
Rationality For Subclasses of 321-Avoiding1

Permutations2

Michael H. Albert∗ Robert Brignall
Department of Computer Science Department of Mathematics and Statistics

University of Otago The Open University
Dunedin, New Zealand Milton Keynes, England UK
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3

We prove that every proper subclass of the 321-avoiding permutations4

that is defined either by only finitely many additional restrictions or is5

well-quasi-ordered has a rational generating function. To do so we show6

that any such class is in bijective correspondence with a regular language.7

The proof makes significant use of formal languages and of a host of8

encodings, including a new mapping called the panel encoding that maps9

languages over the infinite alphabet of positive integers avoiding certain10

subwords to languages over finite alphabets.11

1. Introduction12

It has been known since 1968, when the first volume of Knuth’s The Art of Computer Program-13

ming [20] was published, that the 312-avoiding permutations and the 321-avoiding permutations14

are both enumerated by the Catalan numbers, and thus have algebraic generating functions. At15

least nine essentially different bijections between these two permutation classes have been devised16

in the intervening years, as surveyed by Claesson and Kitaev [15]. In one such bijection (shown17

in Figure 1 and first given in this non-recursive form by Krattenthaler [21]) we obtain Dyck paths18

from permutations of both types by drawing a path above their left-to-right maxima (an entry is a19

left-to-right maximum if it is greater than every entry to its left).20
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Figure 1: The bijections to Dyck paths from 312-avoiding permutations (left) and 321-avoiding
permutations (right). Knowing the positions and values of the left to right maxima, the
remaining elements can be added in a unique fashion to avoid 312, respectively 321.
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Figure 2: The Hasse diagrams of 312-avoiding (left) and 321-avoiding (right) permutations.

Despite their equinumerosity, there are fundamental differences between these two classes. Indeed,21

Miner and Pak [27] make a compelling argument that there are so many different bijections between22

these two classes precisely because they are so different, and thus there can be no “ultimate” bijection.23

In particular, both sets carry a natural ordering with respect to the containment of permutations24

(defined below) but they are not isomorphic as partially ordered sets. Indeed, this can be seen by25

examining the first three levels of their Hasse diagrams, drawn in Figure 2.26

A more striking difference between the two classes is that the 321-avoiding permutations contain in-27

finite antichains (see Section 9), while the 312-avoiding permutations do not. Following the standard28

terminology, we say that a permutation class without infinite antichains is well-quasi-ordered.29

From a structural perspective, the avoidance of 312 imposes severe restrictions on permutations: the30

entries to the left of the minimum must lie below the entries to the right of this minimum. This31

restricted structure is known to imply that proper subclasses of the 312-avoiding permutations are32

very well-behaved: there are only countably many such subclasses, and as Albert and Atkinson [1]33

proved in their work on the substitution decomposition, each has a rational generating function.34

(Mansour and Vainshtein [25] had proved this rationality result for proper subclasses classes defined35

by a single additional restriction earlier.)36

The 321-avoiding permutations also have a good deal of structure: their entries can be partitioned37

into two increasing subsequences. However, this property has proved much more difficult to work38

with. In particular, as noted above, there are infinite antichains of 321-avoiding permutations, so39

there are uncountably many proper subclasses of this class—in fact uncountably many subclasses40

with pairwise distinct generating functions. By an elementary counting argument, some of these41

proper subclasses must have non-rational (indeed, also non-algebraic and non-D-finite) generating42

functions.43

Because Av(321) is not well-quasi-ordered, any result analogous to the one mentioned for 312-44

avoiding permutations (which are, to repeat, well-quasi-ordered) must be more discerning as to45
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the subclasses considered. We develop a methodology for working with arbitrary subclasses of46

Av(321) and show how to apply it to two natural general families: subclasses defined by imposing47

finitely many additional forbidden patterns and subclasses that are well-quasi-ordered. Our main48

result shows that either of these conditions is sufficient to guarantee the rationality of generating49

functions.50

For the rest of the introduction, we review the formal definitions of permutation containment and51

permutation classes. We generally represent permutations in one line notation as sequences of52

positive integers. We define the length of the permutation π, denoted |π|, to be the length of the53

corresponding sequence, i.e., the cardinality of the domain of π. Given permutations π and σ, we say54

that π contains σ, and write σ ≤ π, if π has a subsequence π(i1) · · ·π(i|σ|) of the same length as σ that55

is order isomorphic to σ (i.e., π(is) < π(it) if and only if σ(s) < σ(t) for all 1 ≤ s, t ≤ |σ|); otherwise,56

we say that π avoids σ. If π contains σ we also say that σ is a subpermutation of π particularly in57

contexts where we have a specific embedding (i.e., set of indices) in mind. Containment is a partial58

order on permutations. For example, π = 251634 contains σ = 4123, as can be seen by considering59

the subsequence π(2)π(3)π(5)π(6) = 5134. A collection of permutations C is a permutation class if60

it is closed downwards in this order; i.e., if π ∈ C and σ ≤ π, then σ ∈ C.61

For any permutation class C there is a unique antichain B such that62

C = Av(B) = {π : π avoids all β ∈ B}.63

This antichain, consisting of the minimal permutations not in C, is called the basis of C. If B happens64

to be finite, we say that C is finitely based. For non-negative integers n, we denote by Cn the set of65

permutations in C of length n, and refer to66 ∑
n

|Cn|xn =
∑
π∈C

x|π|67

as the generating function of C. The goal of this paper is to establish the following.68

Theorem 1.1. If a proper subclass of the 321-avoiding permutations is finitely based or well-quasi-69

ordered then it has a rational generating function.70

In [14] Bousquet-Mélou writes71

“for almost all families of combinatorial objects with a rational [generating function], it72

is easy to foresee that there will be a bijection between these objects and words of a73

regular language”.74

In proving Theorem 1.1 we indeed adopt an approach via regular languages. We in fact encode75

permutations as words using several different encodings. We begin by introducing the domino76

encoding that records the relative positions of entries in pairs of adjacent cells in a staircase gridding.77

After that we combine this information and encode each 321-avoiding permutation as a word, say78

w, over the positive integers P satisfying the additional condition w(i+ 1) ≤ w(i) + 1 for all relevant79

indices i (throughout we denote by w(i) the ith letter of the word w). We then show that for80

any proper subclass, C, of 321-avoiding permutations there is some positive integer c such that the81

encoding of every permutation in C avoids (as a subword) every shift of the word (12 · · · c)c, i.e. all82

words (i(i+ 1) · · · (i+ c− 1))c for i ∈ P. The true key to our method is the panel encoding ηc, which83
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translates languages not containing shifts of (12 · · · c)c to languages over finite alphabets. A careful84

analysis of the interplay between panel encodings, domino encodings, and the classical encodings85

by Dyck paths (from Figure 1) along with a technique called marking establishes the regularity of86

various images under ηc, and this completes the proof of Theorem 1.1.87

We assume throughout that the reader has some familiarity with the basics of regular languages, as88

provided by Sakarovitch [28]; for a more combinatorial approach we refer the reader to Bousquet-89

Mélou [14] or Flajolet and Sedgewick [16, Section I.4 and Appendix A.7]. The notation used is90

mostly standard. Herein a subword of the word w is any subsequence of its entries while a factor is91

a contiguous subsequence. Given a set of letters X and a word w we denote by w|X the projection92

of w onto X, i.e., the subword of w formed by its letters in X. Finally, we denote the empty word93

by ε.94

2. Staircase Griddings95

A staircase gridding of a 321-avoiding permutation π is a partition of its entries into cells labelled96

by the positive integers satisfying four properties:97

• the entries in each cell are increasing,98

• for i ≥ 1, all entries in the (2i)th cell lie to the right of those in the (2i− 1)st cell,99

• for i ≥ 1, all entries in the (2i+ 1)st cell lie above those in the (2i)th cell, and100

• if j ≥ i+ 2 then all entries in the jth cell lie above and to the right of those in the ith cell.101

Staircase griddings have been used extensively in the study of 321-avoiding permutations, for instance102

in [3, 7, 9, 17] and represent the fundamental objects of consideration here. We denote by π] a103

particular staircase gridding of the 321-avoiding permutation π.104

Every 321-avoiding permutation has at least one staircase gridding and indeed, we can identify105

a preferred staircase gridding of every such permutation: a staircase gridding of the 321-avoiding106

permutation π is greedy if the first cell contains as many entries as possible, and subject to this,107

the second cell contains as many entries as possible, and so on. Figure 3 provides an example of a108

greedy staircase gridding.109

It is easy to construct greedy staircase griddings in the following iterative manner. The entries110

of the first cell are the maximum increasing prefix τ of π. Those of the second cell are then the111

maximum increasing sequence in π\τ whose values form an initial segment of the values occurring in112

π \ τ . Thereafter we continue alternately taking a maximum increasing prefix and then a maximum113

increasing sequence of values forming an initial segment of the values remaining.114

The relative position of two entries in a 321-avoiding permutation π is completely determined by115

the numbers given to their cells in any staircase gridding, unless these numbers are consecutive. In116

the case of cells which lie next to each other horizontally we consider their entries as being ordered117

from bottom to top, and in the case of cells which lie next to each other vertically, from left to right.118

Observe that this gives us two orders on the entries of a given cell (except the first), but that the two119

orders in fact coincide. With this ordering in mind, we formulate two conditions that characterise120

greedy staircase griddings:121
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Figure 3: The greedy staircase gridding of the 321-avoiding permutation
2 3 1 4 7 8 5 11 6 9 12 10 14 13 15.

•
i+ 2 •

i+ 2 •
i+ 1

•
i+ 1

Figure 4: The four types (due to parity) of failures of (G1) and (G2). Here the hatched regions
indicate positions where entries do not lie. Within the cell of the indicated entry these serve
to identify it as the first entry of its cell. In the two rightmost pictures the hatched region in
cell i+ 2 is empty because the gridding is assumed to satisfy (G1).

(G1) For all i ≥ 1 the first entry in the (i+ 1)st cell occurs before all entries of the (i+ 2)nd cell.122

(G2) For all i ≥ 1 the first entry in the (i+ 1)st cell is followed (not necessarily immediately) by an123

entry of the ith cell.124

These restrictions, or rather how they can fail, are depicted in Figure 4. It is important for later to125

note that these conditions can be tested by inspecting only the first and last entries of each cell.126

Proposition 2.1. A staircase gridding is greedy if and only if it satisfies (G1) and (G2).127

Proof. Let π be a 321-avoiding permutation, and consider first its greedy staircase gridding. If this128

gridding were to fail (G1) for some i ≥ 1, then we see from the two leftmost pictures in Figure 4129

that the first entry of the (i+ 2)nd cell could (and therefore, in a greedy gridding, would) have been130

placed instead in the ith cell, a contradiction. On the other hand, if the gridding were to satisfy131

(G1) but fail (G2) for some i ≥ 1 then we see from the two rightmost pictures in Figure 4 that the132

first entry of the (i+ 1)st cell would have been placed in the ith cell, another contradiction.133

Next consider a staircase gridding π] of π that satisfies (G1) and (G2). The condition (G2) implies134

that the labels of the non-empty cells form an initial segment of P so we proceed inductively. By135

definition, the entries of the 1st cell form an initial increasing segment of π so we need to show that136

it is the longest such segment. The next entry of π (reading left to right) must lie in the 2nd cell137

because (G1) shows that the leftmost entry of the 2nd cell lies to the left of all entries of the 3rd cell.138
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Figure 5: The greedy staircase gridding of the permutation 2 3 1 4 7 8 5 11 6 9 12 10 14 13 15
from Figure 3 and a drawing of this gridding on two parallel lines. The dotted lines in the
picture on the right are included only to indicate relative positions.

Thus this entry is the first entry of the 2nd cell. By (G2) it lies below an entry of the 1st cell, and139

this implies that the entries of the 1st cell are a maximum initial increasing segment.140

Let τ denote the contents of the 1st cell and consider the entries of the 2nd cell of π. By the third and141

fourth requirements for a staircase gridding, all entries of π not belonging to the first or second cells142

lie above those in the second cell. Thus the entries of the second cell form an increasing contiguous143

sequence by value in π \ τ and we must show that it is maximum. Consider the next smallest entry144

of π \ τ by value (if there is no such entry then we are done). As before, (G1) shows that this entry145

must lie in the 3rd cell, and thus must be the least entry of the 3rd cell. Again, (G2) implies that this146

entry lies to the left of an entry of the 2nd cell, and thus the contents of the 2nd cell are maximum.147

To complete the argument we repeat the reasoning for the 1st and 2nd cells for odd cells and even148

cells respectively, with suitable modifications, basically referring throughout to the set of entries of149

π that belong to the remaining cells of π].150

Staircase griddings have a pleasing geometric interpretation, as first observed by Waton in his151

thesis [32]. First we describe a general construction: given any figure in the plane and permutation152

π we say that π can be drawn on the figure if we can choose a set P consisting of n points in the153

figure, no two on a common horizontal or vertical line, label them 1 to n from bottom to top and154

then read them from left to right to obtain π. If this relationship holds between P and π we say155

that P and π are order isomorphic.156

Suppose that we take our figure to consist of the two parallel rays y = x and y = x − 1 for y ≥ 0.157

From any staircase gridding of a 321-avoiding permutation π we can construct a drawing of π on158

these two parallel rays. First we add vertical and horizontal lines x = i and y = i for all natural159

numbers i, splitting the figure into cells. To draw π on this figure, take any staircase gridding of160

π and embed it cell by cell into the corresponding cells of the figure, making sure that the relative161

order between entries in adjacent cells is preserved. An example is shown in Figure 5.162
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Figure 6: The domino factors (bottom row) corresponding to dominoes (top row) of the
gridded permutation from Figure 3. The domino encoding of this permutation is therefore

••#•◦◦•••#◦◦••◦•◦#◦◦••◦#◦•◦•#◦•◦•#◦◦#.

3. Domino and Omnibus Encodings163

From any (not necessarily greedy) staircase gridding we construct dominoes. For each i ≥ 0, the164

ith domino consists of the entries of the staircase gridding in the ith and (i + 1)st cells. We then165

read the entries of this domino in the order specified before (left-to-right for vertically adjacent166

cells, and bottom-to-top for horizontally adjacent cells), recording the labels of their cells as the ith167

domino factor di. Note that both the 0th and final domino factors encode single cells. An example168

of dominoes and domino factors is shown in Figure 6.169

We now translate the ith domino factor di of the staircase gridded permutation π] to the alphabet170

{◦, •} by replacing occurrences of i by ◦ and occurrences of i + 1 by •, labeling the resulting word171

d•i . The domino encoding, δ, of the gridded permutation π] is then172

δ(π]) = d•0#d•1# · · ·#d•m#,173

where m is the last nonempty cell. Recall that the relative position of entries in cells j and k174

is determined by the cells themselves if |k − j| ≥ 2. Therefore, as the domino factors completely175

determine the relative positions between entries of adjacent cells, the domino encoding is an injection176

(as a mapping from staircase gridded permutations to valid domino encodings). Note that the same177

definition of domino encodings can be applied to arbitrary words in P∗.178

We also derive a second encoding, the omnibus encoding, which again collects the domino factors179

of π] into a single word but this time by interleaving them with each other. In this encoding, for180

which the alphabet is the positive integers, each entry corresponds to a single letter and the encoding181

contains every domino factor as a subword. Formally, this means that we insist that the omnibus182

encoding, w, of π] satisfy the projection condition:183

(PC) w|{i,i+1}
is equal to the ith domino factor of π] for all i.184
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That is, when we look only at the letters i and i + 1 of an omnibus encoding we recover the ith185

domino factor di. This rule alone does not determine the encoding uniquely because it does not186

specify the order in which letters belonging to different domino factors should occur. In particular,187

if |j − i| ≥ 2 then the letters i and j “commute” in the sense that replacing an ij factor by ji does188

not change the projections to domino factors. We choose to “prefer” letters of larger value moving189

to the left. It is easy to see that this is equivalent to stipulating that our encoding w satisfy the190

small ascent condition:191

(SAC) w(i+ 1) ≤ w(i) + 1 for all relevant indices i.192

The conditions (PC) and (SAC) together guarantee the uniqueness of the omnibus encoding (of grid-193

ded permutations). We prove this momentarily, after demonstrating how to compute the omnibus194

encoding from the domino factors for the example shown in Figure 6. Having written one domino195

factor di, in the next row we copy the occurrences of i+ 1, and then insert the occurrences of i+ 2196

as far to the left as possible, subject to the requirement that the word in that row is di+1.197

d0 = 1 1
d1 = 2 1 1 2 2 2
d2 = 2 2 3 3 2 3 2
d3 = 3 3 4 4 3
d4 = 4 5 4 5
d5 = 5 6 5 6
d6 = 6 6

2 1 1 2 3 3 4 5 6 4 5 6 2 3 2

198

By way of proving the uniqueness of the omnibus encoding, we establish that every word of positive199

integers satisfying the small ascent condition is uniquely determined by its projections to pairs of200

consecutive integers.201

Proposition 3.1. If the words u,w ∈ P∗ both satisfy the small ascent condition, u|{1} = w|{1}, and202

u|{i,i+1}
= w|{i,i+1}

for every positive integer i, then u = w.203

Proof. For a positive integer k, let [k] = {1, 2, . . . , k}. We prove inductively that under the hypothe-204

ses of the proposition, we have u|[i] = w|[i] for all i ≥ 1. The hypotheses give the base case of i = 1.205

Suppose now that u|[i] = w|[i] for some i ≥ 1 and consider any occurrence of i+ 1 in u|[i+1]
. If this206

i + 1 has any smaller elements to its left, then the rightmost such must equal i owing to the small207

ascent condition. Therefore u|[i+1]
is formed from u|[i] by inserting all occurrences of i+ 1 correctly208

according to u|{i,i+1}
and as far to the left as possible subject to this constraint. Since w|[i+1]

is209

formed from w|[i] by the same rule and since both u|[i] = w|[i] and u|{i,i+1}
= w|{i,i+1}

it follows210

that u|[i+1]
= w|[i+1]

, completing the proof.211

These facts allow us to define the omnibus encoding, ω from the set of all staircase gridded 321-212

avoiding permutation to P∗ as the mapping sending π] to the unique word satisfying both the (PC)213

and (SAC). We then define the two languages of interest,214

L∞ = {ω(π]) : π] is a gridded 321-avoiding permutation} and215

G∞ = {ω(π]) : π] is a greedily gridded 321-avoiding permutation}.216
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For most of the argument it is easier to ignore the greediness conditions and focus on L∞, which217

has a simple alternative definition:218

L∞ = {w ∈ P∗ : w satisfies (SAC)}.219

Translating the gridding conditions (G1) and (G2) to omnibus encodings, we immediately obtain220

the following characterisation of the language G∞.221

Observation 3.2. The word w ∈ L∞ lies in G∞ if and only if it also satisfies the following two222

conditions:223

(ωG1) For all i ≥ 1, the first occurrence of i+ 1 occurs before all occurrences of i+ 2.224

(ωG2) For all i ≥ 1, the first occurrence of i + 1 is followed (not necessarily immediately) by an225

occurrence of i.226

Given any word w ∈ L∞, we define its ith domino factor di to be w|{i,i+1}
, i.e., the subword of w227

made up of its letters equal to i and i+1. In this way, the domino factors of any gridded 321-avoiding228

permutation π] are equal to the domino factors of its omnibus encoding ω(π]). In the same manner,229

we can define the domino encoding of any word w ∈ L∞ as230

δ(w) = d•0#d•1# · · ·#d•m#,231

where m is the value of the largest letter in w.232

Therefore given any omnibus encoding w ∈ L∞, we can recover the domino factors (or, equivalently,233

the domino encoding) of the underlying gridded permutation and then, by our previous remarks,234

reconstruct this gridded permutation. In other words, ω is a bijection between the set of gridded235

321-avoiding permutations and L∞. By the same reasoning, ω is also a bijection between the set of236

greedily gridded 321-avoiding permutations and G∞.237

As every 321-avoiding permutation has a unique greedy staircase gridding, this shows that the238

number of words of length n in G∞ is equal to the nth Catalan number. The authors asked on239

MathOverflow [31] for a simple bijection between (a variant of) this language and another Catalan240

family (other than staircase griddings). In response, Speyer [29] conjectured a link to the Catalan241

matroid of Ardila [10] that was subsequently proved by Stump [30] using Haglund’s zeta map [18].242

Mansour and Shattuck [24] have since provided several refinements of the enumeration, such as the243

number of words in the language with a specified number of occurrences of 1 and 2.244

The domino encoding may appear at first to be superior to the omnibus encoding because the former245

is defined on the finite alphabet {◦, •,#} whereas the latter is defined on the infinite alphabet of246

positive integers. However, in the context of establishing a regularity result for subclasses, C, of 321-247

avoiding permutations the domino encoding is of no immediate use. If C is not finite then it must248

contain arbitrarily long increasing sequences, and this already implies that the domino encodings of249

the greedy griddings of members of C do not form regular language, owing to the condition that the250

number of • symbols in the {•, ◦} factor preceding a punctuation mark must equal the number of251

◦ symbols in the immediately following such factor. Nonetheless, as well as providing a foundation252

for the omnibus encoding, the domino encoding becomes useful again in the final stages of the proof253

of Theorem 1.1.254
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We say that the omnibus encoding is an entry-to-entry mapping because every letter of ω(π) cor-255

responds to precisely one entry of π. The domino encoding is nearly an entry-to-entry mapping256

because each entry of π corresponds to precisely two non-punctuation letters of δ(π). We make257

frequent, though implicit, use of these correspondences.258

The inverse of the omnibus encoding has a natural geometric interpretation, which can be viewed259

as an infinite version of the encodings defined in [2]. Following the notation there we denote the260

inverse of ω by ϕ], which is a surjection from P∗ to gridded 321-avoiding permutations, interpreted261

as equivalence classes of sets of points on the two parallel rays y = x and y = x − 1 for y ≥ 0262

subdivided into cells by the vertical and horizontal lines x = i and y = i for all integers i.263

Suppose that the word w ∈ P∗ has length n and choose arbitrary real numbers 0 < d1 < · · · < dn < 1.264

For each 1 ≤ i ≤ n, take pi to be the point on the diagonal line segment in the cell numbered by265

w(i) that is at infinity-norm distance di from the lower left corner of this cell. We define ϕ](w) to be266

the gridded permutation that is order isomorphic to the gridded set {p1, p2, . . . , pn} of points in the267

plane and we further define ϕ(w) to be the permutation obtained from ϕ](w) by “forgetting” the268

grid lines. It is routine to show that ϕ](w) does not depend on the particular choice of d1, . . . , dn,269

and thus is well-defined. Given any two words u,w ∈ P∗, it is clear from this construction that if u270

is a subword of w then ϕ(u) ≤ ϕ(w). Reframing this observation in terms of the omnibus encoding271

we obtain the following.272

Observation 3.3. Let σ] and π] be gridded 321-avoiding permutations. If ω(σ]) is a subword of273

ω(π]) then σ ≤ π.274

4. Restricting to a Finite Alphabet275

In order to appeal to the theory of formal languages we must translate the omnibus encoding to a276

finite alphabet. This—accomplished via the panel encoding—is the topic of the next section. Aside277

from restricting to a finite alphabet though, some other restriction is needed because Av(321) does278

not have a rational generating function. This section introduces a generic family of restrictions on279

the omnibus encodings in such a way that for any proper subclass of Av(321) one of the restrictions280

in the family is satisfied. This will subsequently be shown to be sufficient to enable encodings of281

finitely based and/or well-quasi-ordered subclasses into regular languages over finite alphabets.282

Given a word w ∈ P∗ its shift by k is defined by283

w+k(i) = w(i) + k284

for all indices i. An even shift is a shift by an even integer. By the definition of ϕ, it follows285

immediately that ϕ(w+2k) = ϕ(w), so the image of ϕ is unaffected by even shifts. As a consequence286

of this fact and Observation 3.3, we obtain the following.287

Observation 4.1. Let π and σ be 321-avoiding permutations with staircase griddings π] and σ]288

respectively. If ω(π]) contains an even shift of ω(σ]) as a subsequence then π contains σ.289

Note that the converse of this observation does not hold—a simple example is given by the pair290

π = 2314, σ = 123. Letting π] and σ] denote the greedy griddings of these permutations we see291

that ω(π]) = 2112 (see the centre of Figure 7) while ω(σ]) = 111 so although σ is contained in π,292
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Figure 7: The drawing on the left shows plot of the gridded permutation π] for which ω(π]) =
(1234)4, or from the geometric viewpoint, ϕ]((1234)4). The drawings in the centre and right
show two griddings of the permutation 2314, which are encoded, respectively, by 2112 and
3323.

ω(π]) contains no shift, let alone an even one, of ω(σ]). Note, however, that another gridding of293

2314, shown on the right of Figure 7, leads to an encoding which does contain a shift of 111.294

In the next two sections we focus on the languages295

L∞c = {w ∈ P∗ : w satisfies the small ascent condition and avoids all shifts of (12 · · · c)c}.296

This definition is justified by the following proposition. (Note that, as the proof shows, the condition297

on avoiding all shifts of (12 · · · c)c could be weakened, but we have no need to do so.)298

Proposition 4.2. For every proper subclass C of 321-avoiding permutations there is a positive299

integer c such that ω(π]) ∈ L∞c for all staircase griddings π] of permutations π ∈ C.300

Proof. Let β be any 321-avoiding permutation not belonging to C with greedy gridding β] and set301

c = |β| + 1. Clearly ω(β]) is contained in (12 · · · (c − 1))c−1 and so no word of the form ω(π]) for302

π ∈ C may contain an even shift of (12 · · · (c−1))c−1 by Observation 4.1. Moreover, the word 12 · · · c303

contains both (12 · · · (c − 1))+0 and (12 · · · (c − 1))+1, so any shift of (12 · · · c)c−1 contains an even304

shift of (12 · · · (c − 1))c−1. Therefore no word of the form ω(π]) for π ∈ C may contain a shift of305

(12 · · · c)c−1, proving the proposition.306

Though we work exclusively on the level of words for the next two sections, it is worth remarking307

that Proposition 4.2 shows that every proper subclass of Av(321) avoids the permutation encoded by308

(12 · · · c)c for some value of c. Stated from the geometric perspective, every 321-avoiding permutation309

is contained in ϕ((12 · · · c)c) for some value of c. Thus these permutations are universal objects1 for310

Av(321). An example of one of these universal permutations is shown on the left of Figure 7.311

1Universal objects for permutation classes are often called super-patterns. The typical problem is, given a class
C, determine the length of a shortest permutation containing all permutations in Cn. Our universal object is not the
shortest possible, as Miller [26] has found a universal permutation for the class of all permutations of length

(n+1
2

)
,

i.e., a permutation of this length containing all permutations of length n. No improvements worth mentioning are
known for the class Av(321). For the class Av(231), Bannister, Cheng, Devanny, and Eppstein [12] have established
an upper bound of n2/4 + Θ(n).
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5. The Panel Encoding ηc312

This section and the next focus solely on the language L∞c and an encoding, ηc, which maps it to a313

language Lηc over a finite alphabet. The encoding ηc is described in this section while the regularity314

of Lηc is established in the next. Throughout, consider c to be a fixed positive integer and a word315

w ∈ L∞c to be given. Further suppose that the maximum value of a letter in w is m.316

The material in the remainder of this section is rather technical, so we begin with an overview of the317

general strategy. Consider the maximal factors of w not containing occurrences of symbol 1. With318

the exception of the factor preceding the first 1, all of them are immediately preceded by a 1. Some319

of those may contain an occurrence of c, and we designate those as large. Note that by the small320

ascent condition and the fact that these factors are all preceded by a 1, each large factor contains321

an occurrence of 23 · · · c which, together with the adjacent 1, yields an occurrence of 12 · · · c. Since322

w avoids (12 · · · c)c there must be fewer than c large factors. The remaining factors are designated323

as small, except for the factor before the first 1 which is handled separately.324

The idea of the encoding ηc is to first separate the small and large factors of w. The small factors325

form a word over {1, . . . , c− 1} and this word is recorded essentially as is; the large factors are then326

processed recursively. In order to facilitate the reconstruction of w from its encoding, we need to327

record the places where the separation occurred. We achieve this by decorating 1s that are supposed328

to be followed by the (now removed) large factors, and the matching 2s at the start of these large329

factors. Since all letters of the large factors are greater than 1, we can reduce all of them by 1 and330

repeat the process. At each stage the maximum value remaining decreases by at least 1 (in fact331

exactly 1 if there is a large factor present), and so we eventually produce a sequence of (decorated)332

words over the alphabet {1, 2, . . . , c− 1}. The encoding ηc(w) is simply the concatenation of these333

words, separated by punctuation symbols.334

Moving to the technical details, we aim to describe an injection ηc : L∞c → Σ∗ where335

Σ = {1, 2, . . . , c− 1} ∪ {1, 1, 1} ∪ {#}.336

We refer to the three symbols 1, 1, 1 as decorated letters, and in describing the construction also337

make use of one more decorated letter: 2. Specifically, we have338

ηc(w) = p0#p1#p2# · · ·#pm−1#339

(recall that m is the maximum value of a letter in w) where each pi does not contain the symbol #.340

The words pi are referred to as panel words. Each panel word corresponds to a subword of w. More341

specifically, p+kk is, after removal of the decorations from any letters, actually a subword of w, and342

together these subwords partition the letters of w. Therefore, ignoring the punctuation symbols, ηc343

is an entry-to-entry mapping. The careful reader may note that all panel words of index greater344

than m− c+1 are empty by construction; these are recorded (with punctuation) merely for the sake345

of consistency.346

The construction is recursive: we extract the panel words from w in order, starting with p0, so it347

is convenient to consider also a sequence of remainder words r0, r1, . . . , rm−1 that represent the348

as-yet-unencoded letters of w. Each word ri is defined over the alphabet P ∪ {1}.349

The first step of the process is to set r0 = w. Suppose that r0 has k letters of value 1 and express350

it as351

r0 = r0,0 1 r0,1 1 r0,2 · · · r0,k−1 1 r0,k,352
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so r0,j ∈ (P\{1})∗ for all j. Let J denote the set of indices j between 1 and k such that r0,j contains353

a letter of value c (the large factors). It follows from the small ascent condition and the fact that it354

is preceded by a 1 that if r0,j contains a letter of value c (i.e., j ∈ J) then it contains the subword355

23 · · · c, and so |J | ≤ c − 1 because w ∈ L∞c . Note that r0,0 may also contain a letter of value c.356

These factors are precisely what we do not encode in the panel word p0. Another consequence of357

the small ascent condition is that each non-empty word r0,j for j ≥ 1 (and particularly all of those358

with j ∈ J) begins with a 2.359

We now decorate 2|J | letters of r0, producing an auxiliary word, t0. We define t0 via factors t0,j for360

0 ≤ j ≤ k. We first set t0,j equal to r0,j for all j /∈ J . For j ∈ J , we know that r0,j is nonempty361

and so begins with a 2, and we set the corresponding t0,j equal to r0,j with its leftmost 2 adorned362

by a ←, turning it into a 2, which we call a left letter. Each 2 which is turned into a 2 in this363

process is immediately preceded by a 1 in r0, which we call a right letter and denote by 1 in t0.364

After performing these decorations, the auxiliary word t0 can be written as365

t0 = t0,0 `1 t0,1 `2 t0,2 · · · t0,k−1 `k t0,k366

where367

`j =

{
1 if j ∈ J and
1 if j /∈ J ,

368

and t0,j begins with 2 if and only if j ∈ J .369

We can now construct our first panel word. It is simply the concatenation of all factors t0,j with370

j /∈ J ∪ {0} (the small factors) and all `i, retaining their order in t0. To be precise, if we define371

p0,j =

{
ε if j ∈ J and
t0,j if j /∈ J ,

372

then373

p0 = `1 p0,1 `2 p0,2 · · · p0,k−1 `k p0,k.374

The word p0 is thus defined over the alphabet {1, 2, . . . , c − 1} ∪ {1}. Finally, we define r1 to be375

the result of concatenating the remaining factors t0,j for j ∈ J ∪ {0} and then subtracting 1 from376

each letter (when we subtract 1 from a 2 we change it to a 1). Thus r1 is defined over the alphabet377

P ∪ {1}, and the maximum value of a symbol occurring in r1 is m− 1.378

The decorations of the panel word and the remainder word specify the way to reassemble w from379

(p0, r1). To do so we first form r+1
1 . We divide this into factors each beginning with a 2 (except380

possibly the first factor). These are the factors r0,j for j ∈ J ∪ {0}. If r+1
1 contains an initial factor381

that does not begin with 2 then we place this factor before p0. Then proceeding from left to right382

we insert the first of the factors of r+1
1 that begin with 2 immediately after the first 1 of p1, then383

the second factor immediately after the second 1 of p1, and so on. Effectively, we “zip together” p0384

and r1 using the arrows to mark the points where the two pieces should mesh with one another. We385

finish by removing the decorations.386

There is only one change in subsequent iterations of this encoding. In constructing tj , pj and rj+1387

from rj for j ≥ 1, we may wish to designate a 1 (a former left letter) as a right letter. If this situation388

arises, we simply turn the 1 into a 1. Thus after we have decorated rj to form tj , every decorated389

letter is either a 1 or occurs in a 1 2 or 1 2 factor. We call the resulting mapping ψ : rj 7→ (pj , rj+1)390

the splitting mapping.391
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It follows that, as claimed, every panel word is defined over the alphabet {1, 2, · · · , c− 1}∪{1, 1, 1}.392

Moreover, because the greatest letter in w has the value m, when we come to construct pm−1 from393

rm−1 all (if any) remaining letters are 1 (or a decorated version thereof) and thus after this stage394

we can guarantee that we have encoded all of w. As promised, our ultimate encoding consists of the395

concatenation of these panel words, separated by punctuation, ηc(w) = p0#p1# · · ·#pm−1#.396

We illustrate this process with a concrete example. Suppose that c = 4 and consider encoding the397

word398

w = 2312312232345231233412123212343 ∈ L∞4 .399

In our first step, we set r0 = w, divide it into factors, and add decorations (here and in what follows400

we underline the factors that remain in rj+1). We call the resulting decorated word t0. In our401

example, this step yields402

t0 = 23 123 1 223234523 1 2334 121232 1 2343.403

We then form both p0 and r1 and repeat the process to form t1, computing404

p0 = 123 1 1 121232 1, r1 = 12 112 1 234 12 1 223 1232,
t1 = 12 112 1 234 12 1 223 1232.

405

The list of panel words and remainders is completed by performing these operations four more times,406

in which we find407

p1 = 12 112 1 12 1 223 1232, r2 = 123,
t2 = 123,

p2 = 123, r3 = ε,
t3 = ε,

408

and all of p3, r4, t4, and p4 are empty. Our encoding of w is the concatenation of the panel words409

p0, p1, p2, p3, and p4 separated by punctuation,410

η4(w) = 123111212321#1211211212231232#123###.411

We define412

Lηc = {ηc(w) : w ∈ L∞c }413

to be the image of L∞c under ηc. Except for punctuating letters, the panel encoding ηc is an entry-414

to-entry mapping. Moreover, the following bookkeeping result, which follows immediately from the415

definition of ηc, gives more detail on the entry-to-entry property of ηc.416

Observation 5.1. An entry of value j in the panel word pi of ηc(w) corresponds to an entry of417

value i+ j in w. Hence, every entry of the panel word pi corresponds to a letter of value i+ 1, i+ 2,418

. . . , or i + c − 1 in w, while every letter i in w corresponds to an entry in one of the panel words419

pi−c+1, pi−c+2, . . . , or pi−1.420

It should be clear that ηc is injective, but as we shall need some properties of its inverse in what421

follows, we shall be a little more explicit. We begin by defining ψ−1, the inverse of the splitting422

mapping. This is the mapping that “zips together” a panel word and a remainder word as described423

previously for the case of p0 and r1.424
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Suppose that p (to be thought of as the most recent panel word) is a word over P ∪ {1, 1, 1} and r425

(to be thought of as the most recent remainder word) is a word over P ∪ {1}, and that the number426

of right letters in p equals the number of left letters in r (both are equal to k below). Now express427

p and r in the form428

p = q0 `1 q1 `2 · · · qk−1 `k qk,
r = s0 1 s1 1 · · · sk−1 1 sk,

429

where each `j is a right letter (i.e., 1 or 1). The inverse of the splitting mapping is defined by430

ψ−1(p, r) = s+1
0 q0 ˙̀

1 2 s+1
1 q1 ˙̀

2 2 · · · s+1
k−1 qk−1 ˙̀

k 2 s+1
k qk,431

where s+1
i is the shift by 1 mapping applied to si and432

˙̀
i =

{
1 if `i = 1,
1 if `i = 1

433

is the mapping that removes right arrows.434

Supposing that p0, p1, . . . , pm−1 are words over P∪ {1, 1, 1} and that the number of right letters of435

pi is equal to the number of left letters of pi+1 for 0 ≤ i < m− 1 we can define436

Ψ−1(p0#p1# · · ·#pm−1#) = ψ−1(p0, ψ
−1(. . . ψ−1(pm−3, ψ

−1(pm−2, pm−1)) . . . )).437

For w ∈ L∞c , Ψ−1(ηc(w)) = w, so ηc is indeed an injection on L∞c (and in this context we often438

write η−1c in place of Ψ−1).439

There are several features of ψ−1 that are important to draw attention to. First, except for removing440

some decoration and incrementing r by one, ψ−1 does not change the subwords p and r at all; that441

is, absent decoration, p and r+1 occur as subwords in ψ−1(p, r). Second, undecorated letters play442

no significant role in the reassembly process performed by ψ−1, in fact their only role is to be copied443

into the output (possibly after incrementation). Thus if we delete an undecorated letter from ηc(w)444

and then apply Ψ−1 the result is w with the corresponding letter deleted.445

The next result provides the interface that we need later to impose basis conditions on panel encod-446

ings.447

Proposition 5.2. Let u be a subword of ηc(w) whose letters occur in the contiguous set of panel448

words pi, pi+1, . . . , pi+k. The relative positions of the letters of w corresponding to those in u are449

determined by the subword of ηc(w) consisting of the letters in u together with all decorated letters450

of the panel words pi, pi+1, . . . , pi+k and the punctuation symbols # between them.451

Proof. Write ηc(w) = p0#p1# · · ·#pm−1# and consider the process of inverting the ηc mapping.452

Once we have formed a word containing all of the letters of u we may stop, so it suffices to compute453

ψ−1(pi, . . . ψ
−1(pi+k, ψ

−1(pi+k+1, . . . ψ
−1(pm−2, pm−1) . . . )) . . . ) = ψ−1(pi, . . . ψ

−1(pi+k, r) . . . ),454

where r = ψ−1(pi+k+1, . . . ψ
−1(pm−2, pm−1) . . . ). In ψ−1(pi+k, r), the letters corresponding to r455

have lost their decoration, and thus may be forgotten by our observation above. Thus it suffices456

to compute ψ−1(pi, . . . ψ
−1(pi+k−1, pi+k) . . . ). Applying our observation again, we may remove all457

undecorated letters not belonging to u from these panels without affecting the eventual order of458

the letters corresponding to u. What remains is the information specified in the statement of the459

proposition (the punctuation symbols serving to distinguish pi through pi+k).460



Rationality For Subclasses of 321-Avoiding Permutations 16

6. The Regularity of Lηc461

Our ultimate aim is to establish that various sublanguages of Lηc (corresponding to finitely based462

or well-quasi-ordered subclasses of 321-avoiding permutations) are regular. We first establish that463

Lηc itself is regular. The material in this section is also somewhat technical so we again provide an464

initial informal discussion. We seek to recognise whether a word over the alphabet {1, 2, . . . , c−1}∪465

{1, 1, 1} ∪ {#} belongs to Lηc . The basic idea is to identify several necessary conditions which are466

collectively sufficient. Then, if we verify that each individual necessary condition corresponds to a467

regular language, the closure of regular languages under the Boolean operations proves the result we468

want. Roughly speaking there are three such necessary conditions: a translation of the small ascent469

condition, consistency in left-right decorations between consecutive panel words (here the fact that470

the number of such decorations is bounded is critical), and that the number of panel words captures471

the maximum letter(s) properly, i.e., that the encoding is not terminated too early or too late.472

We begin with a more detailed look at various properties of panel words, remainder words, and the473

encodings ηc(w). Denote by left(p) and right(p) the number of left letters and right letters of a word474

p (occurrences of 1 contribute to both counts).475

Consider the language of all remainder words r = rj which could arise in the process of encoding476

words from L∞c . This is a language over the alphabet P ∪ {1}. For j = 0, r is an arbitrary element477

of L∞c ; in particular L∞c is contained within the language under consideration. Otherwise, r is478

obtained from an earlier remainder word by marking the left and right letters, concatenating the479

factor preceding the initial 1 with the factors from any 2 up to but not including the subsequent480

(marked or unmarked) 1 and then reducing the value of all letters by 1. It follows inductively that481

any such word r satisfies the following three conditions.482

(R1) The undecorated copy of r (obtained by substituting 1 for every 1) belongs to L∞c .483

(R2) The inequality left(r) < c holds.484

(R3) If left(r) = k and r = s0 1 s1 1 · · · 1 sk then each factor si for 1 ≤ i ≤ k contains a letter of485

value c− 1.486

Define Rc to be the language of all words over the alphabet P ∪ {1} satisfying (R1)–(R3).487

Next we consider the language of all panel words p = pj that arise in encodings ηc(w), and observe488

that every such p satisfies the following five conditions.489

(P1) The undecorated copy of p satisfies the small ascent condition.490

(P2) If p is non-empty then its first letter is 1, 1, 1, or 1.491

(P3) The inequalities left(p) < c and right(p) < c hold.492

(P4) Any letter immediately following a right letter of p is one of 1, 1, 1, or 1.493

(P5) If left(p) = k and p = q0 `1 q1 `2 q2 · · · qk−1 `k qk, where the `i are the left letters of p, then494

each factor `iqi for 1 ≤ i ≤ k contains either an occurrence of c− 1 or a right letter.495
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Establishing the validity of these properties is fairly straightforward, so we limit ourselves to a few496

words of justification. For (P1) note that any panel word is a concatenation of factors beginning497

with 1 satisfying the small ascent condition, hence does so itself. The property (P3) follows from498

(R2), because the left letters of p = pj are inherited from the remainder word rj , while the right499

letters are matched with the left letters of the remainder word rj+1. For (P4), the factor following500

a right letter up to the next 1 is carried forward to the next remainder, so the next letter of a panel501

word must have value 1. Finally, for (P5), the left letters in p = pj correspond to the left letters502

of rj . These, in turn, correspond to the distinguished occurrences of 12 · · · c in rj−1: of each such503

occurrence, 23 · · · c is carried forward into rj where it becomes 12 · · · (c−1). If the symbol c−1 does504

not make it from rj into p, the reason is that it is carried forward into rj+1, in which case a right505

letter remains in p to indicate the location of its removal.506

We define Pc to be the set of words over the alphabet {1, 2, . . . , c−1}∪{1, 1, 1} satisfying (P1)–(P5).507

The language Pc is clearly regular.508

At this point we need to note that the splitting mapping ψ : rj 7→ (pj , rj+1), as defined in Section 5,509

can actually be applied to all words satisfying (R1)–(R3). We abuse terminology and denote this510

extension to Rc also by ψ. Further, we recall the inverse, ψ−1, of the splitting mapping defined in511

the previous section, and note that its definition can be extended verbatim to all pairs (p, r) with512

p ∈ Pc, r ∈ Rc and right(p) = left(r).513

Proposition 6.1. The extended mappings ψ and ψ−1 are mutually inverse bijections between Rc514

and {(p, r) ∈ Pc ×Rc : right(p) = left(r)}.515

Proof. If s ∈ Rc and ψ(s) = (p, r), it is easy to see that p ∈ Pc, r ∈ Rc. Also, we have right(p) =516

left(r), because at the stage when the letters of s are decorated, the newly decorated letters occur517

in adjacent pairs and indicate precisely the positions where the splitting into p and r occurs.518

Now take an arbitrary pair (p, r) ∈ Pc ×Rc with right(p) = left(r) = k and set s = ψ−1(p, r). To519

establish that s ∈ Rc we observe that it must possess the following properties.520

• It lies in (P ∪ {1})∗ because all right arrows have been removed.521

• The undecorated version of s satisfies the small ascent condition because the undecorated522

copies of p and r satisfy this condition by (P1) and (R1), and the factors inserted into p to523

form s create 12 factors at their left hand ends (by definition of ψ−1) , and descents at their524

right hand ends (by (P4)).525

• It satisfies left(s) < c, because the left letters are inherited from those of p, which satisfies526

(P3).527

• Each factor of s between two consecutive left letters contains an occurrence of c − 1, as does528

the suffix following the last left letter. This follows because left letters of s are inherited from529

those of p. Thus by (P5) either there is already an occurrence of c−1 in such a factor, or there530

was a right letter in the corresponding part of p. In the latter case, a factor of r beginning531

with 1 was inserted (and increased by 1) following such a right letter, and by (R3) this results532

in an occurrence of c. The small ascent condition then also guarantees an occurrence of c− 1.533

Therefore s indeed satisfies (R1)–(R3), as required. Moreover, ψ−1 has been designed precisely so534

that the splitting mapping reverses it, which completes the proof.535
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We now turn to the language Lηc of all ηc encodings of words from L∞c . A typical word e ∈ Lηc may536

be written as e = p0#p1# · · ·#pm−1#, where the pj do not contain #, and satisfies the following537

conditions.538

(L1) For all 0 ≤ j < m we have pj ∈ Pc.539

(L2) For all 0 ≤ j < m− 1 we have right(pj) = left(pj+1) < c, and also left(p0) = right(pm−1) = 0.540

(L3) There exists an index j such that the word pj contains the letter m− j.541

(L4) For all 0 ≤ j ≤ m− 1, no letters of value greater than m− j occur in pj .542

Only the last two conditions require comment and they hold because if e = ηc(w) then the number543

of panel words, m, in e is equal to the maximum value occurring in w. This value must be encoded544

in some panel, say pj , where it is encoded as m− j by Observation 5.1, satisfying (L3). No pj can545

contain a letter of value greater than m−j because this would correspond to a letter of value greater546

than m in w, showing that (L4) is satisfied.547

Proposition 6.2. The language Lηc consists precisely of all words e = p0#p1# · · ·#pm−1# that548

satisfy (L1)–(L4).549

Proof. Suppose that e = p0#p1# · · ·#pm−1# satisfies (L1)–(L4). Set rm = ε, and then for k from550

m − 1 down to 0 let rk = ψ−1(pk, rk+1). It follows from Proposition 6.1 that, at each step, the551

conditions required for ψ−1 to be defined on the given arguments apply, and so we obtain a sequence552

rm−1, . . . , r1, r0 of elements of Rc. By (L2), the final word r0 = w does not contain any decorated553

letters, and so in fact w ∈ L∞c by (R1). Furthermore, the conditions (L3) and (L4) imply, via554

a straightforward inductive argument, that the maximum value occurring in w is precisely m. It555

follows that the panel encoding ηc(w) will contain precisely m panel factors. These panel factors556

are obtained starting from w = r0 and successively applying the splitting mapping m − 1 times.557

By Proposition 6.1, the sequence of the remainder words obtained will be precisely r0, r1, . . . , rm−1,558

while the sequence of the panel words will be p0, . . . , pm−1, so that e = ηc(w) ∈ Lηc , completing the559

proof.560

We conclude this section with its main result.561

Proposition 6.3. For every positive integer c the language Lηc is regular.562

Proof. We show that the languages defined by the individual conditions (L1)–(L4) are regular. The563

first follows easily because (L1) defines the language (Pc#)
∗
, which is regular because Pc is regular.564

Condition (L2) also defines a regular language because of the bound on the values to be compared.565

Note that (L2) is violated exactly if there is some panel word containing more than c right letters,566

or some pair of consecutive panel words where the number of left letters in the second panel word567

is not the same as the number of right letters in the first. Such a violation is easily recognised by568

a non-deterministic automaton (i.e., the automaton we describe accepts all words which fail this569

condition). The automaton accepts (i.e. identifies a violation) if it detects any left letters in the570

first panel word p0. Otherwise it idles until it reaches some punctuation symbol. Then it counts571

right letters in the next panel word, accepting if that count exceeds c. If it still has not accepted,572
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the automaton remembers this count (which is bounded by c) and proceeds to count left letters in573

the following panel word, again accepting if that does not match the stored count of right letters574

(or if the stored count is non-zero and there is no following panel word). Once the word has been575

completely read, if it has not been accepted it is rejected. If a violation occurs, the input word576

is accepted by some computation of this automaton, while if no violation occurs, no computation577

accepts the input word. Thus the words satisfying (L2) are the complement of the language accepted578

by this automaton, and so form a regular language.579

Finally note that conditions (L3) and (L4) only present non-vacuous restrictions for the final c− 1580

panel words since pj ∈ Pc for all indices j. We verify both conditions with a common automaton581

which reads encodings from right to left (recall that the reverse of a regular language is also regular).582

This automaton records the set of letters occurring in each of the panel words pm−1, . . . , pm−c+1.583

Since this is a bounded amount of information, it can be stored in a state, and each condition implied584

by (L3) and (L4) is tested by direct inspection of the recorded information (i.e. by designating the585

appropriate states as accepting).586

7. Marking, Transducing, and Greediness587

We have established that there is a bijective correspondence between L∞c and the regular language588

Lηc = ηc(L∞c ). However, Lηc is not good enough for our counting purposes, because a permutation589

π ∈ Av(321) generally has several (and a variable number of) possible griddings, and it is the latter590

that are encoded in Lηc . We therefore need to pass to our distinguished, unique—i.e. greedy—591

griddings. In other words, we need to consider the set ηc(L∞c ∩ G∞) and prove that it is regular.592

To do this we return to the domino encoding. In general, as noted previously, the domino encoding593

is not a suitable device for detecting regularity because of the consistency requirement between594

consecutive dominoes and the lack of bounds on the number of symbols in a domino. Fortunately,595

the properties we are interested in (initially, greediness; in the next section, finite bases; after that,596

well-quasi-order) depend only on a bounded number of letters per domino factor. Here we develop597

a technique, called marking, that allows us to focus on such bounded sets of letters.598

In a marked permutation some of the entries, designated with overlines, are distinguished from the599

remaining entries. Generally the reason for adding marks to a permutation is to follow the marking600

with a test that identifies the presence or absence of some specific configuration among the marked601

elements. Notationally, marked permutations and sets of such permutations are indicated with602

overlines.603

Because our encodings are entry-to-entry mappings or nearly so (in the case of the domino encoding604

which maps a single entry to two letters), it is easy to define marked versions of them (which we605

also distinguish with overlines): the encoding of a marked permutation is obtained by marking606

the letter(s) of the encoding that correspond to marked entries of the permutation. Essentially we607

double the size of the alphabet, introducing a marked version of each non-punctuation letter. For608

instance, the marked omnibus encoding ω maps marked gridded permutations to words whose letters609

are either marked or unmarked positive integers. The marked domino encoding δ similarly maps610

marked gridded permutations to {◦, •, ◦, •,#}∗.611

We denote by Lηc the marked version of Lηc , i.e., the set of all marked words which would lie in Lηc612

if the markings on their non-punctuation symbols were removed. Note that in these words letters613
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can be both decorated (with arrows) and marked (with overlines). Fortunately, we have no need to614

actually depict this.615

Typically we consider markings of gridded permutations such that a bounded number of entries in616

each cell are marked and then ask about the subpermutation formed by the marked entries. We617

begin with a simple example of the type of results we establish.618

In Section 3, we defined domino factors of arbitrary words in P∗. Here we extend this definition to619

arbitrary marked words in P∗, though we are interested only in the marked letters: given w ∈ P∗,620

the ith domino factor corresponding to its marked letters is defined as di = w|{1,i+1}
. Note that621

unmarked letters do not occur in di.622

Proposition 7.1. Let w ∈ L∞c . The ith domino factor corresponding to the marked letters of w is623

completely determined by the subword of ηc(w) consisting of those letters in panel factors pi−c+1,624

pi−c+2, . . . , pi that are marked or decorated (or both), along with the punctuation symbols between625

them.626

Proof. By Observation 5.1, the letters i and i+1 (and their marked versions) may only be encoded in627

the panel words pi−c+1, pi−c+2, . . . , pi. The result now follows immediately from Proposition 5.2.628

In fact we need stronger results than that above. We want to translate one encoding into another,629

restricting to marked entries. For this we use transducers. A transducer is a finite-state automaton630

(not necessarily deterministic) that may produce output while reading. Thus given an input alphabet631

Σ and an output alphabet Γ, each transition of a transducer has both an input symbol a ∈ Σ∪{ε} and632

an output symbol b ∈ Γ∪{ε}. If the transducer T has an accepting computation on reading w, then633

the output of that computation is the word formed by concatenating the output symbols associated634

with the transitions performed (in the same order as those transitions). No output is associated635

with non-accepting computations. Note that output is associated to a specific computation, so for636

non-deterministic transducers the same input word w may yield multiple outputs.637

A simple and illustrative example is the transducer with input alphabet Σ and output alphabet Σ638

which marks precisely one letter of its input. This transducer can be defined using an underlying639

automaton defined by the following three properties.640

• It has an initial non-accepting state that has transitions to itself whose input/output pairs are641

a/a for each a ∈ Σ.642

• It has a second state, which is accepting, that also has transitions to itself whose input/output643

pairs are a/a for each a ∈ Σ.644

• There are transitions from the first to the second state whose input/output pairs are a/a for645

each a ∈ Σ.646

We use functional notation, so if T is a transducer and X is a set of words (of the appropriate647

alphabet for T ) then T (X) is the set of words output by T while reading the words of X (which648

could be empty if none of the words of X are accepted by the underlying automaton). As usual,649

when X is a singleton we generally omit set braces and write T (w). We utilise the following basic650

facts about transducers.651
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• If X is a regular language and T is a transducer, then T (X) is again a regular language.652

• Conversely, if Y is a regular language then the preimage T−1(Y ) = {x : T (x) ∩ Y 6= ∅} is653

regular as well.654

• The composition of two transducers is again a transducer.655

For further details see, for example, Sakarovitch [28, Chapter IV].656

For our next result we must make another definition. Given a marked word w ∈ L∞, the domino657

encoding of the word formed by its marked letters is658

d
•
0#d

•
1# · · ·#d•m#,659

where m is the maximum value of a marked or unmarked letter of w, each di is the ith domino factor660

corresponding to the marked letters of w defined previously, and d
•
i is the translation of di to the661

alphabet {◦, •} formed by replacing i by ◦ and i+ 1 by •.662

Proposition 7.2. For every fixed integer k there is a transducer that, given the panel encoding663

ηc(w) of a marked word w ∈ L∞c with at most k marked copies of each symbol, outputs the domino664

encoding of the word formed by its marked letters.665

Proof. Given a panel word, p, its stripped form is the subword consisting of all marked or decorated666

letters. Since the bound on the number of marked copies of any symbol implies a bound on the667

number of marked entries in each panel word, and the number of decorated entries in a panel word is668

bounded in any case, there is a finite set of stripped panel words that can arise from panel encodings669

of ηc(w). We view this set as a new alphabet. We then transduce ηc(w) into the word over this670

alphabet determined by replacing each panel word by the single letter corresponding to its stripped671

form, deleting (i.e., not transcribing) the punctuation symbols as we proceed. We call the resulting672

word the stripped form of ηc(w).673

Given an arbitrary alphabet Σ, a positive integer c, and a placeholder symbol · not in Σ, we form674

the alphabet Γ = (Σ ∪ {·})c and a transducer from Σ∗ to Γ∗ that maps u ∈ Σ∗ to a word v in Γ∗675

of the same length with v(i) = (u(i− c+ 1), u(i− c+ 2), . . . , u(i)) (replacing references to symbols676

of negative index by ·). Applying this transducer to the stripped form of ηc(w) gives a word whose677

symbols correspond to the sequences of c consecutive stripped panel words of ηc(w). Proposition 7.1678

shows that the stripped forms of the marked panel words pi−c, . . . , pi−1 determine the ith domino679

factor for the marked letters of w, so one final transducer that replaces each such sequence by its680

corresponding domino factor completes the process.681

Up to this point we have been working with Lηc , a regular language that is in one-to-one correspon-682

dence with L∞c , the language of words w ∈ P∗ that satisfy the small ascent condition and contain no683

shift of (12 · · · c)c. Recall that G∞ is the image of the greedy griddings of 321-avoiding permutations684

under the omnibus encoding ω. We define two additional languages:685

G∞c = G∞ ∩ L∞c and Gηc = ηc(G∞c ).686

It is our principal goal in this section to prove that Gηc is regular, i.e., that the panel encodings687

of omnibus encodings of greedy staircase griddings can be recognised by a finite automaton. By688
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Observation 3.2 and the results of the previous section, this is equivalent to showing that the set of689

ηc encodings of words in L∞c that satisfy (ωG1) and (ωG2) can be recognised by a finite automaton.690

Note that these two conditions apply only to the first and last occurrence of each letter. Furthermore,691

the first (resp., last) occurrence of each letter in a word w ∈ L∞ will also be the first (resp., last)692

occurrence of the corresponding letter in some panel word of ηc(w). Therefore our first step is to693

describe a transducer which marks the first and last letter of each value in every panel word of ηc(w).694

Proposition 7.3. There is a transducer that, given w ∈ Lηc , outputs a marked panel encoding w in695

which the first and last entries of each value in each panel word are marked.696

Proof. It suffices to define the operation of such a transducer on a single panel word—the full trans-697

ducer can then be built by non-deterministically looping back to the initial state when a punctuation698

symbol is read. In turn it suffices to construct such a transducer for each individual value k of a699

letter from 1 through c− 1 (since these can then be composed to give the required transducer). The700

transducer defined by the following properties performs this task.701

• The initial state, start, is an accepting state.702

• In any state the transducer transcribes all input that is not a k (that is, outputs the same703

symbol as the input symbol) and remains in the current state.704

• When (or if) the transducer first encounters a k, it outputs k and enters either state seenfirst705

or seenlast (non-deterministically).706

• In state seenfirst (which is non-accepting) if the transducer encounters a k it either transcribes707

it and remains in state seenfirst, or outputs k and enters state seenlast.708

• In state seenlast (which is accepting) if the transducer encounters a k then it fails, resulting in709

no output (this can be implemented by way of a state fail which has no further transitions).710

Note that in the case k = 1, some of the occurrences of 1 in the input word may be decorated with711

arrows—the transducer retains those arrows as well as possibly adding marking.712

Propositions 7.2 and 7.3 give us the machinery we need in order to verify compliance with conditions713

(ωG1) and (ωG2), allowing us to prove the main result of the section.714

Proposition 7.4. For every positive integer c, the language Gηc is regular.715

Proof. Let T denote the composition of the transducers from Propositions 7.3 and 7.2. Thus given716

an encoding w ∈ Lηc , T first marks the first and last entry of each value in each panel and then717

outputs the domino encoding of the word formed by these marked letters. Note that T produces718

precisely one output for each w ∈ Lηc , so we denote this output by T (w), temporarily neglecting our719

convention that transducers always output sets. Also note that T (w) contains (in addition to other720

letters) the first and last occurrence of each letter of w. Therefore T (w) provides enough information721

to allow us to decide whether w satisfies the conditions (ωG1) and (ωG2).722

We claim that Gηc is the intersection of Lηc and T−1(R), where R is a regular language. Every domino723

in T (w) has at most 2c− 2 occurrences of each letter (a first and last occurrence of the letter in all724

c− 1 panel words it could be encoded in). Thus there is a finite set ∆ of dominoes which occur in725



Rationality For Subclasses of 321-Avoiding Permutations 23

the domino encodings output by T . We may therefore consider ∆ itself to be the output alphabet726

and ignore the punctuation symbols (which are superfluous at this point), so that T (w) ∈ ∆∗ for all727

w ∈ Lηc .728

Now we need to check whether w satisfies (ωG1) and (ωG2). These conditions translate to simple729

conditions on the dominoes of T (w): each domino other than the first must begin with ◦, and730

each domino other than the first and last must contain the subword •◦. Let R ⊆ ∆∗ denote the731

language of domino encodings which satisfy these conditions. Clearly R is regular, and it follows732

that Gηc = Lηc ∩ T−1(R), completing the proof.733

8. Detecting Basis Elements734

The results of the previous sections establish that, for each positive integer c, the set of 321-avoiding735

permutations such that the omnibus encodings of their greedy griddings do not contain any shift736

of (12 . . . c)c is in bijective correspondence with the regular language Gηc . We have also observed737

in Proposition 4.2 that for any proper subclass C ( Av(321) there is a positive integer c such that738

ω(π]) ∈ G∞c for all greedy griddings π] of permutations π ∈ C and hence the panel encodings of these739

omnibus encodings are contained in Gηc . To complete our goal of showing that any such finitely based740

class has a rational generating function, we need to show how to detect avoidance (or, equivalently,741

containment) of specified permutations within the panel encodings, while maintaining regularity.742

The difficulty we are facing is that none of the three encodings we have used thus far—the omnibus743

encoding, its composition with the panel encoding, and the domino encoding—provide an easy way744

to test containment. To overcome this difficulty we resort again to the technique of marking, but745

this time we transduce the marked subpermutation to yet another encoding, namely the Dyck path746

encoding. This encoding—which was essentially described in the Introduction and illustrated on747

the right of Figure 1—consists of constructing a Dyck path whose outer corners lie just outside748

the left-to-right maxima of the permutation. We turn the resulting Dyck paths into words over749

the alphabet {u, d} in the standard way. For instance, the Dyck path encoding of the permutation750

31562487 depicted in Figure 1 is u3d2u2dud3u2d2.751

Proposition 8.1. For every fixed positive integer k there is a transducer that, given the domino752

encoding of a staircase gridding of a 321-avoiding permutation π with at most k entries per cell,753

outputs the Dyck path corresponding to π.754

Proof. As in the proof of Proposition 7.2 the bound on the number of entries per cell means that we755

may view the domino factors as letters themselves coming from a finite alphabet. In fact, borrowing756

another idea from the same proposition, we can view triples of consecutive translated domino factors757

d•2i−1, d•2i, d
•
2i+1 (including padding at the beginning and end by empty domino factors) as individual758

letters. The reason for doing this is that we will show that we can compute the part of the Dyck759

path determined by the left-to-right maxima lying in the 2ith and (2i+ 1)st cells from such a triple.760

Thus our transducer need only examine these triples in turn, and output the appropriate segment761

of a Dyck path for each one. This is illustrated in Figure 8.762

To justify the claim we note that the information encapsulated in d•2i−1, d•2i, d
•
2i+1 completely763

determines the relative values and positions of all entries in the (2i−1)st through (2i+2)nd cells. In764

particular it determines the left to right maxima in the (2i)th and (2i+ 1)st cells, and their relative765
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Figure 8: Upon reading the triple of domino factors shown in the top left, the transducer
of Proposition 8.1 can compute the partial permutation shown on the right, and output the
steps of the Dyck path passing through the 2nd and 3rd cells, duduuududduuudd.

positions with respect to the entries to the right and below them, all of which can be found in the766

(2i)th and (2i+ 2)nd cells. The final entry in the (2i−1)st cell (which is automatically a left to right767

maximum) indicates the entry point of the Dyck path into the (2i)th cell. (If the (2i − 1)st cell is768

empty the path enters through the bottom left corner.) From the entry point, the path proceeds as769

dictated by the left to right maxima in the (2i)th and (2i+ 1)st cells and the entries to the right and770

below them.771

For any β ∈ Av(321) and positive integer c we now define Gηc,≥β to be the set of all encodings772

ηc(ω(π])) such that773

• π] is the greedy encoding of π,774

• π contains β, and775

• ω(π]) avoids all shifts of (12 · · · c)c.776

The transducer from our previous proposition shows that this is a regular language:777

Proposition 8.2. The language Gηc,≥β is regular.778

Proof. Let k denote the length of β. There is a non-deterministic transducer that takes words in779

Lηc as input and outputs marked forms that contain exactly k marked letters. Denote by T the780

composition of that transducer and the one defined in Proposition 7.2 (which allows for up to k781

copies of each symbol) followed by the transducer described in Proposition 8.1. Further let Xβ782

denote the singleton set whose only element is the word over the alphabet {u, d} that represents the783

Dyck path corresponding to β.784

Since T takes as input the panel encoding of the greedy gridding of a 321-avoiding permutation,785

marks exactly k letters, and outputs the Dyck path encoding of the marked letters, the panel786

encoding of some permutation π belongs to T−1(Xβ) ∩ Gηc if and only if β is contained in π. Thus787

Gηc,≥β = T−1(Xβ) and, being the preimage of a regular language (any singleton is regular) by a788

transducer, is itself regular.789
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We have finally reached the point where we can prove the first half of our main result.790

Proof of Theorem 1.1 (for finitely based subclasses). Suppose that the basis of a class C is the finite,791

nonempty, set B. Take any positive integer c such that ω(π]) ∈ G∞c for all greedy griddings π] of792

permutations in C (the existence of such a value of c is guaranteed by Proposition 4.2). Then the793

set of panel encodings, Gηc,C , of members of C is794

Gηc,C = Gηc \
⋃
β∈B

Gηc,≥β .795

This is a regular language owing to Propositions 7.4 and 8.2 and the closure of the family of regular796

languages under Boolean operations. Therefore C is in one-to-one correspondence with a regular797

language. Moreover, if π ∈ C has length n then its image under the correspondence contains n798

non-punctuation symbols. The generating function of a regular language over commuting variables799

corresponding to its letters is a rational function and we can obtain the generating function for C800

from that for Gηc,C by replacing the variable corresponding to the punctuation symbol # by 1, and801

those variables corresponding to non-punctuation symbols by x, so the generating function of C is802

rational.803

9. Well-Quasi-Ordered Subclasses804

It remains to prove the second half of Theorem 1.1, namely that every well-quasi-ordered subclass805

of 321-avoiding permutations has a rational generating function. This proof breaks naturally into806

two parts. First we identify a necessary and sufficient condition for a subclass of Av(321) to be807

well-quasi-ordered. Then we show, using arguments similar to those in the preceding section, that808

this condition implies regularity of the corresponding languages. For the first part we identify a809

particular antichain U ⊆ Av(321). Obviously, for a class C ⊆ Av(321), C ∩ U must be finite. It810

happens that this condition is also sufficient. We begin with some preparatory remarks.811

A permutation π is said to be sum decomposable if it can be written as a concatenation αβ where812

every entry in the prefix α is smaller than every entry in the suffix β. If π has no non-trivial partition813

of this form then it is said to be sum indecomposable. We may in this way interpret an arbitrary814

permutation as a word over its sum indecomposable components (sum components for short).815

Moving to a more general context, given a poset (P,≤), the generalised subword order on P ∗ is816

defined by v ≤ w if there are indices 1 ≤ i1 < i2 < · · · < i|v| ≤ |w| such that v(j) ≤ w(ij) for all j.817

The following well-known result connects the well-quasi-ordering of P and P ∗.818

Higman’s Lemma [19]. If (P,≤) is well-quasi-ordered then P ∗, ordered by the subword order, is819

also well-quasi-ordered.820

Returning to the context of permutations (and the containment order defined on them), Higman’s821

Lemma easily implies the following result. (For more details we refer the reader to Atkinson, Murphy,822

and Ruškuc [11, Theorem 2.5].)823

Proposition 9.1. Let C be a permutation class. If the sum indecomposable members of C are824

well-quasi-ordered, then C is well-quasi-ordered.825
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Figure 9: A double-ended fork.
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Figure 10: The different types of members of U , shown with both their inversion graphs and
associated Dyck paths.

The identification of the antichain U requires a short digression related to a connection between826

permutations and graphs. Given a permutation π, the inversion graph corresponding to π is the827

graph Gπ on the (unlabeled) vertices {(i, π(i))} in which (i, π(i)) and (j, π(j)) are adjacent if they828

form an inversion, i.e., i < j and π(i) > π(j). As each entry of π corresponds to a vertex of Gπ, we829

commit a slight abuse of language by referring (for example) to the degree of an entry of π when830

we mean the degree of the corresponding vertex of Gπ. Note that the graph Gπ is connected if and831

only if π is sum indecomposable.832

If σ is a subpermutation of π, then the induced subgraph of Gπ on the entries corresponding to a833

copy of σ is isomorphic to Gσ. Thus the image of a permutation class under the mapping π 7→ Gπ is a834

class of inversion graphs closed under taking induced subgraphs. In particular, as occurrences of 321835

in π correspond to triangles in Gπ and no inversion graph may contain an induced cycle on 5 or more836

vertices, the 321-avoiding permutations correspond to bipartite inversion graphs. More importantly837

for our purposes, the inverse image of an antichain of graphs (in the induced subgraph ordering) is838

an antichain of permutations. Note incidentally that this is true even though the mapping π → Gπ839

is not injective (in particular, Gπ ∼= Gπ−1 for all permutations π). These graphs have previously840

been studied in the context of well-quasi-order by Lozin and Mayhill [23], although we do not require841

their results here.842

Let us consider permutations whose graphs are isomorphic to paths on n ≥ 4 vertices. By direct843

construction it is easy to verify that there are precisely two such permutations of each length, which844

we call increasing oscillations:845

2416385 · · ·n(n− 3)(n− 1), 3152749 · · · (n− 4)n(n− 2) if n is even, and
2416385 · · · (n− 4)n(n− 2), 3152749 · · ·n(n− 3)(n− 1) if n is odd.

846

A double-ended fork is the graph formed from a path by adding four vertices of degree one, two847

adjacent to one end of the path and two adjacent to the other. An example is shown in Figure 9. It848

is clear that the set of double-ended forks is an antichain of graphs in the induced subgraph ordering.849

Let U denote the set of all permutations π for which Gπ is isomorphic to a double-ended fork. As in850
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Figure 11: Two situations which arise in the proof of Proposition 9.2.

the case of increasing oscillations, direct construction shows that there are four slightly different types851

of members of U , depicted in Figure 10. By inspection U ⊆ Av(321), which also follows because852

double-ended forks are bipartite. By our previous remarks, it follows that U forms an infinite853

antichain. In particular, every well-quasi-ordered subclass of Av(321) must have finite intersection854

with U . To establish the other direction, we begin with the following structural result.855

Proposition 9.2. If the subclass C ⊆ Av(321) has finite intersection with U then there is a number856

` such that for all connected graphs Gπ with π ∈ C, the distance between any two vertices of degree857

three or greater is at most `.858

Proof. Suppose that C contains no members of U of length `+ 2 or longer (here length refers to the859

length of the permutation) for some ` ≥ 4 and choose π ∈ C to be an arbitrary sum indecomposable860

permutation.861

Let x and y be two entries of π of degree three or greater and suppose to the contrary that the862

distance between these vertices is greater than `, so there is a shortest path P in Gπ between x and863

y with at least ` internal vertices. Because x and y each have degree at least three, x has neighbours864

x1 6= x2 which do not lie on P and y has neighbours y1 6= y2 which do not lie on P . Because the865

distance between x and y is at least ` ≥ 4, note that neither x1 nor x2 can be adjacent to y, y1, or866

y2 (and vice versa with x and y swapped). Also, because Gπ does not contain a triangle, x1 is not867

adjacent to x2 and y1 is not adjacent to y2. If none of x1, x2, y1, or y2 are adjacent to any vertices868

of P other than x or y then P ∪{x1, x2, y1, y2} is isomorphic to a double-ended fork on at least `+ 6869

vertices (as shown on the right of Figure 11), a contradiction.870

On the other hand, if one or both of x1 or x2 were adjacent to another vertex of P then it could not871

be the vertex of P at distance one from x as this would create a triangle (a copy of 321 in π) and872

it also could not be a vertex of distance three or greater from x as this would contradict our choice873

of P (as a shortest path). Thus the only possibility would be the vertex of P at distance two from874

x, as shown on the right of Figure 11. An analogous analysis implies that if one or both of y1 or y2875

were adjacent to another vertex of P then that vertex would have to be the vertex of distance two876

from y. In any case, as indicated on the right of Figure 11, we find an induced double-ended fork877

on at least `+ 2 vertices, a contradiction which completes the proof.878

We are now ready to prove that having finite intersection with U is a sufficient condition for a879

subclass of 321-avoiding permutations to be well-quasi-ordered. By Proposition 9.1, it suffices to880

consider the sum indecomposable members of our subclass. We then use Proposition 9.2 to show881

that these sum indecomposable permutations have severely constrained structure; in particular, we882

show that it implies that “most” of their entries are confined to a bounded number of cells. This883

characterisation is then shown to be sufficient for another appeal to Higman’s Lemma, from which884

well-quasi-ordering follows.885

Theorem 9.3. A subclass C ⊆ Av(321) is well-quasi-ordered if and only if C ∩ U is finite.886
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Figure 12: The core, body and tails of a 321-avoiding inversion graph.

Proof. By our previous remarks, it suffices to show that if C ∩U is finite for a subclass C ⊆ Av(321)887

then the sum indecomposable permutations in C are well-quasi-ordered. To this end, suppose that888

C∩U is finite, choose a sum indecomposable permutation π ∈ C, and fix a particular (not necessarily889

greedy) staircase gridding π] of π. Thus every entry of π lies in some cell; we refer to the number of890

this cell as the label of the entry or corresponding vertex in Gπ.891

Because inversions in π can occur only between adjacent cells in the gridding, we conclude that the892

labels of adjacent vertices in Gπ differ by precisely 1. In particular, the distance between two entries893

of π in Gπ is bounded below by the difference of their labels. Thus by Proposition 9.2, all vertices894

in Gπ of degree three or greater have labels in some bounded interval {i, i+ 1, . . . , i+ `}, where i is895

the least label of such a vertex (if no such vertices exist, choose i = 0) and ` depends only on C. We896

refer to all entries of π in these cells as the core of π.897

We aim to partition the entries of π] into three groups: a body, comprising the core of π] together898

with some of the entries from the adjacent cells at either end, a lower-left tail, and an upper-right899

tail. The two tails will comprise the entries of π] to the southwest (respectively, northeast) of the900

core, and the graph induced by each tail will be shown to be a path.901

To define this partition, first consider the entries outside the core in Gπ. This set is naturally divided902

into two pieces: TSW, consisting of entries belonging to cells of label less than i, and TNE, consisting903

of entries belonging to cells of label greater than i+ `. Since all vertices in these pieces have degree904

at most two and the graph Gπ is connected, each consists of a disjoint union of paths. In fact, at905

most one of these paths in each piece can contain more than one vertex. Indeed, the vertices in two906

different paths within TSW, say, would each correspond to entries of π forming a copy of 21, 231,907

312, or an increasing oscillation. One of these would have to lie to the left and below the other908

(because the paths are disjoint), but then one can see that it cannot be connected to the core, and909

this contradicts the sum indecomposability of π.910

Consequently, every vertex of Gπ that does not correspond to an entry in the core either lies in one911

of two paths or is only adjacent to (at most two) vertices in the core. This latter collection of vertices912

must all lie in one of the two cells immediately adjacent to the cells that form the core, and we form913

the body of π by adding all these entries to the core (at which point the body is contained in at most914

`+ 3 cells). The entries of TSW which still lie outside the body now form a path in Gπ. This path, if915

nonempty, must contain at least two vertices as otherwise it would already be included in the body.916

If the path is nonempty, we add the vertex of this path which is adjacent to the core to the body917

and call the remaining vertices the lower-left tail. We then perform the analogous operation on the918

entries of TNE to form the upper-right tail. Note that the body is contained in at most `+ 3 cells at919

the end of this process.920

Our sum indecomposable permutation π now has a graph of the form shown in Figure 12 where921

each of the two tails is either absent or else contains at least one vertex outside the body which922
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is adjacent to a vertex of degree two inside the body. Note also that it is possible in our gridding923

of π that some entries of the two tails can share cells with entries of the body, but this is of no924

consequence: they are included in the tail, and not in the body.925

The subpermutation of π that makes up the body of π, together with the first point of each tail926

(i.e., the one adjacent to the body, if there is a tail) inherits a staircase gridding (which need not927

be greedy) from π] in which it occupies not more than ` + 3 cells. This means that the body has928

a gridding into cells 1, 2, . . . , ` + 3 or 2, 3, . . . , ` + 4 depending on the parity of the first cell in the929

inherited gridding. Denote the omnibus encoding of this gridding of the body by wπ; this is a word930

over the alphabet {1, 2, . . . , `+ 4}.931

We now form a marked version of wπ. The lower tail of π has length tπ
]

SW ≥ 0, while the upper tail932

has length tπ
]

NE ≥ 0. If tπ
]

SW (resp. tπ
]

SE) is non-zero, then there is a unique entry in the body which is933

adjacent to an entry of the lower (resp. upper) tail. We mark the letter of wπ which corresponds to934

this entry with an underline (resp. overline), and denote the resulting marked version of wπ by wπ.935

The relative positions between all entries of the body and the two tails are now determined by wπ,936

though the lengths of the tails are not captured in this word.937

Let Σ be the extended alphabet consisting of the symbols {1, 2, . . . , ` + 4} together with over-938

and underlined versions of each. The discussion above defines an injective mapping from sum939

indecomposable permutations in C to Σ
∗ × N× N given by940

π] 7→ (wπ, t
π
SW, t

π
NE).941

Define an ordering on Σ
∗ × N× N by taking product of the subword ordering on Σ

∗
and the usual942

orderings on the two copies of N. Because Σ
∗

is well-quasi-ordered by Higman’s Lemma and the943

product of well-quasi-orders is again well-quasi-ordered, Σ
∗×N×N is well-quasi-ordered. Moreover,944

if (wσ, t
σ
SW, t

σ
NE) ≤ (wπ, t

π
SW, t

π
NE) in this ordering then σ ≤ π as the comparability on the first945

coordinate implies that the body of σ embeds into the body of π in a way preserving the relative946

positions of the entries adjacent to the two tails (a consequence of Observation 3.3). The inequality947

of tail lengths then allows for the entire embedding of σ into π to be completed. Hence, with respect948

to subpermutation ordering, the sum indecomposable members of C are well-quasi-ordered, and so949

C is as well by Proposition 9.1.950

We now turn to the second half of the argument—that all well-quasi-ordered subclasses of Av(321)951

are encoded by regular languages. Guided by Theorem 9.3, we would like to check the involvement952

of sufficiently long members of U in a subclass C by considering the encodings (ηc ◦ω)(π]) of greedy953

griddings of members of C and an appropriate value of c. To achieve this, we resort once more to954

the Dyck path encodings. First, as indicated in Figure 10, it is easy to see that the Dyck path955

encodings of members of U form a regular language—outside of bounded prefixes and suffixes these956

words consist of repetitions of u2d2.957

In fact we are interested in the encodings of sets U≥q for q ∈ P, consisting of permutations in U of958

length at least q. Noting that U \ U≥q is finite for every value of q we obtain the following.959

Proposition 9.4. For any positive integer q, the language of Dyck paths corresponding to the960

members of U≥q is regular.961

As demonstrated in Figure 13 it is impossible for a cell of a staircase gridding of an increasing962

oscillation to contain four or more entries. As every member of U is formed by adding two entries963
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Figure 13: In any staircase gridding of an increasing oscillation, there can be at most three
entries in a cell.

to an increasing oscillation, it follows that in every staircase gridding of a member of U each cell964

may contain at most five entries. In particular, if an element µ ∈ U occurs as a subpermutation of965

π ∈ Av(321) with greedy gridding π] ∈ G∞c , and if we mark the letters of ηc(ω(π])) corresponding966

to any one copy of µ in π, no more than 5(c − 1) occurrences of each letter will be marked by967

Observation 5.1.968

Proposition 9.5. Let q be a positive integer and set Wq = Av(321)∩Av(U≥q). Further take c to be969

any positive integer such that the omnibus encodings of all greedy staircase griddings of members of970

Wq are contained in G∞c (such a value of c is guaranteed to exist by Proposition 4.2). Then Gηc,Wq
,971

the set of panel encodings of members of Wq, is regular.972

Proof. Combining Proposition 7.2 and Proposition 8.1 there is a transducer T that, when operating973

on panel encodings from Gηc , outputs the Dyck paths corresponding to subpermutations of the974

encoded permutation whose entries correspond to at most 5(c − 1) copies of each symbol. The975

language of Dyck paths corresponding to the members of U≥q, say D, is regular by Proposition 9.4.976

Finally, Gηc,Wq
is the complement in Gηc of the preimage under T of D, and so is also regular.977

We can now prove the second half of our main result.978

Proof of Theorem 1.1 (for well-quasi-ordered subclasses). Using Theorem 9.3, choose a positive inte-979

ger q such that C contains no element of U≥q, i.e., C ⊆ Wq, and choose c according to Proposition 4.2980

so that the omnibus encodings all members of Wq are contained in G∞c . The minimal members of981

Wq \ C form an antichain, say B ⊆ Wq, which is finite because Wq is well-quasi-ordered. Thus we982

have983

Gηc,C = Gηc,Wq
\
⋃
β∈B

Gηc,≥β984

and, as all parts of the right hand side are known to be regular (by Propositions 8.2 and 9.5) and985

B is finite, we may conclude that Gηc,C is regular. It follows that the generating function for Gηc,C ,986

which is equal to that of C, is rational.987
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10. Conclusion988

While we opened the paper by emphasising the differences between the two Catalan permutation989

classes defined by avoiding 312 and 321, respectively, our main result shows that they do share a990

remarkable property. Every finitely based or well-quasi-ordered proper subclass of either of these991

classes has a rational generating function. Of course, stating the result in this way obscures a serious992

difference: all subclasses of the 312-avoiding permutations are both finitely based and well-quasi-993

ordered.994

One interested in actually computing these generating functions will notice an even more striking995

difference. While computing the enumeration of subclasses of 312-avoiding permutations is essen-996

tially trivial (as outlined in [1]), for subclasses of 321-avoiding permutations the enumeration method997

we have presented appears to be impractical.998

Another context in which the differences between these classes are readily apparent is that of Wilf-999

equivalence. Two permutation classes C and D are said to be Wilf-equivalent if they are equinumer-1000

ous, i.e., |Cn| = |Dn| for all n. For classes defined by avoiding 312 and a single additional restriction,1001

Albert and Bouvel [5] have provided a conjecturally complete classification of the Wilf-equivalences.1002

However, while there are some enumerative coincidences among classes defined by avoiding 321 and1003

a single additional restriction, empirically there does not appear to be anywhere near the same1004

amount of collapse (into a small number of Wilf-equivalence classes). A related result was proved by1005

Albert, Atkinson, Brignall, Ruškuc, Smith, and West [3], who gave some sufficient conditions for the1006

classes of {321, α}- and {321, β}-avoiding permutations to have the same exponential growth rate.1007

We believe that the techniques introduced in this work—especially the panel encoding of Section 5—1008

will find many more applications. To introduce these we first observe that in the language of1009

geometric grid classes [2, 8, 13], the 321-avoiding permutations form the grid class of the infinite1010

matrix1011 
...

...

1 1
1 1

1 1

.1012

This is equivalent to the observation, made at the end of Section 2, that the 321-avoiding permuta-1013

tions are precisely those that can be drawn on two parallel rays (see the first picture in Figure 14).1014

While a great deal is known about geometric grid classes, the present work can be viewed as an1015

initial attempt to extend that theory to infinite matrices (another initial attempt in this direction1016

is [6]). One aspect of the infinite geometric grid class view of 321-avoiding permutations that seems1017

particularly important is that the cells can be labelled so that cell i interacts only with cells i−1 and1018

i+1, in the sense that the relative positions and values of any two entries in cells whose indices differ1019

by more than one depend only on the indices of the cells, giving the class a “path-like” structure.1020

It would therefore be natural to attempt to extend the results established here to other infinite1021

geometric grid classes possessing a similar structure. Two more examples are given by the second1022

and third pictures shown in Figure 14.1023

The class corresponding to the second picture of Figure 14, which we call the negative staircase,1024

demonstrates one reason why our techniques cannot be translated automatically to all path-like1025

geometric grid classes. Indeed, while greedy staircase griddings are easy to describe for the 321-1026

avoiding staircase, the issue is not so clear-cut for the negative staircase. To see this, consider the1027
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Figure 14: The 321-avoiding staircase, the negative staircase, an infinite spiral, and a thickened
staircase.

permutations 4123 and 2341. Both of these permutations can be drawn on the negative staircase,1028

as demonstrated below.1029

•

•
• •

• •
•

•
1030

Moreover, up to shifting the choice of cells, the griddings shown above are the only negative staircase1031

griddings of 4123 and 2341. The permutation 4123 shows that we cannot take the members of the1032

first cell to consist of the maximum initial decreasing subsequence. On the other hand, 2341 shows1033

that we cannot define greedy staircase griddings by the value either. Thus any definition of greedy1034

negative staircase griddings would have to incorporate at least a slightly more global sense of the1035

permutation to be gridded than was required for the 321-avoiding staircase.1036

In dealing with either the negative staircase class or the infinite spiral class (the third picture in1037

Figure 14), one would also have to develop a replacement for the Dyck path encoding. However, we1038

do not believe this step is, in and of itself, a major impediment, as the role of the Dyck path encoding1039

is just a proxy for maintaining a set of requirements in finitely many states, and it seems clear that1040

similar devices could be developed for other classes obtained from regular path-like structures.1041

Much more serious issues present themselves if we remove the path-like condition on the occupied1042

cells; for instance, consider the class of permutations that can be drawn on the thickened staircase1043

shown on the far right of Figure 14. This class is a proper subclass of the 4321-avoiding permutations1044

and so to see that we cannot hope for a result like Theorem 1.1 in this context we need only note1045

that this class contains the class of 321-avoiding permutations. On the language level, even if we1046

could define the domino encoding in this setting, we could not impose the small ascent condition1047

on the encodings of words describing members of this class, so their encodings would not lie in L∞,1048

and thus the panel encoding could not be applied.1049

Finally, an emerging topic of interest in the general study of permutation classes has been strong and1050

broad rationality and algebraicity (see [4, 8]). While the presence of infinite antichains necessarily1051

implies that a class has subclasses whose generating functions are not D-finite, we have shown that1052

certain subclasses of the 321-avoiding permutations are nevertheless well-structured. To make this1053

notion precise we say that a class is broadly rational if it and all of its finitely based subclasses have1054

rational generating functions and/or strongly rational if this holds for all of its subclasses. Therefore1055

Theorem 1.1 shows that all proper subclasses of the 321-avoiding permutations are broadly rational.1056



Rationality For Subclasses of 321-Avoiding Permutations 33

The same counting argument as above shows that every strongly rational class must be well-quasi-1057

ordered. Thus Theorem 1.1 also implies the following.1058

Corollary 10.1. A subclass of Av(321) is strongly rational if and only if it is well-quasi-ordered.1059

This represents one more piece of evidence for the following conjecture (which is also supported by1060

the results of [4]).1061

Conjecture 10.2. A permutation class is strongly rational if and only if it is well-quasi-ordered1062

and does not contain the class of 312-avoiding permutations or any symmetry of it.1063

Acknowledgements. Significant inspiration for this research came from the work of Lozin [22],1064

who proved that while the class of bipartite inversion graphs (the inversion graphs of 321-avoiding1065

permutations) has unbounded clique-width, every proper subclass of this class has bounded clique-1066

width. We are also grateful to Michael Engen and Jay Pantone for their numerous suggestions and1067

corrections.1068

References1069

[1] Albert, M. H., and Atkinson, M. D. Simple permutations and pattern restricted permu-1070

tations. Discrete Math. 300, 1-3 (2005), 1–15.1071

[2] Albert, M. H., Atkinson, M. D., Bouvel, M., Ruškuc, N., and Vatter, V. Geometric1072
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