divider alone). List all such lenient inflations of all divided permutations in ∆ as

σ[γ
(1)
1 , . . . , γ(1)

m ], . . . , σ[γ
(t)
1 , . . . , γ(t)

m ].

We need to determine whether every division of π which slices its σ(k) interval contains

one of these lenient inflations. If for some s ∈ [t] and j 6= k, αj does not contain γ
(s)
j (which

can be determined from the Av properties), then none of these divisions of π can contain

that lenient inflation. Remove these infeasible inflations from the list, leaving

σ[γ
(u1)
1 , . . . , γ(u1)

m ], . . . , σ[γ
(uv)
1 , . . . , γ(uv)

m ].

Now a division of π slicing its σ(k) interval contains the ith lenient inflation in this list if

and only if γ
(ui)
k is either a lone divider or is contained (as a divided permutation) in the

resulting, divided αk. Thus every division of π which slices its σ(k) interval contains a

divided permutation from ∆ if and only if

αk ∈ DP ({γ(u1)
k , . . . , γ

(uv)
k }),
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and this property is in our set of properties. The analysis for divisions of π which slice the

σ(`) interval (the block containing the entry 1) is identical, except that DP is replaced by

DP1.

Theorem 6.19. If a permutation class C contains only finitely many simple permutations then its

cyclic closure cc(C) has an algebraic generating function over Q(x).

Proof. Let C = Av(B) contain only finitely many simple permutations, so by Theorem 5.29,

B is finite. Lemma 6.18 the shows that the property DP1({β2|β1 : β1β2 ∈ B}) lies in a finite

query-complete set. Thus the distinguished permutations, which are the permutations in

C that satisfy this property, have an algebraic generating function by Theorem 6.2. Call

this generating function f . Since every orbit of length n permutations in cc(C) contains

n elements, precisely one of which is distinguished, the generating function for cc(C) is

xf ′(x), which is also algebraic.

We conclude the section with an abridged example.

Example 6.20 (The cyclic closure of Av(132)). The distinguished elements for cc(Av(132))

are those that lie in Av(132) and satisfy

DP1({β2|β1 : β1β2 = 132}) = DP1(132|, 32|1, 2|13, |132).

If any division of a permutation contains 132| or |132 then the permutation itself contains

132; since we are only counting 132-avoiding permutations, we may write the generating

function for the distinguished elements as fDP1(32|1,2|13), where fQ denotes the generating

function for the permutations in Av(132) which satisfy every property in Q but may sat-

isfy additional properties. In the other examples we have given the complete system of g

generating functions. Owing to the number of properties involved and the labour neces-

sary for their specification, here we only describe how to compute two of the f generating

functions.

Let us begin with the f
�

,DP1(32|1,2|13) term. Since our only simple permutations are 1,

12, 21, the⊕-indecomposable permutations are 1 and those that can be expressed uniquely
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as 21[α1, α2] where α1 ∈
�

. First consider divisions of 21[α1, α2] which slice α1; for these to

contain either 32|1 or 2|13, the divided α1 must contain either 21|, which can be extended

to 32|1 by including an entry of α2, or 2|13. All such permutations must contain 21, so they

are counted by f
�

,DP (21|,2|13)−f
�

,Av(21),DP (21|,2|13). Now observe that the divisions which

slice α2 before its entry 1 necessarily contain a copy of 32|1 where the ‘3’ comes from α1

and the ‘2’ comes from an entry of α2 preceding 1 (if there is no such entry, then none of

these divisions need checking), and so every 132-avoiding permutation may serve as α2.

Thus we have

f
�

,DP1(32|1,2|13) = x +
(

f
�

,DP (21|,2|13) − f
�

,Av(21),DP (21|,2|13)

)

f.

This leaves us to determine f
�

,DP (21|,2|13). These permutations (except for 1) can be written

uniquely as π = 12[α1, α2] where α1 ∈
�

and as they avoid 132 we have α2 ∈ Av(21). The

divisions slicing α1 must create 21| or 2|13 patterns in π, which will occur if and only if α1 ∈
DP (21|, 2|1). This rules out α1 = 1, so these permutations are counted by f

�
,DP (21|,2|1)−x.

Because α ∈ DP (21|, 2|1), α1 must contain 21, and thus all divisions which slice α2 will

contain 21|. Therefore the only restriction on α2 is that it must avoid 21, giving the equation

f
�

,DP (21|,2|13) = x +
(

f
�

,DP (21|,2|1) − x
)

fAv(21).

Similar reasoning allows one to compute the entire system, which leads to the solution

fDP1(32|1,2|13) =
(1− 2x)(1 − 2x−

√
1− 4x)

2x(1 − x)
.

From this we find that the generating function for cc(Av(132)) is

xf ′
DP1(32|1,2|13) =

1− 4x + 4x2 − 4x3 − (1− 2x)
√

1− 4x

2x(1− x)2
√

1− 4x
,

which agrees with the results of Albert et al. [1]. The first few terms of the sequence are

1, 2, 6, 24, 100, . . ..

6.8 Applicability and Application

With the results of the paper now established, we conclude by discussing their use. First,

let us summarise the finite query-complete sets that we have covered in this chapter as a
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corollary of Theorem 6.2.

Corollary 6.21. In a permutation class C with only finitely many simple permutations, the gener-

ating functions for the following sequences are algebraic over Q(x):

• the number of permutations in Cn (this is the result of Albert and Atkinson [2]),

• the number of alternating permutations in Cn,

• the number of even permutations in Cn,

• the number of Dumont permutations of the first kind in Cn,

• the number of permutations in Cn avoiding any finite set of blocked or barred permutations,

and

• the number of involutions in Cn.

Moreover, these conditions can be combined in any finite manner desired.

As mentioned previously, Av(132) contains only three simple permutations, so Corol-

lary 6.21 explains, e.g., why the even permutations in Av(132, β) have an algebraic gener-

ating function for every β, first proved in Mansour [83]. Other results in the literature to

which Corollary 6.21 applies appear in [44, 45, 46, 50, 62, 63, 79, 80, 82, 84].

Other reasons for algebraicity. Having finitely many simple permutations is a suffi-

cient condition for a class to possess an algebraic generating function, but it is by no

means necessary. Consider Av(123), which, like Av(132), is enumerated by the Cata-

lan numbers. However, Av(123) contains the infinite sequence of simple permutations

2n− 1, 2n− 3, . . . , 3, 1, 2n, 2n− 2, . . . , 4, 2 (one such permutation is plotted in Figure 1.3 on

page 10). Indeed, every class of the form Av(β) where |β| ≥ 4 contains either this infinite

family or a symmetry of it. Thus our approach cannot be used to derive Bóna’s result [18]

that Av(1342) has an algebraic generating function. Nor can it be used to prove the fact

that, for a surprising number of length 4 permutations β, the β-avoiding involutions are
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counted by the Motzkin numbers, as has been established by numerous researchers includ-

ing Guibert [61], Guibert, Pergola and Pinzani [65], Jaggard [72] and Bousquet-Mélou and

Steingrı́msson [26]. The method also cannot be used to enumerate West-two-stack-sortable

permutations [119].

Derangements. Notably absent from our list of finite query-complete sets in Section 6.4

are derangements, despite the fact that the 132-avoiding derangements are counted by

Fine’s sequence (Robertson, Saracino, and Zeilberger [103]), which has an algebraic gener-

ating function. To see that the set of derangements does not lie in a finite query-complete

set of properties, for α ∈ Sn define D(α) = {α(i) − i : i ∈ [n]}. Then 21[12 · · · j, α] is a

derangement if and only if j /∈ D(α). This shows that α1 and α2 must lie in different sets

of properties whenever D(α1)∩N 6= D(α2)∩N, implying that the set of derangements can

only lie in an infinite query-complete set of properties.

6.8.1 Simple Decomposition Revisited

We have not yet discussed the consequences of the decomposition of simple permutations

for our knowledge of permutation classes. In the next chapter we will cover the problem

of decidability for simple permutations, but this is by no means the only use of the de-

composition. Indeed, our initial motivation was to derive the following theorem, whose

importance has so far been left unspoken:

Theorem 2.2. There is a function f(k) such that every simple permutation of length at least f(k)

contains two simple subsequences, each of length at least k, sharing at most two entries.

This result helps us in the enumeration of certain permutation classes, which we will

introduce by means of a motivational example. As we have seen, the simple permutations

of the class Av(132) are precisely 1, 12 and 21. Theorems 2.2 and 6.1 (on Page 111) combine

to give a short proof of the following result.

Theorem 6.22 (Bóna [19]; Mansour and Vainshtein [85]). For every r, the class of all permuta-

tions containing at most r copies of 132 has an algebraic generating function.
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For example, the generating function in the r = 1 case is

1−
√

1− 4x

2x
+

8x3

√
1− 4x

(

1 +
√

1− 4x
)3 ,

due, originally, to Bóna [20].

Proof of Theorem 6.22 via Theorems 2.2 and 6.1. We wish to show that only finitely many

simple permutations contain at most r copies of 132, or in other words, that there is a

function g(r) so that every simple permutation of length at least g(r) contains more than

r copies of 132. Since the only simple permutations in Av(132) are 1, 12 and 21, we may

take g(0) = 3. We now proceed by induction, setting g(r) = f(g(br/2c)), where f is the

function from Theorem 2.2. By that theorem, every simple permutation π of length at least

g(r) contains two simple subsequences of length at least g(br/2c). By induction each of

these simple subsequences contains more than br/2c copies of 132. Moreover, because

these simple subsequences share at most two entries, their copies of 132 are distinct, and

thus π contains more than r copies of 132, as desired.

Indeed, the proof above shows that every permutation class whose members contain

a bounded number of copies of 132 has an algebraic generating function, whereas Theo-

rem 6.22 is concerned only with the entire class of permutations with at most r copies of

132. There is of course nothing special about 132. Denote by Av(β≤r1
1 , β≤r2

2 , . . . , β≤rk

k ) the

class of permutations that have at most r1 copies of β1, at most r2 copies of β2, and so on.4

The proof just given can be adapted to prove the following result.

Corollary 6.23. If the class Av(β1, β2, . . . , βk) contains only finitely many simple permutations

then for all choices of nonnegative integers r1, r2, . . . , rk, the class Av(β≤r1
1 , β≤r2

2 , . . . , β≤rk

k ) also

contains only finitely many simple permutations.

The largest permutation class whose only simple permutations are 1, 12, and 21 is of

course the class of separable permutations, Av(2413, 3142). Thus as another instance of
4That this is a permutation class is clear, although finding its basis may be less obvious. An easy argument

shows that the basis elements of this class have length at most max{(ri + 1)|βi| : i ∈ [k]}; see Atkinson [7]
for the details. One such computation: Av(132≤1) = Av(1243, 1342, 1423, 1432, 2143, 35142, 354162, 461325,
465132).



134 6 ALGEBRAIC GENERATING FUNCTIONS

Corollary 6.23, we have the following.

Corollary 6.24. For all r and s, every subclass of Av(2413≤r , 3142≤s) contains only finitely many

simple permutations and thus has an algebraic generating function.

This chapter has extended the scope of Theorem 6.1 to finite query-complete sets of

properties, and we may combine Corollary 6.21 with Theorem 2.2 to give easy proofs of

several results in the literature. For example, the even permutations in Av(132≤r) are enu-

merated by an algebraic generating function, due originally to Mansour [81]. (Note that,

when counting even permutations, unlike when counting all permutations, symmetry con-

siderations reduce us to three cases of length three permutations – 123, 132, and 231 – not

two, and thus there is another result we can state at this point: the even permutations in

Av(231≤r) have an algebraic generating function for all r, although this result seems to

have escaped print.5)

Other results to which Theorem 2.2 and Corollary 6.21 may be applied can be found

in [35, 80, 86].

6.8.2 Linear Time Membership

Out of some of the machinery developed in this chapter comes an indication that, given a

permutation class C containing only finitely many simple permutations, it may be decided

in linear time whether an arbitrary permutation π of length n lies in C. The approach

relies first and foremost on the fact that we may compute the substitution decomposition

of any permutation in linear time, as per Chapter 4. We begin by first performing some

precomputations specific to the class C, all of which may be done essentially in constant

time:

• Compute Si(C), the number of simple permutations in C.
5We cannot say anything about the other case, Av(123), since it contains infinitely many simple permu-

tations, and hence so does Av(123≤r). The class Av(123≤1) was, however, counted by Noonan [99], while
Av(123≤2) was counted by Fulmek [57], proving a conjecture of Noonan and Zeilberger [100]. No results for
larger values are known, although Fulmek conjectures formulas for r = 3 and r = 4, and that Av(123≤r) has
an algebraic generating function for all r.
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• Compute the basis B of C, noting that permutations in B can be no longer than

max
σ∈Si(C)

|σ|+ 2 by the Schmerl-Trotter Theorem 2.1.

• For every β either lying in B or contained in a permutation lying in B, list all expres-

sions of β as a lenient inflation of each σ ∈ Si(C).

(Recall that a lenient inflation is an inflation σ[γ1, . . . , γm] in which the γis are allowed to

be empty.)

With these precomputations performed, we now take our candidate permutation π of

length n and compute its substitution decomposition, π = σ[α1, . . . , αm]. Now, after first

trivially checking that the skeleton σ lies in C, we look at all the expressions of each β ∈ B

as lenient inflations of σ. Note that if β ≤ π, there must exist an expression of β as a lenient

inflation β = σ[γ1, . . . , γm] so that γi ≤ αi for every i = 1, . . . ,m.

Thus, taking each lenient inflation β = σ[γ1, . . . , γm] in turn, we look recursively at each

block, testing to see if γi ≤ αi is true. Though this recursion makes the linear-time com-

plexity non-obvious, note that the number of levels of recursion that are required cannot

be more than the maximum depth of the substitution decomposition tree, which itself can-

not have more than 2n nodes. The recursion will eventually reduce the problem to making

only trivial comparisons, each of which is immediately answerable in constant time. The

author would be keen to see a more rigourous treatment of this problem, and indeed an

implementation of any subsequent algorithm.





CHAPTER 7

DECIDABILITY AND UNAVOIDABLE
SUBSTRUCTURES

7.1 Introduction

HAVING DEFINED permutation classes and observed in Section 5.4 and Chapter 6 how

simple permutations control many of their properties, it seems essential now to ask

which finitely based classes contain only finitely many simple permutations. Our decom-

position of simple permutations and identification of their unavoidable substructures in

Chapter 2 puts us in a strong position to establish whether this question is decidable. Our

main result establishes that this can be done algorithmically:

Theorem 7.1. It is possible to decide if a permutation class given by a finite basis contains infinitely

many simple permutations.

We first begin by reminding the reader of pin sequences, as defined in Chapter 2. In

particular, here we will be constructing pin sequences from scratch, before studying their

possible subsequences. As we saw in Section 2.4, this treatment requires us to consider a

slight variant of the original definition of pin sequences, namely that a proper pin sequence

p1, . . . , pm must satisfy the following two conditions:

• Separation condition: pi+1 must separate pi from {p1, . . . , pi−1}. That is, pi+1 must lie

horizontally or vertically between rect(p1, . . . , pi−1) and pi.

• Externality condition: pi+1 must lie outside rect(p1, . . . , pi).

137
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p1

p2

p3

p4

p5

p6

p7

x

y

Figure 7.1: The points p1, . . . , p7 form a proper pin sequence, and rect(p1, . . . , p7) is denoted by the
grey box. The point x satisfies the externality and separation conditions for this pin sequence and
thus could be chosen as p8; y, however, fails the separation condition.

(See Figure 7.1 for an illustration.) To consider subsequences of a given pin sequence, as

we must, we refer the reader to the discussion on pin words given in Section 2.4.

Proper pin sequences are intimately connected with simple permutations. In one di-

rection, we recall:

Theorem 2.7. If p1, . . . , pm is a proper pin sequence of length m ≥ 5 then one of the sets of

points {p1, . . . , pm}, {p1, . . . , pm} \ {p1}, or {p1, . . . , pm} \ {p2} is order isomorphic to a simple

permutation.

While proper pin sequences are simple or nearly so, we also saw that there were other

“fundamental” types of simple permutation – in particular, we recall the definitions of

parallel and wedge alternations. Whereas every parallel alternation contains a long simple

permutation (to form this simple permutation we need, at worst, to remove two points),

wedge alternations do not. However, there are two different ways to add a single point to

a wedge alternation to form simple permutations (called wedge simple permutations of types

1 and 2). These three families are plotted in Figure 7.2.

We recall that these families of permutations capture, in a sense, the diversity of simple

permutations:
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Figure 7.2: From left to right: a parallel alternation, a wedge simple permutation of type 1, and a
wedge simple permutation of type 2.

Theorem 2.14. Every sufficiently long simple permutation contains either a proper pin sequence

of length at least k, a parallel alternation of length at least k, or wedge simple permutation of length

at least k.

Theorems 2.7 and 2.14 show that Theorem 7.1 will follow if we can decide when a

class has arbitrarily long parallel alternations, wedge simple permutations and proper pin

sequences. The first two of these considerations are straightforward, and form the subject

of the next section, while the question for proper pin sequences requires a little more work.

Essentially, the problem of deciding whether a permutation class contains arbitrarily long

pin sequences is equivalent to the problem of determining whether a permutation class

admits arbitrarily long pin words. Thus converting the problem to one of languages, we

will review in Section 7.3 the required results from formal language theory before going

on to prove in Section 7.4 that the language of pins is regular, and hence the problem is

decidable.

7.2 The Easy Decisions

We begin by describing how to decide if a permutation class given by a finite basis contains

arbitrarily long parallel alternations or wedge simple permutations. Consider first the case

of parallel alternations, oriented \\, as in Figure 7.2. These alternations nearly form a

chain in the pattern-containment order; precisely, there are two such parallel alternations

of each length, and each of these contains a parallel alternation with one fewer points and
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all shorter parallel alternations of the same orientation. Thus if the permutation class C
has a basis element contained in any of these parallel alternations, it will contain only

finitely many of them. Conversely, if C has no such basis element, it will contain all of

these alternations. Therefore we need to characterise the permutations that are contained

in any parallel alternation. This, however, is done simply by using the juxtaposition, as

defined in Subsection 5.1.2. The basis of the juxtaposition of two classes is decidable by

Proposition 5.5 (Page 87), and this is all we need to solve the parallel alternation decision

problem.

Proposition 7.2. The permutation class Av(B) contains only finitely many parallel alternations

if and only if B contains an element of every symmetry of the class Av(123, 2413, 3412).

Proof. The set of permutations that are contained in at least one (and thus, all but finitely

many) parallel alternation(s) oriented \\ is

[

Av(12) Av(12)
]

= Av(123, 2413, 3412),

as desired.

Like parallel alternations, the wedge simple permutations of a given type and orien-

tation also nearly form a chain in the pattern-containment order, and thus we are able to

take much the same approach with them.

Proposition 7.3. The permutation class Av(B) contains only finitely many wedge simple permu-

tations of type 1 if and only if B contains an element of every symmetry of the class

Av(1243, 1324, 1423, 1432, 2431, 3124, 4123, 4132, 4231, 4312).

Proof. The wedge simple permutations of type 1 that are oriented <, as in Figure 7.2, are

contained in
[ [

Av(21)
Av(12)

]

{1}
]

=
[

Av(132, 312) Av(12, 21)
]

= Av(1324, 1423, 1432, 2431, 3124, 4123, 4132, 4231).
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(a) (b) (c)

(d) (e) (f)

(g)
(h) (i)

(j)

i j n

π(n)

π(j)

π(i)

Figure 7.3: The situation in the proof of Proposition 7.3.

It is easy to see that these wedge simple permutations also avoid 1243 and 4312, and thus

they are contained in the class stated in the proposition, which we call D.

Now take a permutation π ∈ D of length n. We would like to show that π is con-

tained in a wedge simple permutation. If π ∈
[

Av(21)
Av(12)

]

then π is clearly contained in a

wedge simple permutation, so suppose this is not the case. Thus π(1) · · · π(n− 1) is order

isomorphic to a permutation in
[

Av(21)
Av(12)

]

, and it suffices to show that:

• the entries of π above π(n) are increasing, and

• the entries of π below π(n) are decreasing.

We prove the first of these items; the second then follows by symmetry because it can be

observed from its basis that D is invariant under complementation, i.e., if the length n

permutation π lies in D then so does the complement of π. Suppose to the contrary that

there is a descent above π(n). Thus there are indices i < j < n such that π(i) > π(j) > π(n).

Choose these two indices to be lexicographically minimal with this property. There must

be other entries of π as otherwise π is simply 321, which lies in the juxtaposition we have

assumed π does not lie in. We now divide the entries above π(n) into 7 regions as shown

in Figure 7.3. About these regions we can state:

• regions (a)–(e) and (i) are empty because π avoids 1432, 4132, 4312, 2431, 4231, and

4231, respectively;
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• the points in region (f) are decreasing because π avoids 4231;

• regions (g) and (h) are empty by the minimality of i and j, respectively;

• the points in region (j) are increasing because π avoids 2431.

This establishes that π lies in
[

Av(21)
Av(12)

]

, a contradiction that completes the proof.

Proposition 7.4. The permutation class Av(B) contains only finitely many wedge simple permu-

tations of type 2 if and only if B contains an element of every symmetry of the class

Av(2134, 2143, 3124, 3142, 3241, 3412, 4123, 4132, 4231, 4312).

Proof. Let D denote the class in the statement of the proposition. It is clear that the wedge

simple permutations of type 2 that are oriented Λ, as in Figure 7.2, lie in D, and so it

remains to show that every permutation π ∈ D is contained in one of these wedge simple

permutations. Thus π is contained in

[

Av(21) Av(12) {1}
]

=
[

Av(213, 312) Av(12, 21)
]

= Av(2134, 2143, 3124, 3142, 3241, 4123, 4132, 4231),

and so in particular, the permutation obtained by removing the rightmost element of π,

say π(n), is contained in
[

Av(21) Av(12)
]

. It suffices to show that π(n) is n or n − 1.

Suppose, to the contrary, that there are at least two entries of π above π(n). Then we have

one of the two situations depicted in Figure 7.4.

Again, we use the basis elements of D to derive the following about the labelled re-

gions:

• regions (a.a), (a.c), and (b.a) are empty because π avoids 4312, 4231, and 3412, respec-

tively;

• the points in regions (a.b) and (b.b) are decreasing because π avoids 4231.

These observations, combined with the fact that the permutation obtained from π by re-

moving π(n) lies in
[

Av(21) Av(12)
]

shows that π itself lies in
[

Av(21) Av(12)
]

,
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(a.a)

(a.b)

(a.c)

i j n

π(n)

π(j)

n

(b.a)

(b.b)

i j n

π(n)

π(i)

n

Figure 7.4: The two situations in the proof of Proposition 7.4.

and so π is contained in one of the desired wedge simple permutations, completing the

proof.

7.3 Review of Regular Languages and Automata

The classic results mentioned here are covered more comprehensively in many texts, for

example, Hopcroft, Motwani, and Ullman [69], so we give only the barest details.

A nondeterministic finite automaton over the alphabet A consists of a set S of states, one

of which is designated the initial state, a transition function δ from S × (A ∪ {ε}) into the

power set of S, and a subset of S designated as accept states. The transition diagram for

this automaton is a directed graph on the vertices S, with an arc from r to s labelled by

a precisely if s ∈ δ(r, a). The initial state is designated by an inward-pointing arrow. An

automaton accepts the word w1 · · ·wm if there is a walk from the initial state to an accept

state whose arcs are labelled (in order) by w1, . . . , wm; the set of all such words is the

language accepted by the automaton. For example, Figure 7.5 shows the transition diagram

for the automaton that accepts strict pin words (in this automaton, all states are accept

states).

A language that is accepted by a finite automaton is called recognisable. By Kleene’s
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V H
L, R

U,D

1,
2,

3,
4 1, 2, 3, 4

Figure 7.5: The automaton that accepts the language of strict pin words (V and H are accept states).

theorem, the recognisable languages are precisely the regular languages,1 and they have

numerous closure properties, of which we use two: the union of two regular languages

and the set-theoretic difference of two regular languages are also regular languages. The

other result we need about regular languages is below.

Proposition 7.5. It can be decided whether a regular language given by a finite accepting automa-

ton is infinite.

Sketch of proof. A regular language is infinite if and only if one can find a walk in the given

accepting automaton that begins at the initial state, contains a directed cycle, and ends at

an accept state.

A finite transducer is a finite automaton that can both read and write. Transducers also

have states, S, one of which is designated the initial state and several may be designated

accept states. The transition function for a transducer over the alphabet A is a map from

S× (A∪{ε})× (A∪{ε}) into the power set of A. In the transition diagram of a transducer

we label arcs by pairs, so the transition r
a,b−→ s stands for “read a, write b”. Empty inputs

and outputs are allowed, both designated by ε, e.g., r ε,b−→ s means “read nothing, write b”.

A word w ∈ A∗ is produced from the word u ∈ A∗ by the transducer T if there is a walk

s1
u1,w1−→ s2

u2,w2−→ s3 · · · um,wm−→ sm+1

1The reader unfamiliar with formal languages is welcomed to take this as the definition of regular lan-
guages.
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in the transition diagram of T beginning at the initial state, ending at an accept state, and

such that u = u1 · · · um and w = w1 · · ·wm (note that these uis and wis are allowed to be ε).

We denote the set of words that the transducer T produces from the set of input words L
by T (L).

Proposition 7.6. If L is a regular language and T is a finite transducer then T (L) is also regular,

and a finite accepting automaton for T (L) can be effectively constructed.

Sketch of proof. Let M denote a finite accepting automaton for L. Suppose that the states

of M are R and the states of T are S. The states of an accepting automaton for T (L) are

then R × S, where there is a transition (r1, s1)
b−→ (r2, s2) whenever there are transitions

r1
a−→ r2 and s1

a,b−→ s2 in M and T , respectively.

7.4 Decidability

We are now in a position to prove our main result. We wish to decide whether the finitely

based class Av(B) contains only finitely many simple permutations. Propositions 7.2–

7.4 show how to decide if Av(B) contains arbitrarily long parallel alternations or wedge

simple permutations, so by Theorem 2.14 (repeated in this chapter on page 138) it suffices

to decide whether Av(B) contains arbitrarily long proper pin sequences.

We first recall two lemmas concerning pin words that we will require. The first shows

that we may convert every proper pin sequence to a strict pin word. The proof is given on

Page 37.

Lemma 2.15. Every proper pin sequence corresponds to a strict pin word.

The other lemma we must recall shows us how to relate subsequences of proper pin

sequences with pin words, and vice versa. The proof may be found on Page 38.

Lemma 2.16. If the pin word w corresponds to the permutation π and σ ≤ π then there is a pin

word u corresponding to σ with u � w. Conversely, if u � w then the permutation corresponding

to u is contained in the permutation corresponding to w.
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Now, consider a permutation π that is order isomorphic to a proper pin sequence and

thus, by Lemma 2.15, corresponds to at least one strict pin word, say w. If π 6∈ Av(B) then

π ≥ β for some β ∈ B. By Lemma 2.16, β corresponds to a pin word u � w. Conversely, if

w � u for some u corresponding to β ∈ B, then Lemma 2.16 shows that π ≥ β. Therefore

the set

{strict pin words w : w � u for some u corresponding to a β ∈ B}

consists of all strict pin words which represent permutations not in Av(B), so by removing

this set from the regular language of all strict pin words we obtain the language of all strict

pin words corresponding to permutations in Av(B). In the upcoming lemma, we prove

that for any pin word u, the set {strict pin words w : w � u} forms a regular language, and

thus the language of strict pin words in Av(B) is regular. It remains only to check if this

language is finite or infinite, which can be determined by Proposition 7.5.

Lemma 7.7. For any pin word u, the set {strict pin words w : w � u} forms a regular language,

and a finite accepting automaton for this language can be effectively constructed.

Proof. Let T denote the transducer in Figure 7.6. We claim that a strict pin word w lies in

T (u) if and only if w � u. The lemma then follows by intersecting T (u) with the regular

language of all strict pin words.

We begin by noting several prominent features of T :

(T1) Every transition writes a symbol.

(T2) Other than the start state S, the automaton is divided into two parts, the “fabrication”

states Fi and the “copy” states Ci.

(T3) Every transition to a fabrication state has ε input.

(T4) Every transition from a fabrication state to a copy state reads a numeral and writes

a direction, and except for the transitions from S, these are the only transitions that

read a numeral.
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Figure 7.6: The transducer that produces all strict pin words containing the input pin word.
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(T5) All transitions between copy states read a direction and write the same direction,

these are the only transitions that read a direction, and there is such a transition for

every copy state and every direction.

(T6) From every fabrication and copy state, each direction can be output via a transition

to a fabrication state with input ε.

(T7) The subscripts of the fabrication and copy states indicate quadrants: if the strict pin

word w1 · · ·wn, corresponding to the pin sequence p1, . . . , pn, has just been written

by the transducer and the transducer is currently in state Ck or Fk, then pn lies in

quadrant k. Moreover, if the pin word u1 · · · um, corresponding to the pin sequence

q1, . . . , qm, has been read and the transducer currently lies in the copy state Ck, then

qm lies in quadrant k.

(T8) From any state, any copy state can be reached by two transitions, the first being a

transition to a fabrication state; for example: C2
ε,D−→ F3

4,R−→ C4.

First we prove that w � u for every strict pin word w produced from input u by this

transducer. We prove this by induction on the number of strong numeral-led factors in u.

The base case is when u consists of precisely one strong numeral-led factor. Suppose that

the output right before the first letter of u is read is v(1). There are two cases. If v(1) is empty,

then the transducer is currently in state S, and must both read and write the first letter of u,

moving the transducer into state Cu1 . At this point, (T5) shows that the transducer could

continue to transition between copy states, outputting a word w = uv (2) � u. The only

other option available to the transducer (again, by (T5)) is to transition to a fabrication

state, but then (T4) shows that the transducer can never again reach a copy state (because

u has only one numeral), and thus by (T3), it can never finish reading u. In the other

case, where v(1) is nonempty, the transducer lies in a fabrication state by (T4). The next

transition must then by (T4) be into a copy state, and (T7) guarantees that the letter written

corresponds to a point in quadrant u1. The same argument as in the previous case shows

that the transducer is now confined to copy states until the rest of u has been read, and
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thus the transducer will output v(1)w(1)v(2) � u.

Now suppose that u decomposes into j ≥ 2 strong numeral-led factors as u(1) · · · u(j).

By induction, at the point where u(j−1) has just been read, the transducer has output a

word v(1)w(1) · · · v(j−1)w(j−1) and lies in a copy state. Since the first letter of u(j) is a nu-

meral, the transducer is forced by (T4) to transition to a fabrication state, and this transition

will write but not read by (T3). The transducer can then transition freely between fabrica-

tion states. Let us suppose that v(1)w(1) · · · v(j−1)w(j−1)v(j) has been output at the moment

just before the transducer begins reading u(j). As in our second base case above, the trans-

ducer must at this point transition to a copy state by (T4), which it will do by reading the

numeral that begins u(j) and writing a letter that — by (T7) — corresponds to a point in

this quadrant. The situation is then analogous to the base case, and the transducer will

output v(1)w(1) · · · v(j−1)w(j−1)v(j)w(j)v(j+1) � u.

Now we need to verify that the transducer produces every strict pin word w with w �
u. Break u into its strong numeral-led factors u(1) · · · u(j) and suppose that the factorisation

w = v(1)w(1) · · · v(j−1)w(j−1)v(j)w(j)v(j+1) satisfies (O1) and (O2). If v(1) is nonempty then

it can be output immediately by a sequence of transitions to fabrication states by (T6); by

(O2) and (T7), the first letter of w(1) (which must be a direction because w is a strict pin

word) can then be output by transitioning to a copy state, from which (T5) shows that the

rest of u(1) can be read and the rest of w(1) can be written. If v(1) is empty then u(1) = w(1)

by (O1). The transducer can, by (T5), read u(1) and write w(1) by transitioning from S to

a copy state and then transitioning between copy states. Because w is a strict pin word,

(O2) shows that v(2) must be nonempty, and (T6) shows that v(2) can be output without

reading any more letters of u. We then must output w(2) whilst reading u(2). The only

possible obstacle would be reaching the correct copy state, but (T8) guarantees that this

can be done. The rest of u can be read, and the rest of w written, in the same fashion.

The proof of Theorem 7.1 now follows from the discussion at the beginning of the

section.
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7.5 An Easier Sufficient Condition

Though we have now seen a complete answer to the decidability problem, putting this

method into practical use may, in some cases, be more work than is actually required. We

can in fact derive a much easier-to-check set of conditions by recalling the unavoidable

substructures result of Chapter 2:

Theorem 2.17. Every sufficiently long simple permutation contains an alternation of length k or

an oscillation of length k.

Thus a permutation class without arbitrarily long alternations or arbitrarily long oscil-

lations necessarily contains only finitely many simple permutations. First note that these

strong conditions are not necessary; for example, the juxtaposition
[

Av(21) Av(12)
]

contains arbitrarily long (wedge) alternations, yet the only simple permutations in this

class are 1, 12, and 21. The work of Albert, Linton, and Ruškuc [5] also attests to the

strength of these conditions; they prove that classes without long alternations have ratio-

nal generating functions.

As we have already shown how to decide if Av(B) contains arbitrarily long alterna-

tions, to convert Theorem 2.17 from a theorem about unavoidable substructures to an eas-

ily checked sufficient condition for containing only finitely many simple permutations we

need to decide if Av(B) contains arbitrarily long oscillations. As with the parallel and

wedge alternations from Section 7.2, the increasing oscillations nearly form a chain in the

pattern-containment order, so we need only compute the class of permutations that are

contained in some increasing oscillation, or equivalently, that are order isomorphic to a

subset of the increasing oscillating sequence. This computation is given without proof in

Murphy’s thesis [97]. Here we provide the proof.

Proposition 7.8. The class of all permutations contained in all but finitely many increasing oscil-

lations is Av(321, 2341, 3412, 4123).

Proof. It is straightforward to see that every oscillation avoids 321, 2341, 3412, and 4123,

so it suffices to show that every permutation avoiding this quartet is contained in the in-
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creasing oscillation sequence. We use the rank encoding2 for this. The rank encoding of the

permutation π of length n is the word d(π) = d1 · · · dn where

di = |{j : j > i and π(j) < π(i)}|,

i.e., di is the number of points below and to the right of π(i). It is easy to verify that a

permutation can be reconstructed from its rank encoding. Now consider the rank encoding

for some π ∈ Av(321, 2341, 3412, 4123). Routinely, one may check:

• d(π) ∈ {0, 1, 2}∗ ,

• d(π) does not end in 1, 2, or 20,

• d(π) does not contain 21, 22, 111, 112, 2011, or 2012 factors.

We now describe how to embed a permutation with rank encoding satisfying these rules

into the increasing oscillating sequence. Suppose that we have embedded π(1), . . . , π(i−1).

If di ≥ 1 then we embed π(i) as the next even entry in the sequence. If di = 0 then we

embed π(i) as the next odd entry if it ends a 20, 110, or 2010 factor, and as the second

next odd entry otherwise. See Figure 7.7 for an example. It remains to show that this is

indeed an embedding of π; to do this it suffices to verify that the number of points of this

embedding below and to the right of our embedding of π(i) is di. This follows from the

rules above.

7.6 Other Contexts.

To the best of our knowledge, no analogue of Theorem 7.1 is known for other relational

structures. If we were to follow the pattern laid down in this thesis, our approach would

be to decompose the simple structures and then establish an algorithmic method to avoid

these structures. We discussed in Section 2.6 some possibilities to generalise the decom-

position methods of Chapter 2, and saw in particular the problems encountered in the
2We refer the reader to Albert, Atkinson, and Ruškuc [4] for a detailed study of the rank encoding.
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. .
.

Figure 7.7: The filled points show the embedding of 2153647, with rank encoding 1020100, given by
the proof of Proposition 7.8.
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Figure 7.8: The prototype transducer for graphs.

graph case. On the assumption that these difficulties may be overcome (particularly in the

graph case, but perhaps more generally) it seems likely that decidability would most likely

follow. Our approach, therefore, remains furtive.

Determining the Language of Pins in Graphs. Assuming the existing definition from

Section 2.6 for pin sequences in the graph case is nearly correct, it will actually turn out to

be somewhat easier to construct an analogue to Lemma 7.7. To begin with, recall that the al-

phabet for the language of pins in graphs consists of only four letters, namely {L,A, I, E},
where L corresponds to adding a leaf, A an antileaf (connected to all but the last pin), I
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Figure 7.9: The basis elements of length 6 for the pin class (up to symmetry).

an independent point (i.e. connected to nothing) and E a point connected to everything.

The transducer producing all strict pin words for graphs is thus much smaller than the

permutation case of Figure 7.6, and a prototype is given in Figure 7.8. Note that since we

do not have the issue of quadrants in graphs, there is only one fabrication state F and one

copy state C .

7.7 The Pin Class

We close with a final, capricious, thought. The set of permutations that correspond to strict

pin words forms a permutation class by Lemma 2.16. As this class arises from words, it

has a distinctly “regular” feel, and thus we offer:

Conjecture 7.9. The class of permutations corresponding to pin words has a rational generating

function.

The enumeration of this class begins 1, 2, 6, 24, 120, 664, 3596, 19004. It is not even ob-

vious that this “pin class” has a finite basis. Its shortest basis elements are of length 6,

and there are 56 of these (see Figure 7.9). The class also has 220 basis elements of length

7. The class of course contains arbitrarily long simple permutations, and it is trivially not
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partially well ordered – the members of the variant of the increasing oscillating antichain

from Example 5.14 (Page 97) may be encoded by words of the form 122RURU · · ·RUL.



CHAPTER 8

THE WREATH PRODUCT

WE NOW CONSIDER a somewhat different problem, following the classic problem of

determining the basis of a permutation class defined in one of the ways described

in Section 5.1. As we mentioned there, the question for the wreath product of two permuta-

tion classes is known in only a few specific cases. Atkinson [12] shows that for any finitely

based class C, the wreath product C oAv(21) is finitely based, but that Av(21) oAv(321654) is

not finitely based. There remains to be seen precisely what distinguishes these two cases.

Our aim in this chapter is to find an answer to that question. In particular, we establish the

following:

Theorem 8.1. For any finitely based class D not admitting arbitrarily long pin sequences, the

wreath product C o D is finitely based for all finitely based classes C.

The approach is constructive, and will rely on our knowledge of the substitution de-

composition learnt from Chapter 1, and our results concerning pin sequences from Chap-

ter 2. We first introduce D-profiles, which give us the ability to decompose permutations

arising in wreath products into components belonging to the two original classes. For a

permutation not arising in such a wreath product, we prove the existence of a subsequence

order isomorphic to a basis element of the class C. Moreover, there is a basis element of D
lying within the “minimal block” defined by any two points of this subsequence. It is then

a matter of using these considerations to show that, when the class D admits only finite

pin sequences, the minimal elements not in the wreath product have bounded size.

155
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Our secondary aim, arising as a result of the above considerations, is to exhibit a num-

ber of classes of the form D = Av(α) for |α| ≤ 3, or D = Av(α, β) with |α| ≤ 4, |β| ≤ 4

which do not satisfy Theorem 8.1, and to demonstrate how an infinitely based wreath

product C o D can be found in each case.

8.1 D-Profiles

We need to be able to know when a given permutation lies in the wreath product of two

permutation classes. This could be done by inspecting all possible decompositions and

checking for membership of the original classes, but this is liable to be computationally

intensive. Instead, we would prefer only to check a single decomposition, from which

membership or otherwise of the wreath product is immediately obvious.

The profile of a permutation π is the unique permutation obtained by contracting every

maximal consecutive increasing sequence in π into a single point [7]. For example, the

profile of 3415672 is 3142 because of the segments 34, 1, 567 and 2.

The notion of a “D-profile” connects this idea with the definition of the substitution

decomposition π = σ[π1, . . . , πm]. We want the D-profile of π to be the shortest possible

deflation of π, given that we may only deflate by elements from the class D. However, this

is not clearly well-defined, so before we can proceed, we must first introduceD-deflations.

Formally, let D be a permutation class, and π any permutation. Then a D-deflation of π

is a permutation π′ for which π can be expressed as π′[α1, α2, . . . , αk] with α1, α2, . . . , αk ∈
D. For an arbitrary permutation π, there are many different D-deflations. However, the

shortest one is unique, and it is this one that gives rise to the D-profile.

Lemma 8.2. For every closed class D and permutation π, the shortest D-deflation of π is unique.

Proof. We proceed by induction on n = |π|. The case n = 1 is trivial, so now suppose n > 1.

Fix a shortest D-deflation of the permutation π, and label this permutation πD. If π ∈ D
then πD = 1 is unique, so we will assume π /∈ D.

Let σ, of length m ≥ 2, be the skeleton of π, and first consider the case where m ≥ 4,

whereby we have the unique substitution decomposition π = σ[π1, π2, . . . , πm]. By the
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inductive hypothesis, the shortest D-deflations of π1, π2, . . . , πm are unique, and we will

label them πD
1 , πD

2 , . . . , πD
m. We claim that πD = σ[πD

1 , πD
2 , . . . , πD

m]. Consider any other D-

deflation of π, π = π′[α1, α2, . . . , αk]. Since π /∈ D, π′ cannot be trivial, and so σ ≤ π′, and

indeed σ is the skeleton of π′, giving a unique deflation π′ = σ[π′
1, . . . , π

′
m]. Moreover, π′

i

is a D-deflation of πi for all i. Since πD
i is the unique shortest D-deflation, we must have

πD
i ≤ π′

i, which implies πD ≤ π′.

When m = 2, more care is required. In this case π is either sum or skew decomposable,

and without loss of generality we may assume the former. Write π = 12 · · · t[π1, π2, . . . , πt]

where each πi is sum indecomposable. If every πi ∈ D, then any shortest D-deflation of π

will be an increasing permutation of length at most t, and as there is only one increasing

permutation of each length, πD will be unique. So now suppose that there exists at least

one i such that πi /∈ D, so that |πD
i | ≥ 2. Since πi is sum indecomposable, πD

i is also sum

indecomposable. We claim the shortestD-deflation of π will be

πD = (π1 ⊕ · · · ⊕ πi−1)
D ⊕ πD

i ⊕ (πi+1 ⊕ · · · ⊕ πt)
D .

Any otherD-deflation will also have to be written as a direct sum of three permutations in

this way, and by induction each of these will involve the respective shortest D-deflation.

Thus, for any class D and permutation π, the D-profile of π is the unique shortest D-

deflation of π, and is denoted πD. Note that setting D = Av(21), the set of increasing

permutations, returns the original definition of the profile, but if we set D = S , the set of

all permutations, we do not get the substitution decomposition back, as πS = 1 for any

permutation. However, an easy consequence of the above proof is that if π /∈ D, and σ is

the skeleton of π, then σ ≤ πD.

As mentioned at the beginning of this section, our aim with D-profiles is to be able to

to move from the permutations of the wreath product C o D down to the permutations in

the two classes C and D in a single step. Thus although initially we may know very little

about the structure of a permutation in the basis of C o D, by taking its D-profile we should
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be left with a permutation involving a (known) basis element of C. Conversely, we want

to be able to construct basis elements of C o D given only the bases of C and D. These ideas

are encapsulated in the following theorem.

Theorem 8.3. Let C and D be two arbitrary permutation classes. Then π ∈ C o D if and only if

πD ∈ C.

Proof. One direction is immediate. For the converse, since π ∈ C o D, there exists π ′ ∈ C
which is a deflation of π by permutations in D. The proof of Lemma 8.2 then tells us that

πD ≤ π′, completing the proof.

Any expression of the form π = πD[α1, . . . , αk] is called a D-profile decomposition of π,

and the blocks αi are called the D-profile blocks. These blocks are not typically uniquely

defined. For example, the Av(123)-profile of 234615 is 23514, but it can be decomposed

either as 23514[12, 1, 1, 1, 1] or 23514[1, 12, 1, 1, 1]. Thus it will be useful to fix a particularD-

profile decomposition, especially as later we are going to need to know about the structure

of each of the D-profile blocks.

The left-greedy D-profile of π is the decomposition π = πD
λ [λ1, λ2, . . . , λ`] with λi ∈ D for

all i, in which λ1 is first chosen maximally, then λ2, and so on. Each λi is called a left-greedy

D-profile block of π. This yields the usual, unique, D-profile:

Lemma 8.4. For any class D and permutation π, πD = πD
λ .

Proof. Again, we use induction on n = |π|. The base case n = 1 is trivial, so now suppose

n > 1. Assume further that π /∈ D, as otherwise πD = πD
λ = 1 follows immediately. Let

π = πD
λ [λ1, λ2, . . . , λ`] be the left-greedy D-profile of π, let πD[α1, α2, . . . , αk] be any other

D-profile decomposition of π, and let σ[π1, π2, . . . , πm] be the substitution decomposition.

Consider first the case where m = |σ| ≥ 4. By the proof of Lemma 8.2, we have

πD = σ[πD
1 , πD

2 , . . . , πD
m]. A similar argument shows that πD

λ = σ[(π1)
D
λ , (π2)

D
λ , . . . , (πm)Dλ ],

and by induction πD
i = (πi)

D
λ for all i, giving the required result.

When m = 2, π is either sum or skew decomposable, and we may assume the former.

Write π = 12 · · · t[π1, π2, . . . , πt] where each πi is sum indecomposable. In the case where
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every πi ∈ D, both πD and πD
λ will be increasing permutations with k ≤ ` ≤ t. When

using the left-greedy D-profile decomposition, the block λ1 was chosen maximally, and so

α1 ≤ λ1. Then the block λ2 was taken maximally, so the D-profile block α2 cannot extend

further right than the end of λ2, hence α2 ≤ λ1 ⊕ λ2. Continuing in this manner, we see

that, for all i, αi ≤ λ1 ⊕ λ2 ⊕ · · · ⊕ λi, and in particular αk ≤ λ1 ⊕ λ2 ⊕ · · · ⊕ λk. But we

must have k ≤ `, and so k = `. The remaining case is where at least one πi /∈ D. Pick i

to be minimal with this property, and then by the proof of Lemma 8.2,the D-profile breaks

into three pieces,

πD = (π1 ⊕ · · · ⊕ πi−1)
D ⊕ πD

i ⊕ (πi+1 ⊕ · · · ⊕ πt)
D .

A similar argument holds for the left-greedy D-profile, and then by induction each of the

three pieces in the left-greedyD-profile is equal to the corresponding piece in theD-profile.

There is, of course, nothing special about the left-greedy D-profile; it can be seen that

any algorithm to compute aD-profile-like decomposition in which at each stage the blocks

are chosen maximally will yield a D-profile deflation. For our purposes, however, when

required we will always use the left-greedy algorithm.

8.2 The Minimal Block

The primary aim of this section is to be able to tell if any two points in a permutation

belong to the same left-greedy D-profile block, and also a partial converse: given the D-

profile deflation, what can we say about the points “between” two specified points? To

this end, we define a new concept as follows. Let π be any permutation of length n. For

all 1 ≤ i < j ≤ n, the minimal block of π that contains π(i) and π(j), denoted mb(π; i, j), is

the segment of π which forms the shortest interval containing both π(i) and π(j). In other

words, there exists k ≤ i and ` ≥ j − k such that mb(π; i, j) = π(k) · · · π(k + `) forms

an interval but no subsegment of this contains both π(i) and π(j) and forms an interval.



160 8 THE WREATH PRODUCT

Figure 8.1: The minimal block mb(π; 2, 3) in π = 236745981.

For example, if π = 236745981, then the minimal block on π(2) = 3 and π(3) = 6 is

mb(π; 2, 3) = 36745 (See Figure 8.1).

It follows from the observation that the intersection of two intervals itself forms an

interval (see Proposition 1.2 (a)) that the minimal block is always uniquely defined. Before

we can proceed to the main result of this section, we make one further observation.

Lemma 8.5. Let π be any permutation and let i 6= j be any pair of positions in π. Then if

k, ` ∈ mb(π; i, j) with k 6= ` we have

mb(π; k, l) ⊆ mb(π; i, j).

Moreover, if both i and j separate k from ` by position, then mb(π; k, `) = mb(π; i, j).

Proof. That mb(π; k, `) is contained in mb(π; i, j) is obvious. Now suppose i and j separate

k from ` by position, i.e. k ≤ i < j ≤ `. Then mb(π; k, `) is an interval of π containing both

π(i) and π(j). As mb(π; i, j) is minimal with this property, we have mb(π; i, j) ⊆ mb(π; k, `)

and so mb(π; i, j) = mb(π; k, `).

We are now ready to prove our main technical result of this section.

Lemma 8.6. Let D be a permutation class, and let π ∈ Sn be any permutation. Then for any pair

i, j with 1 ≤ i < j ≤ n:

(i) If the permutation order isomorphic to mb(π; i, j) does not lie in D, then π(i) and π(j) lie in

different D-profile blocks.
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(ii) Conversely, if π(ai) and π(aj) are the first symbols of two distinct left greedy D-profile blocks

αi and αj respectively, then the permutation order isomorphic to mb(π; i, j) does not lie in

D.

Proof. (i) By minimality and uniqueness of the minimal block, every block in π containing

both π(i) and π(j) must contain the minimal block mb(π; i, j). Hence every such block

does not lie in D, so cannot be a D-profile block.

(ii) Write π = πD[α1, α2, . . . , αk], and let the sequence π(a1), π(a2), . . . , π(ak) represent

the leading points in π of the left-greedy D-profile blocks α1, α2, . . . , αk . Let αi and αj ,

i < j, be a pair of D-profile blocks. We prove the statement by induction on i.

When i = 1, the block α1 was picked maximally subject to α1 ∈ D. For any j >

1, the minimal block mb(π; a1, aj) strictly contains α1 and then the maximality of α1 is

contradicted unless mb(π; a1, aj) /∈ D.

Suppose now that i > 1, and that mb(π; a`, aj) /∈ D for any ` < i and j > `. The D-

profile block αi was picked maximally to avoid basis elements of D, subject to starting at

symbol π(ai). Consider, for some j > i, the minimal block mb(π; ai, aj), necessarily con-

taining all of αi. If the leftmost point of mb(π; ai, aj) is π(ai), then since αi is the maximal

block lying inDwhich starts at π(ai), we must have mb(π; ai, aj) /∈ D. So now suppose that

mb(π; ai, aj) contains at least one symbol π(h) from π with h < ai. Let the D-profile block

containing π(h) be α`; we claim that α` is completely contained in mb(π; ai, aj). If not,

then part of α` lies outside mb(π; ai, aj) in both position and value, and so the part lying

inside mb(π; ai, aj) itself forms an interval in either the top-left or bottom-left corner of the

minimal block, but yet it contains neither π(ai) nor π(aj), contradicting the minimality of

mb(π; ai, aj). In particular, the first symbol π(a`) of α` is in mb(π; ai, aj), and by Lemma 8.5,

we have mb(π; a`, aj) = mb(π; ai, aj). By the inductive hypothesis mb(π; a`, aj) /∈ D, and

so mb(π; ai, aj) /∈ D.

Using this result, we now know when two points of a permutation will lie in the same

D-profile block, and, more importantly for what follows, we know that a basis element of

D exists in the minimal block of the first symbols of any two D-profile blocks. What we do
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not yet know is how to find it; given such a minimal block, we need a method to search

through the block systematically and locate the points that form this basis element within

a bounded number of steps. Once again it is pin sequences that will provide the solution.

8.3 Pin Sequences and the Wreath Product

For the pin sequences in this chapter, we will revert to considering those that occur within a

given permutation, or, indeed, part of a permutation. Recall that for this purpose a proper

pin sequence uses the separation condition instead of the externality condition, together

with maximality:

• Maximality: each pin must be taken maximally in its direction. For example, a proper

left pin out of rect(p1, p2, . . . , pi−1) must be the left pin slicing rect(p1, p2, . . . , pi−1)

with smallest position.

• Separation: in slicing rect(p1, p2, . . . , pi), the pin pi+1 must lie either horizontally or

vertically between pi and rect(p1, p2, . . . , pi−1).

Also, while we have thus far used pin sequences solely with simple permutations, here

we will need to use them in a more general setting. We cannot, of course, expect the same

results to hold, but we may prove some that are similar for minimal blocks. Recall that, in

a permutation π, a pin sequence p1, p2, . . . , pm is said to be saturated if rect(p1, p2, . . . , pm)

encloses all of π. Whereas in simple permutations any pin sequence may be extended to

one that is saturated, this is not true for arbitrary permutations, but a weaker condition

does hold – we may saturate the minimal block defined on (i, π(i)) and (j, π(j)) if these

points form the first two points of our pin sequence.

To convert a saturated pin sequence to a proper pin sequence, we first had to restrict

our attention towards attaining just one of the boundaries of the permutation. We said that

a pin sequence p1, p2, . . . , pm of π is right-reaching if pm is the rightmost position of π:

Lemma 2.9. For every simple permutation π and pair of points p1 and p2 (unless, trivially, p1 is

the right-most point of π), there is a proper right-reaching pin sequence beginning with p1 and p2.
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We want the same lemma to hold within a minimal block, defined as usual by two

points, which will also form the first two points of our proper pin sequence. In the minimal

block case, right-reaching means that the last pin is the right-most point of the minimal

block, rather than of the whole permutation. Hence:

Lemma 8.7. Let π ∈ Sn be any permutation, and let 1 ≤ i < j ≤ n. Then there exists a proper

pin sequence with starting points p1 = (i, π(i)) and p2 = (j, π(j)) which is right-reaching in

mb(π; i, j).

Proof. In the minimal block mb(π; i, j), there exists a saturated (non-proper) pin sequence

p1, p2, . . . starting from the pins p1 = (i, π(i)) and p2 = (j, π(j)). If there were no such

sequence, then some corner of the minimal block, not including either π(i) or π(j), would

form an interval by itself, contradicting the minimality of mb(π; i, j). Moreover, we may

assume, by removing unnecessary pins and relabelling, that every pin is maximal in its

direction.

The proof then follows the proof in Chapter 2 of Lemma 2.9. Since the pin sequence is

saturated, it includes the rightmost point of π. Label this point pi1 . Next, take the small-

est i2 < i1 such that p1, p2, . . . , pi2 , pi1 is a valid pin sequence, and observe that pi1 sep-

arates pi2 from rect(p1, p2, . . . , pi2−1), as p1, p2, . . . , pi2−1, pi1 is not a valid pin sequence.

Continue in this manner, finding pins pi3 , pi4 , . . . until we reach pim+1 = p2, and then

p1, p2, pim , pim−1 . . . , pi1 is a proper right-reaching pin sequence.

Lemma 2.9 is easily recovered from Lemma 8.7 by setting π to be a simple permutation,

and observing that all minimal blocks in a simple permutation are the whole permutation.

This is, therefore, a true generalisation of that lemma.

We are now ready to prove our main result.

Theorem 8.8. Let D = Av(B) be a finitely based permutation class not admitting arbitrarily long

pin sequences. Then C o D is finitely based for all finitely based classes C = Av(D).

Proof. Let b = maxβ∈B(|β|), d = maxδ∈D(|δ|), and π be any permutation in the basis of C oD.

By Theorem 8.3, we have πD /∈ C, and so there exists some δ ∈ D such that δ ≤ πD. We will
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be done if we can identify a bounded subsequence of π order isomorphic to a permutation

ω, say, for which δ ≤ ωD, as then ωD /∈ C implies ω /∈ C o D, and hence ω = π.

First include in our subsequence of π the set of points order isomorphic to δ with po-

sitions d1, d2, . . . , dk (k = |δ|), chosen so that each π(di) is the leftmost point of a distinct

left greedyD-profile block, and the choice of blocks is also leftmost. For every pair di, di+1,

Lemma 8.6 tells us that the minimal block mb(π; di, di+1) involves some β ∈ B, and we in-

clude one such occurrence of this β in our subsequence. Our aim now is to add a bounded

number of points so that β still lies in the minimal block of the permutation ω on the points

corresponding to π(di) and π(di+1), as then these two points are preserved distinctly in ωD.

We do this by taking a proper right-reaching and a proper left-reaching pin sequence of

mb(π; di, di+1) (which exist by Lemma 8.7), and including them in the subsequence. These

pin sequences are only guaranteed to be bounded when D does not admit arbitrarily long

pin sequences, as then there exists a number N so that every pin sequence of length N + 2

involves some basis element of D.

Thus ωD still involves a subsequence order isomorphic to δ, and |ω| ≤ d+(d−1)(2(N −
1) + b).

We saw in Chapter 7 that it is decidable whether a finitely based class admits arbitrar-

ily long pin sequences or not, and therefore given any pattern class we can tell whether

Theorem 8.8 applies.

8.4 Infinitely Based Examples

For a class D which admits infinite pin sequences, Theorem 8.8 gives us no information on

whether the basis of C o D (here for a specified class C) is finite. However, the proof does

tell us what some of the basis elements look like. A basis element β of a wreath product

C o D is built around a core of points order isomorphic to a basis element of C. To preserve

all the points of this core when taking the D-profile of β (as required by Theorem 8.3),

every minimal block between any two points of the core must involve a basis element of

D. If we can embed arbitrarily long pin sequences in these minimal blocks, β may itself be
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Figure 8.2: The element β5 in the basis of Av(25134) oAv(321).

made arbitrarily long. For example, the class Av(321) admits the increasing oscillating pin

sequence encoded RURURU · · · , and so we have:

Theorem 8.9. Av(25134) o Av(321) is not finitely based.

Proof. We exhibit an infinite antichain generated by repeatedly taking up and right pins

lying in the basis of Av(25134) oAv(321). The first few elements of the antichain are

β1 = 2, 5, 1, 3, 7, 6, 4

β2 = 2, 5, 1, 3, 7, 4, 9, 8, 6

βk = 2, 5, 1, 3, 7, 4 | 9, 6, 11, 8, . . . , 2k + 3, 2k | 2k + 5, 2k + 4, 2k + 2 (k ≥ 3).

Here, as in [9], the | symbol is used only to clarify the structure of the permutation. See

Figure 8.2 for an illustration of a typical member of this antichain. We observe:

(i) The set {βk | k ≥ 1} is an antichain.

(ii) The only occurrence of 321 in each βk is 2k + 5, 2k + 4, 2k + 2.

(iii) The only occurrence of 25134 in each βk is 2, 5, 1, 3, ·, 4, and hence this forms the core.

(iv) Each βk is neither sum nor skew decomposable.

(v) The Av(321)-profile of βk is 2, 5, 1, 3, 7, 4, . . . , 2k + 3, 2k, 2k + 4, 2k + 2 (the only non-

trivial deflation occurs between 2k +5 and 2k +4). In particular, 25134 ≺ β
Av(321)
k for

all k, hence by Theorem 8.3 βk /∈ Av(25134) o Av(321).
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It only remains to show that βk is minimally not in Av(25134) oAv(321). Consider the effect

of removing any symbol j. If j = 2k +5, 2k +4 or 2k +2 then by (ii) this no longer involves

321 so βk − j ∈ Av(321) ⊂ Av(25134) o Av(321). Similarly, if j = 2, 5, 1, 3 or 4 then by (iii)

βk − j no longer has a core, so βk − j ∈ Av(25134) ⊂ Av(25134) oAv(321).

For any other j, βk−j is sum decomposable. Under the Av(321)-profile, the first (lower)

component deflates to a single point, and hence (βk− j)Av(321) ∈ Av(25134). Thus βk− j ∈
Av(25134) oAv(321), completing the proof.

Note that in the above example, the class C = Av(25134) was specifically chosen so

that the basis element 25134 is not contained in the repeated pin sequence used to build

the antichain, but it does lie in the class D. This ensures that the core, 25134, acts as an

anchor at the base of the antichain, but yet the only instance of the basis element 321 is in

the upper anchor.

As a result, for any class D which contains both the infinite pin sequence formed by

alternating between up and right pins, and the permutation 25134, the wreath product

Av(25134) o D will always contain an infinite antichain similar to the one above.

Example 8.10. (i) The classes D = Av(321, 2341) and D = Av(321, 3412) both avoid the

permutation 321 and so the antichain in the proof of Theorem 8.9 lies in the basis of

Av(25134) o D in both cases.

(ii) All of the classes D = Av(α, β) where the pair (α, β) is one of

(4321, 4312), (4321, 4231), (4321, 4213), (4321, 3412) and (4321, 3214)

avoid 4321, and so the antichain with terms

β1 = 2, 5, 1, 3, 8, 7, 6, 4

β2 = 2, 5, 1, 3, 7, 4, 10, 9, 8, 6

βk = 2, 5, 1, 3, 7, 4 | 9, 6, 11, 8, . . . , 2k + 3, 2k | 2k + 6, 2k + 5, 2k + 4, 2k + 2 (k ≥ 3)

lies in the basis of Av(25134) o D in each case.
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Figure 8.3: The element β5 in the basis of Av(25143) oAv(4321, 4123).

(iii) The classes D = Av(4312, 4231), D = Av(4312, 4213) and D = Av(4312, 3421) all

avoid 4312, so swapping the order of the final two points of each βk in case (ii) gives

the required antichain.

Example 8.11. The two classes D = Av(4321, 4123) and D = Av(4312, 4123) both admit

the pin sequence formed by repeatedly taking up and right pins, but do not contain the

permutation 25134, because of the basis element 4123. However, the class C = Av(25143)

may be used instead. In the first case, the antichain is (see Figure 8.3 for an illustration):

β1 = 2, 5, 1, 4, 8, 7, 6, 3

β2 = 2, 5, 1, 4, 7, 3, 10, 9, 8, 6

βk = 2, 5, 1, 4, 7, 3 | 9, 6, 11, 8, . . . , 2k + 3, 2k | 2k + 6, 2k + 5, 2k + 4, 2k + 2 (k ≥ 3).

All the examples so far have admitted the same “up-right” pin sequence, correspond-

ing to variants of the increasing oscillating antichain. Another commonly found infinite

pin sequence is formed by repeating the pattern left, down, right, up,1 and there are (to

within symmetry) two classes of the form D = Av(α, β) with |α| = |β| = 4 which admit

this sequence: D = Av(3412, 2413) and D = Av(3412, 2143). Each one must be handled

separately.

Example 8.12. (i) D = Av(3412, 2413) may be paired with C = Av(31542) to produce
1This repeating pattern is the foundation for the “Widdershins” antichain of [97].
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Figure 8.4: The basis element β3 in Av(31542) oAv(3412, 2413).

the antichain with terms

β1 = 8, 1, 6, 4, 9, 7, 5, 2, 3

βk = 4k + 4, 1, 4k + 2, 4, 4k, 6, . . . 2k + 6, 2k |

2k + 4, 2k + 2, 2k + 7, 2k + 5, 2k + 3 |

2k + 9, 2k + 1, . . . , 4k + 5, 5 | 2, 3 (k ≥ 2).

See Figure 8.4 for an illustration. Note that the occurrence of 3412 in any βk is not

unique, but every occurrence requires the final two symbols 2, 3 of βk, and so these

points still behave in the same way as in previous examples.

(ii) D = Av(3412, 2143) may be paired with C = Av(412563) to produce the antichain

with terms:

β1 = 10, 1, 8, 4, 6, 9, 11, 7, 5, 2, 3

βk = 4k + 6, 1, 4k + 4, 4, 4k + 2, 6, . . . , 2k + 8, 2k |

2k + 6, 2k + 2, 2k + 4, 2k + 7, 2k + 9, 2k + 5, 2k + 3 |

2k + 11, 2k + 1, . . . , 4k + 7, 5 | 2, 3 (k ≥ 2).
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8.5 Concluding Remarks and Conjectures

The above examples suggest, to some extent, a general method for finding infinite bases.

However, these examples rely on just one method for constructing antichains, and there

is no reason why this method should always work. For example, a somewhat different

construction was used by Atkinson and Stitt [12] to demonstrate an infinite antichain in

the basis of Av(21) o Av(321654), relying on the sum decomposability of the basis element

321654. The other difficulty in finding infinite bases is that, for each given class D, the

search for a suitable class C is very specific, and rarely seems to be applicable to more than

a handful of other classes.

In fact, it is unlikely that we can always find such a class C. For example, we saw in

Proposition 7.8 that the closure of the increasing oscillating sequence 416385 · · · is given

by Av(321, 2341, 3412, 4123). This class, of course, admits the infinite proper pin sequence

alternating between up and right pins, but, there are no other permutations in this class

which can be used to anchor an infinite antichain based around this pin sequence, so the

method described hitherto does not work here. We therefore pose the following question.

Question 8.13. Is there a finitely based class C for which C o Av(321, 2341, 3412, 4123) is not

finitely based?

The Other Direction. Given a finitely based class C, can we tell if C o D is finitely based

for all finitely based permutations classesD? Noting that even C = Av(21) does not satisfy

this (as witnessed by the infinite basis within Av(21) o Av(321654)), it might be that there

are no classes which satisfy this. However, we must not be deceived into thinking that the

more well-behaved a class C is, the more likely C o D is to be finitely based, as there is no

real evidence to support this. We will, however, offer the following conjecture anyway.

Conjecture 8.14. For any finitely based class C, there exists a finitely based class D such that C oD
is not finitely based.
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Wreath Basis Decidability. The ultimate aim, of course, is to be able to answer the fol-

lowing question: given two finitely based classes C and D, what is the basis of C o D?

Trivially, if C and D both contain finitely many simple permutations, then so does C o D
and so the basis is finite, but this result follows as a special case of Theorem 8.8. A general

decision procedure is not likely to be straightforward, and remains somewhat remote. A

first step towards such a result would be a better understanding of the structure of infinite

antichains.
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tations. Theoret. Comput. Sci. 306, 1-3 (2003), 85–100. Cited on page 151.
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[21] BÓNA, M. A survey of stack-sorting disciplines. Electron. J. Combin. 9, 2 (2003),

Article 1, 16 pp. (electronic). Cited on pages 82 and 84.
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vertical, 28
wedge, 28, 32, 138, 150

antichain, 95
anchor, 95, 166
fundamental, 95
infinite, 165
minimal, 95
Widdershins, 167

bootstrap percolation, 86

Catalan number, 122
closure, 83

strict, 99
common interval, 9, 65
comparability graph, 8, 78
complement, see permutation, complement of
containment, 5, 81

as a partial order, 81–107
core, 164
crossing, 40

deflation
of a relational structure, 16

D-deflation, 156
disjunctive decomposition, see substitution de-

composition
divisibility order, 99

Erdős-Szekeres Theorem, 22

Fine’s Sequence, 123

generating function, 91
algebraic, 91, 112, 131
rational, 150

graph, 8
as a relational structure, 8
interval, 10
pin, 41
pin sequence, 41, 42

antileaf, 42
convergence, 43
distinct third pins, 43
leaf, 42
proper quickly n-reaching, 43
saturated, 42

simple extension of, 52–56
grid class, 88
D-griddable class, 89
m× n gridding, 88
ground set, 7
growth rate, 94

lower, 94
upper, 94

hereditary property of graphs, 108
speed, 109

Higman’s Theorem, 100

increasing oscillating sequence, 39
basis of, 150

indecomposable graph, 10
asymptotics, 13
decomposition, 41–46
exceptionals, 44

induced subgraph, 8, 108
induced subtournament, 8
inflation, 17

lenient, 116, 135
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of a relational structure, 15
interval, 9

applications to biomathematics, 9
computation in optimal time, 72
generating, 71–72
in a relational structure, see relational struc-

ture, interval
lmax(π; i), left-maximum, 73
I`(π; i), left-open, 67
I`ud(π; i), left-up-down-open, 67
of pins, 26
one-sided, 67, 71
overlapping, 11, 73
proper, 9
rmax(π; i), right-maximum, 73

computation in linear time, 74
Ir(π; i), right-open, 67
Irud(π; i), right-up-down-open, 67
strong, 70, 73

computation in linear time, 75
synonyms, 10
three-sided, 66, 68, 71, 73

inverse, see permutation, inverse of
involvement, see containment

juxtaposition, 150
horizontal, 87
vertical, 88

L-structure, 7
left-greedy Y -profile, see Y -profile, left greedy
lenient inflation, see inflation, lenient

Maximality condition, see pin sequence, Maxi-
mality condition

maxpos(P ), position of rightmost point in P , 68
computation in linear time, 69

maxval(P ), position of point in P with maximal
value, 67

mb(π; i, j), minimal block of π(i) and π(j), 159
merge, 88
minimal block, 159

relation to D-profile, 160
uniqueness, 160

minpos(P ), position of leftmost point in P , 68
minval(P ), position of point in P with minimal

value, 67
computation in linear time, 67

modular decomposition, see substitution decom-
position

monotone property of graphs, 108

natural class, 103

oscillation, 39
decreasing, 39
increasing, 39

parallel alternation, see alternation, parallel
partially well ordered, 98

decidability, 98
equivalent conditions, 100

pattern class, see permutation class
pattern containment, see containment
permutation, 4

almost Dumont, 119
alternating, 118, 131
anti-almost Dumont, 120
as a relational structure, 7
barred, 117, 131
blocked, 117, 131
complement of, 6, 141
containment, see containment
decreasing, 4
direct sum, 18
Dumont of the first kind, 119, 131
even, 131
graph of, 95
increasing, 4
inverse of, 6
involution, 123, 131
involvement, see containment
irreducible, 15
minimal merge, 87
point of a, see point of a permutation
reverse of, 6
run, 15
separable, 85, 91, 114, 121, 122, 133
simple, see simple permutation
simple extension of, 48–52
skew decomposable, 18, 77
skew indecomposable, 18
skew sum, 18
sum decomposable, 18, 77
sum indecomposable, 18

permutation class, 81
atomic, 102
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intersection, 86
joint embedding property, 103
linear time membership, 134
skew complete, 89
skew completion, 89
strong completion, 89
strongly complete, 89
sum complete, 89
sum completion, 89
union, 86
wreath closed, 90
wreath closure, 90

pin, 24, 66
pin class, 153

enumeration, 153
pin sequence, 24, 137–139, 162–163

converge at the point x, 29
directions, 24
Externality condition, 35, 137
graph, see graph, pin sequence
infinite, 164
initially-nonoverlapping, 29
Maximality condition, 24
proper, 24
relation to simple permutations, 26
right-reaching, 27, 162
saturated, 27, 162
Separation condition, 24

pin word, 35
�, order on, 38
directions, 35
numerals, 35
permutation corresponding to, 37, 38
regular language, 146
relation to pin sequence, 37
strict, 37
strong numeral-led factor, 38

point of a permutation, 4
position, 5
value, 5

Poisson distribution, 15
poset, 8

simple extension of, 59–64
prime graph, see indecomposable graph
profile, 156
D-profile, 156

block, 158, 159
decomposition, 158

left-greedy, 158
relation to minimal block, 160
relation to wreath product, 158
uniqueness lemma, 156

proper algebraic system, 115
proper pin sequence, see pin sequence, proper
property of permutations, 112

AAD, anti-almost Dumont permutations, 120
AD, almost Dumont permutations, 120
AL, alternating permutations, 118
BR, beginning with a rise, 118
DU , Dumont permutations of the first kind,

120
EL, permutations of even length, 119
EO, permutations ending in an odd entry,

120
ER, ending with a rise, 118
EV , even permutations, 119
inverse of, 124
involutionhood, 123
pattern avoidance, 116
sum and skew indecomposable, 113

query-complete, 112, 115

Ramsey’s Theorem, 45
rank encoding, 151
rational class, 103
rational generating function, see generating func-

tion, rational
rect(p1, . . . , pm), 24
reducing pseudopaths, 42
relation, 7
relational language, 7
relational structure, 7

embedding, 107
interval, 9
simple, 9

relational symbols, 7
reverse, see permutation, reverse of
right-reaching pin sequence, see pin sequence,

right-reaching

saturated pin sequence, see pin sequence, satu-
rated

Schmerl-Trotter Theorem, 21
large Schröder numbers, 114, 121
separable permutation, see permutation, separa-

ble
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Separation condition, see pin sequence, Separa-
tion condition

simple extension, 47
simple graph, see indecomposable graph
simple permutation, 9

asymptotics, 13
simple relational structure, see relational struc-

ture, simple
simplicity

synonyms, 3
skeleton, 16
strict pin word, see pin word, strict
strong interval, see interval, strong
strong numeral-led factor, see pin word, strong

numeral-led factor
strongly finitely based, 100
substitution decomposition, 16, 70, 158

computation in linear time, 77, 134
synonyms, 3
tree, 17

support
computation in linear time, 70
supp`(π; i), `-support of i, 70
suppr(π; i), r-support of i, 70

symmetric difference, 12

tournament, 8
as a relational structure, 8
interval, 10
simple extension of, 56–59

transitive orientation, 8, 61, 78

wc(pi), wedge contribution, 32
wedge alternation, see alternation, wedge
wedge points, 32
wedge simple permutation, 32
Wilf class, 93
Wilf equivalent, 93
wreath closure, 121
wreath product, 90

finitely based, 163
infinitely based, 164–168
relation to D-profile, 158

ws(pi), wedge sum, 32

X-join, see substitution decomposition
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