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Abstract

Bichain graphs form a bipartite analog of split permutatioaphs, also known as split graphs of Dilworth number 2.
Unlike graphs of Dilworth number 1 that enjoy many nice pmbies, split permutation graphs are substantially more
complex. To better understand the global structure of gglitnutation graphs, in the present paper we study their
bipartite analog. We show that bichain graphs admit a sirgptemetric representation and have a universal element
of quadratic order, i.e. a bichain graph with vertices that contains all-vertex bichain graphs as induced subgraphs.
The latter result improves a recent cubic construction dfersal split permutation graphs.
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1. Introduction

The class of bichain graphs is a generalization of chaintggafhe latter class has appeared in the literature
under various names, such as difference graphs [7] or bigelphs [5], and has been extensively studied by many
researchers, because graphs in this class enjoy many riperfies. In particular, chain graphs admit a simple
characterization in terms of forbidden induced subgrapghsse are precisel9K,-free bipartite graphs. Many
algorithmic problems that are generally NP-hard admit pofwial-time solutions when restricted to the class of
chain graphs (see e.g. [8]), which is partially due to thé flaat chain graphs have bounded clique-width [4]. Also,
graphs in this class are well-quasi-ordered by the inducegraph relation [15] and they have a small universal
element [11], i.e. a graph withn vertices containing alk-vertex graphs from the class as induced subgraphs. The
class of chain graphs also plays a critical role in the studh® speed of hereditary graph properties. In particular,
this is one the nine minimal hereditary classes whose sp&edgymptotic growth) is factorial [2].

Another minimal class with factorial speed is the class oéshold graphs. This has also received considerable
attention in the literature (see e.g. [12]) and it has mamaetive properties including bounded clique-width, well
quasi-orderability by induced subgraphs and small unaleysaphs [6]. The similarity between these two classes is
no surprise, as they are closely related. To reveal thitioakhip, observe that every threshold graph is a splitlgrap
i.e. its vertices can be partitioned into a clique and anpedeent set. If we remove the edges from the clique part of
a threshold graph, then what is left is a chain graph. Coelgrnserting all the edges in one part of the bipartition
of a chain graph yields a threshold graph. So, in a senseldbe af chain graphs is the bipartite analog of threshold
graphs.

Both classes, chain graphs and threshold graphs, have maaytant generalizations. One of them is known as
bipartite permutation graphs (generalizes chains gragid)one as split permutation graphs (generalizes threshold
graphs). The class of split permutation graphs containthedshold graphs, because threshold graphs are graphs of
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Dilworth number 1, while split permutation graphs are spiaphs of Dilworth number at most 2 [3]. This small jump
from 1 to 2 changes the situation dramatically. In particulee clique-width of split permutation graphs is unbouhde
and graphs in this class are not well-quasi-ordered by iedsabgraphs, which was recently shown in [9]. Moreover,
in the same paper it was conjectured that split permutatiaplgs constitute minimalhereditary class of unbounded
cligue-width. This property is quite rare and to date onlyp telasses possessing this property are known: bipartite
permutation graphs and unit interval graphs [10]. In botesathe proof of minimality exploits the idea of universal
graphs, because universal graphs describe a typicalsteuat graphs in the class. It is known that not every class
admits a universal element. For the two minimal classes bbunded clique-width, bipartite permutation graphs and
unit interval graphs, an-universal graph exists and for both of them it hdsertices. However, for split permutation
graphs even the existence of a universal element was an agstian until recently. In [1], this question was answered
affirmatively by constructing a split permutation graphhwit:® vertices containing all split permutation graphs with
n vertices as induced subgraphs. However, this construigioomplicated and tells us very little about the typical
structure of split permutation graphs.

To better understand the global structure of split pernmutaraphs, in the present paper we reduce the problem
to their bipartite analog. Let us repeat that a split graphgsaph partitionable into a clique and an independent set.
The edges inside the clique part of a split graph are irreligfoa the purposes of our study, because all complications
occur between the two parts. By removing the edges from theelpart of a split permutation graph we obtain a
bipartite graph which we call a bichain graph.

We formally introduce the class of bichain graphs and desoree useful properties of these graphs in Section 3.
Then in Section 4 we propose a geometric model to represgmtipi graphs. Finally, in Section 5 we constructan
universal bichain graph with? vertices. By inserting the edges in one of its parts, we alztai-universal split graph
with n? vertices, thus improving the construction proposed in fthf cubic to quadratic. Section 6 concludes the
paper by discussing some open problems related to bichdisgit permutation graphs. All preliminary information
related to the topic of the paper can be found in Section 2.

2. Preliminaries

A graphG = (V, E) has vertex set’(G) and edge seE(G). We writeuv for an edg€u, v) € E(G). We denote
by N (u) the set of neighbours efin G, and writeN[u] for the setV (u) U {u}. For a setS C V(G), we write N [S]
to denote the sét) . N[u], and writeN (S) for the setV[S] \ S.

For disjoint setsX C V(G) andY C V(G), we say thatX is completeto YV if zy € E(G) for all z € X and
ally € Y. We say thatX is anticompletdo Y if zy ¢ E(G) forall z € X and ally € Y. We denote by7[X] the
subgraph of7 induced byX, and we writeG — X for the graphG[V (G) \ X].

By 2K, we denote the disjoint union of two edges.

In a graph, an independent set is a subset of vertices no twhich are adjacent. A grap is said to be
bipartite if V' (G) can be partitioned into two independent sdts3. We say tha( 4, B) is abipartition of G and
write G = (A, B, E) to denote a bipartite graph with a bipartitioA, B) and edge seF.

We say that a set of vertices in a graph formshainif their neighbourhoods form a chain with respect to set
inclusion, i.e. if for any two vertices in the set, the neighthood of one of them includes (not necessarily properly)
the neighbourhood of the other.

2.1. Chain graphs and alternating sequences

A bipartite graph such that each part in its bipartition feranchain is called ahain graph It is well-known (and
not difficult to see) that a bipartite graph is a chain grapmid only if it is2 K>-free, i.e. it does not conta2i(, as
an induced subgraph. From this it follows, in particulagtth chain in one part of a bipartite graph implies a chain
in the other part, i.e. a bipartite graph is a chain graphdf anly if at least one of its parts forms a chain. Below we
provide an alternative characterization of chain grapbghis end, we introduce the following definition.

A sequence of vertices,, us, ..., u; in a bipartite graptG = (A, B, E) is called analternating sequenci
u; € Aandu;u; 1 € E for all oddi, andu; € B andu,u;+1 ¢ E for all eveni. We say that an alternating sequence
uq, ..., us consists of edges;u;,; for oddi, and non-edges; 1 u; for eveni.
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An alternating sequeneg, .. ., us, ug41 IS closedif u; = ugq 1. This implies that is even (sincei; € A and so
urp1 = up € A), and thug > 4 (sinceu;us is an edge while:; 1 u; is not).

For instance, for the graph in Figure 1, the sequencé., a4, b3, a1 is a closed alternating sequence, where
a1bs, asbs are the edges of this sequence, apl, a1 b3 are the non-edges of this sequence.

Lemmal. A bipartite graphG is a chain graph if and only ifx contains no closed alternating sequence.

PROOF (<) We prove the contrapositive. Lét is a bipartite graph with bipartitio(A4, B). Suppose thaf: is
not a chain graph. The@ contains an inducefK5, i.e. G contains vertices, z € A andv,w € B such that
wv, zw € E(G) anduw, vz € E(G). We see that, v, z, w, u is a closed alternating sequencef

(=) For contradiction, assume th&t is a chain graph but contains a closed alternating sequengcs.
u1,. .., us, ur4q be a shortest such sequence. Recallthat w11 andu; € A, uu;41 € E(G) if 4 is odd, while
u; € B, u;u;+1 € E(G) if ¢ is even. Moreover, is even and > 4. If uyuy ¢ E(G), then the vertices;, uq, us, uq
are all distinct and induce 2K, in G. Indeed, we have;,us € A, us,us € B, andujus, usus € E(G) while
ugusz, urug € E(G). This is impossible, sinc€ is a chain graph. So we concludeuy € E(G). This implies that
t > 4, sinceujus = uprur € E(G). Thust > 6, sincet is even. But nowuy, ug, us, . .., ury1 1S also a closed
alternating sequence 6f, contradicting the minimality of;1, . . . , us41. O

3. Bichain graphs

In this section, we introduce the main notion of the paperhain graphs, and derive a number of properties of
these graphs.

We say that a bipartite graph isbé&chain graphif each part in its bipartition can be split into at most twaits.
In other words(G = (A, B, E) is a bichain graph ifd can be partitioned intel;, A, and B can be partitioned into
By, B, such that for each € {1,2}, bothG — A; andG — B; are chain graphs. We say thad;, A, B1, B2) is a
bichain partitionof G. Figure 1 represents an example of a bichain graph with @tea partition4; = {a1, a2},
Ay ={as, a4}, By = {b1,ba}, By = {b3,b4}.

b1 bg b3 b4
[ ] [ ]
AKX
al ag as a4

Figure 1: Example of a bichain graph and its diagonal repitesien.

A bichain partition(A;, A2, By, B2) of G is specialif
(x) forallu € A;,v € As and allz € N(u) \ N(v) andy € N(v) \ N(u), we haver € B, andy € Bs.
(Note that this simply excludes the possibility that B, andy € B;.)

Lemma 2. If G is a bichain graph, then there exists a special bichain piarti of G.

PROOF Suppose thaf = (A, B, E) is a bichain graph, and I1¢t4;, A;, By, Bs) be an arbitrary bichain partition of
G.
For verticesu € Ay, v € Ay, andz € N(u) \ N(v),y € N(v) \ N(u), we say(u, v, z,y) is aparallel 2K, if
x € By andy € Bs, and we say thatu, v, x, y) is acrossing2Ks if « € By andy € By.
For each € {1, 2}, letC; denote the set of all vertices &%; that belong to a crossir2j<,. Let D, denote the set
of all vertices ofB; that belong to a parall@K,. We have the following property.
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Claim 2.1: C; N D; =  for eachi € {1,2}.

By symmetry, it suffices to prove the claim for= 1. Suppose that there existsc C; N D;. This means that there
are verticesy, u’ € Ay, v,v’ € Ay, andy, 2’ € By (possiblyu = v’ orv = v’ ory = 2’) such that(u, v, z, y) is
a parallel2 K> while (v/,v',2’, x) is a crossin@ K>. Namely, we have: € N(u) \ N(v) andx € N(v') \ N(u)
whiley € N(v) \ N(u) anda’ € N(u') \ N(v'). Observe that: # v’ andv # v’, sincex € N(u) \ N(u’) and
x € N(W')\ N(v). If va’ € E(G), then the vertices, v, z, 2’ induce &K in G — A;. To see this, note that#£ v’
andv'z € E(G), whilevz,v'z’ ¢ E(G). This is impossible, so we must conclude that ¢ E(G). Similarly, if
uz’ ¢ E(QG), then the vertices, v/, z, 2’ induce &K, in G — A,. Thus we conclude thatr’ € E(G). This implies
thaty # 2/, sinceu € N(2') \ N(y) andv € N(y) \ N(z). But that also means that the vertiees, 2’, y induce a
2K, in G — By, a contradiction. This proves Claim 2.1.

Now we define a new partition df (G) as follows. LetB] = (B; \ C1) Uy, and letB} = (B3 \ C2) UCy. We
show that(A4,, Az, B, B5) is a bichain partition ofz and it satisfiegx). This will imply the lemma.
Recall that for each € {1,2}, bothG — A; andG — B; are chain graphs.

Claim 2.2: G — B! is a chain graph for each € {1, 2}.

By symmetry, it suffices to prove the claim for= 1. Suppose thatf — B) contains an induce@lK, on vertices
u, v, z,y. Namely, we have:, v € A andx,y € B} wherez € N(u) \ N(v) andy € N(v) \ N(u). If z,y € By or
x,y € Bs, thenG — By or G — B is not a chain graph, impossible. Thus by symmetry, we maymasghat: € B
andy € Bs. Sincez,y ¢ B} = (B; \ C1) U (s, this means that € C; andy € By \ Cs.

Now, if u,v € A; oru,v € As, thenG — As or G — A, is not a chain graph, impossible.dfe A; andv € As,
then (u, v, z,y) is a paralle2K,. This means that € D,, but we assume € C; which contradicts Claim 2.1,
Thereforeu € As andv € A;, which means thafv, u, y, x) is a crossin@K». This implies thaty € C5, but we
assume thag € B, \ C5, impossible. This proves Claim 2.2.

From Claim 2.2 we deduce thatl,, A2, Bi, BS) is indeed a bichain partition a¥. It remains to show that it
satisfies(x). Suppose not. Then there are vertiees A;, v € Az, z € N(u) \ N(v), y € N(v) \ N(u) such that
x € Bl andy € Bj. First, we show that: ¢ C;. Suppose that € C;. If y € By, thenG — B is not a chain graph
because of the K, on verticesu, v, z,y. Thusy € B, which means thatu, v, z, y) is a paralleRK,. This implies
x € Dy, butwe assume € (1, contradicting Claim 2.1. Therefore¢ C; and hence € B, \ (s, since we assume
x € By = (B2 \ C2)UC,. Ifalsoy € By, thenG — By is nota chain graph. Spe B; which means thatu, v, x, y)
is a crossin@K». This impliesz € Cs but we assume € B, \ Cs, a contradiction. Therefore, no such vertices
u, v, z,y exist which proves thatd,, A,, B}, BS) indeed satisfiesx).

That concludes the proof. O

3.1. Characterizing special bichain partitions

We say that an edge (non-edge) of GG is a crossing edge (non-edge)ith respect to a bichain partition
(Al,AQ,Bl,Bg) of Gif u e Ay andv € By, orif u € Ay andv € Bj.

We say that a closed alternating sequencé' @ bad with respect to a bichain partitio;, As, By, Bs) if the
sequence contains more crossing edges than crossing ges-@dth respect to this partition).

For instance, consider the graph in Figure 1 and the bichaititipn A; = {a1,a2}, A2 = {as,as}, B1 =
{b1,b2}, Bo = {bs,bs}. The sequence,, b, a4, b3, a; contains 2 crossing non-edges with respect to this partitio
namelya4bo, a1 b3, and has no crossing edges (both its edgés, a4bs are not crossing).

Lemma 3. Let G be bichain graph. Then a bichain partition 6f is a special if and only if no closed alternating
sequence off is bad with respect to this partition.

PROOF (<) We prove the contrapositive. Consider a bichain partifidn, A, B1, B2) of G and assume that it is
not special. This means that there exist A, v € Ay andx € N(u)\ N(v),y € N(v)\ N(u) such that ¢ B; or

y € Bs. Note thatr, y € By U B, and the vertices, x, v, y are all distinct and induce®k, in G. Thus ifz, y € By,
thenu, z, v,y induce a2K> in G — By, and ifz,y € Bs, thenu, z, v,y induce 2K, in G — B;. Since neither is
possible (becaudel;, As, By, B) is a bichain partition) and sinee¢ B; ory ¢ B, we must conclude that€ Bs
andy € Bj. This implies thatu, z, v, y, v is a closed alternating sequence@that contains two crossing edges
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ux, vy With respect ta( A, As, B1, Bs), while neither of its non-edgesy, v is crossing. Therefor&' contains a
closed alternating sequence that is bad with respgct10A4,, By, Bs).

(=) Consider a special bichain partitidd; , A2, By, B2) of G. Suppose thaf contains a closed alternating
sequence that is bad (with respect to this partition). et . ., us, ury1 be a shortest such sequence. Recall that
U1 = ugqq andu; € A3 UAs, wiui4q € E(G) if iis odd, whileu; € By UBs, u;u+1 € E(G) if i is even. Moreover,

t is even and > 4. Sinceuy, ..., u;41 IS bad, it contains strictly more crossing edges than angsson-edges. In
particular, it contains at least one crossing edge. Withass of generality (up to cyclically renaming the vertices i
the sequence), we may assume that the edge is a crossing edge. We show that the minimalityof. . . , us11
implies that actually every edge in this sequence is crgssin

Claim 3.1: Every edge of the sequengg . . ., u;41 IS a crossing edge with respect(d;, Ao, By, Bs).

For contradiction, let be the smallest index such thafu;,, is an edge that is not crossing. Thus odd and
1 > 3, sinceujusy is a crossing edge. Without loss of generality (by symmetng) may assume that € A;. Thus
u;+1 € By, sinceu;u;41 is not crossing. Note that— 2 > 1 and so the vertices;_» andu;_; exist. Thus we have
thatu;,_ € Ay U Az andu;_su;—1 € E(G) whileu;_y € By U By andu;_ju; € E(G), sincei — 2 is odd and — 1
is even. This shows that,_5, u;—1, u;, u;41 are all distinct, andi;_ou;_1 is a crossing edge, by the minimality of

Suppose first that; _ou;, 1 iS not an edge. Then the vertices o, u;_1,u;, u; 11 induce a2Ks in G. Thus if
u;_o € Aq, thenui,g, Uj—1, Wiy Uit induce &2K5 in G — As, while if u;_o € As, thenu;_, € By, sinceu;_ou;_1
is a crossing edge. But then_o,u;_1,u;,u;11 induce a2Ks in G — Bs. Neither of these is possible, because
(A1, As, By, Bs) is a bichain partition. Therefore we must conclude thatu; 1 € E(G).

This shows thatiy, . .., u;—2, ui+1, - - ., ut+1 IS @ closed alternating sequenceafRecall thatu; o € A; U A,.
Suppose first that;,_» € A;. Sinceu;11 € Bi, the edgeu;_su;11 iS non-crossing. On the other hand, su; 1
is a crossing edge, and thug ; € B,. This means that,; _,u; is a crossing non-edge, sinag € A;. Finally,
recall thatu,;u;,1 iS @ non-crossing edge. This shows that the sequengce ., u;; contains exactly one more
crossing edge and one more crossing non-edge than the segyen ., u; o, u;11, - . . , us+1. Butthen the sequence
ULy« oy Uiz, Uit 1, - - -, U1 IS DA becausey, . . ., ugyq iS, which contradicts the minimality afy, . . ., u1.

We may therefore assume that » € A,. This implies thatu;_ou; 1 is a crossing edge, and singge_ou;—1
is also crossing, we dedueg_; € B;. Thusu,;_iu; iS @ hon-crossing non-edge, sincec A;, and we recall that
u;u;41 IS @ non-crossing edge. Thus the sequenge. ., u; s, u;y1,.. ., usr1 contains the same number of crossing
edges and non-edgesas . . ., u:+1, again contradicting the minimality af;, . . ., us41.

This proves Claim 3.1.

Using this claim, we derive a contradiction. Recall thas even, thats; = w1, and thatu,ui41 € E(G).
Thusu,u; ¢ E(G) and we can lei be the smallest even index {1, .. .,t} such thatu;u; ¢ E(G). Note that
u; € B1 U Bo, sincei is even. Without loss of generality (by symmetry), we mayass thatu; € B;.

Observe that > 2, sinceujus € E(G). Thusi > 4, sincei is even. In particular, — 2 > 2 which implies that
the vertexu;_o exists and it is distinct fronx;. From the minimality ofi, we further deduce that;u;,_» € E(G).
Also, we recall thaty;—» € By U By andu;—su;—1 ¢ E(G), sincei — 2 is even, whileu;,u;—; € 4; U A2 and
u;—1u; € E(G), sincel andi — 1 are odd. Thus the vertices, u;_o, u;_1, u; are all distinct and induce 2K in
G. By Claim 3.1, the edge;_u; is a crossing edge. Thus_; € A,, sinceu; € B;. Consequently, ifi; € A,
thenul, Ui—2, Ui—1, Uj induce 2K, in G — Ay, and ifui_g € By, thenul, Ui—2, Uj—1, Uj induce 2K, in G — Bs.
Again, neither is possible, sindel;, A2, By, Bs) is a bichain partition of5. So we must conclude that € A;
andu;_» € Bs. But now we contradictx) for the verticesu; € Ay, ui—1 € Ag, uj—o € N(u1) \ N(u;—1), and
u; € N(u;—1) \ N(u1). Therefore, the bichain partitioii;, A2, By, B2) is not special, which is a contradiction.

That concludes the proof. O

Lemmad. Let(A;, As, By, B2) be a special bichain partition aff. Then there exists an integer< o < |V(G)]
such that the following syste(d\) of inequalities in variablegz, } ,cv () has a solution:

2p — 2q < —1 forall « € A, andb € B; wherei € {1,2} andab € E(G),

2o — 2 < —1 forall a € A; andb € B; wherei € {1,2} andab ¢ E(G), (A)
2y — 20 < —ax—1 forall a € A, andb € B; wherei # j andab € E(G),

Za—2p <a—1 forall a € A; andb € B; wherei # j andab € E(G).
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a=5 Ay ={a1,a2} Ay ={as,as} Bi={b1,ba} Bo = {b3,bs}

Zay — 2p < —1 Zay — 2p, < 4
Zby — Zay < —1 Zay — 2y <4
Zby — Zay < —1 Zay — Zby <4
Zhy — Zag < —1 Zay — 2p < 4
Zay — 2py < —1 Zay — 25, < 4
2hy — Zay < —1 Zay — 2o, < 4
2by — Zaz < —1 2hy — Zay < —6
Zpy — Zaz < —1 2py — Zay < —6

Solution:  z,, =5 24, =9 243 =9 24, =5 2, =6 2, =2 zp, =3 zp, =7

Figure 2: The inequalities and directed grafitfor the graph from Figure 1.
In fact, there exists a solution, = 2., u € V(G), such that each is a positive integer and? < |V(G)|- (o +1).

PROOF Let (A1, As, By, B2) be a special bichain partition @f. We show that the systena\) has a solution for
a = |V(G)]. To this end, we construct the following directed grdplfsee Figure 2 for illustration):

— the vertices off areV(G), and
— thereis a directed arcof weightw(e) = 8 from « to v if the system Q\) contains the inequality, — z, < S.

In order to find a solution taf), we show that no directed cycle &f has negative total weight. For contradiction,
suppose thaff contains a directed cycl€' on verticesus, . ..,u; wheree; = (ug,uq) ande; = (u;,u;41) for
ie{l,...,t — 1} are the arcs of and wherezﬁ=1 w(e;) < 0. Defineuy1y = uy.

Observe that < |V (G)| = a, since all vertices o’ are distinct. By examining the system of inequalities, note
that eacke; is an arc either from a vertex of; U A, to a vertex ofB; U Bs, or from a vertex ofB; U B; to a vertex
of Ay U As. In particular, ife; = (u;, u;41) is an arc ofH from A; U As to By U B, thenu,;u;1 € E(G), while
if e; = (ui,us41) is an arc ofH from By U By to A1 U A,, thenu,u;+1 € E(G). Without loss of generality (by the
symmetry of the cycl€’), we may assume that € A; U As.

From this it follows thatuy, us, ..., us, uiy1 is a closed alternating sequence(f Moreover, observe that if
u;u;1 1S an edge of7, and it is a crossing edge with respec{tb,, A2, By, B2), thenw(e;) = —a — 1, while if it
is a non-crossing edge, there;) = —1. Similarly, if u;u;; is a not an edge af and it is a crossing non-edge with
respecttd A, As, By, Bs), thenw(e;) = a — 1, while if it is non-crossing, thew(e;) = —1.

Since(A1, Az, By, Bs) is a special bichain partition @¥, we conclude by Lemma 3 that, . . ., us, us41 IS NOt a
bad sequence with respect(td;, A2, B1, B2). This means that the number of crossing edges of this sequence is
at most the numbey,, of crossing non-edges of this sequence. Therefore we ceulatd:

t

w(e;) = Z w(e;) + Z w(e;) + Z w(e;) =

=1 uiui+1€E(G) wiuit1€E(G) C UWilig1
is crossing is crossing is not crossing

=Ye(—a=1)+mla=1)=(t—=ve =) =a(h =) —t>a—-t>0

This shows that the total weight of the cydleis non-negative, a contradiction. Thus no such a cgtkxists in
H, and soH indeed contains no directed cycle of negative total weightlaimed.

Using this fact, we construct a solution to the inequaktit®). To this end, we add an new “source” verteto H
and connect it to every other vertex by an arc of weihfto be chosen later). Then for eacte V (G), the valuez
is defined as the distance (the length of a shortest walk) frtom in this augmented graph. Clearly, sinflecontains
no cycles of negative weight, the valugsare well-defined real numbers (each shortest walk is in fabbatest path
— does not repeat vertices). Moreover, for everyeare (u, v) of H, the triangle inequality for the distance (when we
travel tov by going tou and then taking the edg® yieldsz* < z* + w(e); in other wordsz} — z* < w(e). This
shows that the values; constructed this way indeed form a solutian= z; to (A).
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Finally, by takingM = |V (G)|- (e + 1), we make sure that< z* < |V(G)|- (a+ 1) for eachu € V(G), since
no shortest walk irf{ repeats vertices and smallest negative weight of an aft im—(« + 1). Moreover, since the
weights of all arcs irff are integers, it follows that eaclj is also an integer. This completes the proof. d

4. Diagonal representations

In this section, we introduce a geometric model for bichaaphs, which we call diagonal representation.

A diagonal representatiof G is an intersection representation that assigns to eachxveftG a segment
connecting two points on the boundary of a fixed axis-pdredigtangleR so that

() all segments are distinct,
(ii) every segmentis parallel either to the lipe= —=x, or to the liney = =,
(iii) no segment connects points on opposite sides of thangte R, and
(iv) two vertices ofG are adjacent if and only if the corresponding segments @asis other.

See Figure 1 for an illustration of this representation. Wansthat this representation characterizes bichain graphs

Theorem 5. LetG be a graph. Then the following are equivalent.
(i) Gis abichain graph.
(i) G admits a diagonal representation.

PROOF (ii)=(i): Suppose that: admits a diagonal representation in a rectarigle= [x1,x2] X [y1, y2] Where
x1,T2,Y1,y2 € R. Let A denote those vertices whose segments are parallel to thg in —x. Let B denote the
remaining vertices (those parallel to the lipe- ). Split A into A; and A, whereA; are the vertices whose segments
connect the bottom side @t with the left side ofR, and A, are the vertices whose segments connect the top side
of R with the right side ofR. Likewise, splitB into B; and B, where B, are the vertices whose segments connect
the top and the left side ok while B, are the vertices whose segments connect the bottom andtiieside ofR.

For instance, for the graph in Figure 1, we have- {a1, a2, as,as} andB = {b1, bo, b3, bs}, whered; = {a1, a2},

Ay = {ag,a4}, B, = {bl,bQ}, andB; = {b5,b4}

We show that A, Az, By, B2) is a bichain partition of7 which will imply that G is a bichain graph. First, note
thatA is an independent set. Indeed, the segments assigned tertlies inA are all parallel to the ling = —x and
are all distinct. So they do not pairwise intersect. Sinylarve see thaB is an independent set.

It remains to verify for each € {1, 2} thatG — A; andG — B; are chain graphs. By symmetry (betweémand
B and betweenl; andA,, resp.B; andB,), it suffices to check this fo& — A;.

Suppose thaf? — A; contains an inducefK, on verticesu, v, p, ¢ with edgesuv andpg whereu,p € A and
v,q € B. Sinceu, p € A, the segments representimgndv are parallel to the ling = —x. Thus there aré,, §, € R
such that the segment representinties on the liney = —z + §,, and the segment representindies on the line
y = —x + 0p. Similarly, the segments representing € B are parallel to the ling = x. So there exist,,d, € R
such that the segment representinies on the liney = = + 4, and the segment representigdies on the line
y =z + §4. By symmetry, we may assume thiat> §,. (If not, we exchange with p, andv with g¢.) Further, since
u,p € AandG — A; contains no vertices of;, we conclude:, p € A,. Therefore the segments representirend
p intersect the top and right sides of the rectarfglén other words, the lineg = —z + §,, andy = —z + J,, intersect
the setgxz1, 23] x {y2} and{z2} X [y1, y2]. This gives the following inequalities (recall tht < §,,):

21+ Yo < 0p <0y < T2+ Y2 T2+ y1 < 0p <0y < T2+ Y2

Sinceuv € E(G), the segments representingindv intersect. In other words, the intersection point of thesin
y = —x + J, andy = x + J, lies inside the rectangl® = [z1, z2] X [y1, y2]. Note that the point where these two
lines intersect has coordinates= (¢,, — d,,)/2 andy = (d,, + J,,)/2. This yields the following:

6u - 6’0 6u + 6’0
xlSTSJD mSTSyg

Similarly, note that the intersection point of the lines —z+ ¢, andy = =+, has coordinates = (6, —d,,)/2
andy = (d, + d,)/2. We can bound these coordinates using the above ineqaagi®llows:
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Figure 3: lllustration of the construction.
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This shows that the lineg = —z + 6, andy = x + J,, intersect inside the rectangle But this means that the
segments representimgandp intersect. However, we hawe ¢ E(G), a contradiction.

So we conclude that no such vertiees, p, g exist and thu€z — A; is indeed a chain graph. By the same token
(by symmetry), als@z — Az, G — By, andG — B, are chain graphs. Therefoig,is indeed a bichain graph.

This proves (ii¥(i).

()=-(ii): Suppose thatr is a bichain graph. Then by Lemma 2, there exists a speciahlrigartition ofG. Let
us denote this partition 1, Az, B1, B2). Let A = A; U As andB = B, U Bs.

We apply Lemma 4 to the partitiaid,, Ao, B1, Bz). This yields an integes > 0 for which the systemA4) has
a solutionz,, = z, u € V(G) where each is a positive integer.

Letn = |V(G)|. We fix an ordering oV (G) and denote ity , ug, . . ., u,. We further define the following:
- N=1+4+n- max z,

ueV(QG)

— M =N+n-q,

— foreachk =1,...,n, definez} =n-z; +k—n.
Note thatl < 2,7 < N — 1 for all u € V(G), which follows from the definition ofV and the fact that < z;.

In fact, for distinctk, £ € {1,...,n}, we have that} # =, sincez; .z are positive integers and< k,¢ < n.
Moreover, we observe the following property.

Claim 5.1: Letuy, € A; andu, € B; wheres, j € {1,2}.
(a) Ifi = j, thenugu, € E(G) ifand only ifzf < zf .
(b) Ifi # j, thenuyu, € E(G) ifand only ifzf, +n-a < zf .
To prove this, consider;, € A; andu, € B;. Suppose first that= j. Then, ifuyu, € E(G), we havez; — 2 <
—1, since the values;; form a solution to {). Thus sincek, £ € {1,...,n}, we deduce that,!, < z; as follows:
b =n-zi Fl-n<n-z; <n-(z5, —1)<n-zi +k-—n=z.

u
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Similarly, if upue ¢ E(G), thenz;, — 2%, < —1 and we deduce that] < =z} . This shows thati,u, € E(G) if
and only ifz, <z} , as claimed.

Now, assume that j. Then, ifuyu, € E(G), we havez;, — z;, < —a—1, since the values;; form a solution
to the system4). From this we deduce thaf, < z; —n -« as follows:

*
Uu

Similarly, if upu, ¢ E(G), thenz;, — 2, < a —1inwhich case we deduce thaf < z}f +n - a. Together, we
conclude, as required, thatu, € E(G) ifand only if 2}, +n - a < 2} . This proves Claim 5.1.

zh=n-zi, +l-—n<n-z <n-(z5 —a—-1)<n-zi +k-n-n-a=zf —n-o

Now we are ready to describe the construction. We constratagonal representation @f as follows. The
underlying rectangle is chosen to have corner paigts), (M, 0), (0, N), and(M, N). Fora € A;, we represent
a as the segment connecting the palit = (0,2;) to the pointQ, = (z},0). Fora € A,, we represent as
the segment connecting the poifif = (M, N — z) to the pointQ, = (M — 2z, N). Forb € By, the segment
representing goes frompP, = (0, z;') toQp = (N — z;', N), while forb € Bs, the segment fob goes from
P,=(M,N — z;') toQy = (zl'f + M — N, 0). See Figure 3 for a detailed illustration of this constroati

We verify that the segments form a diagonal representatio.o Clearly, the segments connect points on
consecutive sides of the rectangle, where the segmenttdovdrtices inA are all parallel to the lingg = —z,
while the segments for the verticesihare parallel to the ling = x. Further, note that the segments are all distinct.
Namely, the segments representing the vertice4 are all distinct, and the segment representing the vericés
are all distinct. In particular, fotx, u, € A wherek # ¢, the segments representing andu, are distinct, because
zt # zb andzf < N < M. Forug,u, € B wherek # ¢, the two segments far, andu, are distinct, because
againz; +# z! andl < zf . Thus all segments in the representation are indeed dis@onsequently, the segments
representing the vertices it are pairwise non-intersecting, since they are all partiléhe liney = —x. Likewise,
the segments representing the verticeBiare pairwise non-intersecting, since they are all partdlgl= x.

To conclude that the representation is indeed a diagoned¢septation of7, it remains to verify that fou, u,
whereuy, € A andu, € B, the segments representing andu, intersect if and only ifugu, € E(G).

Suppose first that, € A; anduy, € By. Then it follows that the segment representinglies on the line
y = —z+ 2z while the segment representinglies on the lingy = = + 2, . The intersection point of the two lines is
(z*,y*) wherex* = 1zt — 1.4+ andy* = L2+ +1:F . Therefore, the two segments representipgndu, intersect

if and only if (m*,y*§ lies iﬁ the rectanglé. I\Alrote2 that < M and0 < y* < N,since0 < zf ,zf < N < M.
Thus(z*, y*) lies in the rectangle if and only if* > 0. In other words, if and only it;, < = . By Claim 5.1a, this
happens if and only ifiyu, € E(G), sinceuy, € A; andu, € B;. Put together, we conclude that the two segments
representing,;, andu, intersect if and only ifuxu, € E(G), as required.

We proceed similarly in all the other cases.ul}f € A; andu, € B, then the point of (possible) intersection
of the segments ig*, y*) wherez* = M — 12} + 3z andy* = N — 3z} — 3zF . Thus the point lies in the
rectangle if and only if:* < M which s if and only ifz;}, <z whichis if and only ifuyu, € E(G) by Claim 5.1a.

If up, € Ay anduy € Bs, then the (potential) intersection point of the segmentsisy*) wherea* = %zjk +
$24 4 3n-aandy* = 3zF — 125 — In-a. Thisimplies that the point lies in the rectangle if and adifily* > 0
if and only if ZL +n-a< fok if and only if uyuy, € E(G) by Claim 5.1b. Finally, ifu, € As andu, € By, then
we haver* = M — £z — 3zf —in-aandy* = N — izf + 32§ + 4n - a. Thus the pointz*,y*) lies in the
rectangle if and only if* < N ifand only if 2} +n -« <z} ifand only if uxu, € E(G) by Claim 5.1b.

This completes all cases and so we can conclude that the segimdeed form a diagonal representatiorGof

This proves (i) (ii) and concludes the proof. O

Theorem 5 implies the following immediate corollary, whesea circle graph we mean the intersection graph of
a set of chords of a circle.

Corollary 6. Evey bichain graph is a circle graph.

5. Universal bichain graphs

In this section, we construct a universal graph for bichaapgs. We start with the description of our construction,
which we call theZ-grid.
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Figure 4: The Z-gridZ,,,,m with n = 7 columns andn = 6 rows, where in addition (indicated in green) every vertethig-th column with an
even: is adjacent to every vertex in theth column with an odg > ¢ + 3.

TheZ-grid Z, ,,, is the graph defined as follows:

— vertexsetid/ (Z, ) = {vij ie{l,...,n}andj € {1,.. .,m}}
— vertexv;; is adjacent to vertey; ;. if and only if

(a) eitheri is even;’isodd,: > i —1,and (b) oriisodd,: isevens’ <i+ 1, and
— ifi =1i—1,thenj’ > j, — ifi =i+ 1,thenj’ < j,
— ifi/ =i+1,thenj’ > j, — ifi/ =i—1,thenj’ <j.

An example of theZ-grid is represented in Figure 4. Following the depictioer#in, we shall speak of rows and
columns of a Z-grid. Namely, the set of verticas; | j € {1, ..., m}} is thei-th columnof Z,, .., while the vertices
{vij |7 € {1,...,n}} formthej-th rowof Z,, ,,.

The main goal of this section is to prove that Hegrid Z,, ,, is ann-universal bichain graph, i.e. it is a bichain
graph containing every bichain graph withvertices as an induced subgraph. We start by showing that ted
itself is a bichain graph.

Lemma 7. For any positive integers, m, the Z-grid Z,, ,,, is a bichain graph.

PrROOF We define a partition of the vertices &4, ,,, and show that it is a bichain partition. This will imply théf, ,,,
is a bichain graph. We define the sets as follows:

Ay ={v; |i=1(mod4) andj € {1,...,m}} By ={v;; | i=2(mod4) andj € {1,...,m}}
Ay ={v;; | i =3 (mod 4) andj € {1,...,m}} By ={v;; | i=0(mod 4) andj € {1,...,m}}

We show that A,, As, B1, B2) is a bichain partition oZ,, ,,,. Note that by definition, if the vertex;; is adjacent
to v;/;+, theni is odd andi’ even, ori is even and’ odd. This implies thad = A4; U A, andB = By U B are
independent sets. It remains to show that,, — A; andZ, ,, — B; are chain graph foi = 1,2. By symmetry, it
suffices to check that,, ,,, — A, is a chain graph.

Suppose otherwise, and lety, z, w denote vertices ir¥,, ,,, that induce 2K, with edgeszy, zw such that
x,y,z,w &€ Ay. Thusz, y, z,w € A; U By U Bs. In particular, sinceB; U Bs is an independent set ang is an edge,
it follows that one ofr, y belongs tad,. By the same token, one of w belongs tad,. By symmetry, we may assume
thatz, z € Ay. Thusy,w € By U Bs. Sincez,y, z, w denote vertices i¥,, ,,, we have that: = v;, j,, ¥y = vi,js,
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Z = iy, andw = vy, ;, for some indicesy, ..., 44,71,...,74. In particular, sincer,z € A, andy,w € B, we
deduce that, andiz are odd, whiles, ¢4 are even. Sincey, zw are edges whilew, yz are non-edges, we deduce:
0<ii+1 i4<iz+1 i1 <ig+1 iz<is+1.

From this we deduce thét; — 5| < 2, since—2 < is — i3 — 1 < i3 —i3 < ig —i3+ 1 < 2. This allows us to
conclude that; = i3, since(i; —i3) = 0 (mod 4) because:, z € A,. Therefores, iy € {iy — 1,41 + 1}, sinceiq, iy
are even and, = iz whileiz —1 < iy <i; +1landi; —1 < iy < i3+ 1. This implies, by the definition of,, ,,,,
thatj, < j; andjs < js, becausery, zw are edges, while it also implies that < j4 andj; < j, becauserw, yz
are non-edges. Put together, we hgwve< js < j3 < jo < ji. Thereforej; = j3 but since alsa; = i3, we deduce
thatz = z, impossible. We must conclude that no such verticas z, w exist, which yields the claim. O

In order to prove the main result of this section, we need tquéar decomposition of bichain graphs. The starting
point of the decomposition is described in the following feen

Lemma8. If G is a bichain graph, then there is a special bichain partitioty, A2, By, B2) of G such that
(x%) there exists a non-empty s&tC A; such thatV(X) C B;.

PrROOF By Lemma 2, le{ Ay, Az, By, B>) be a special bichain partition ¢, i.e. a partition satisfyingx). Let W
denote the set of all verticgsc B, such thatV(y) 2 A; (possiblylW = 0).

We construct a new partition df (G) as follows. LetB; = B; UW. Let B = By \ W. We claim that
(A1, A, BY, BY) is a bichain partition of7 and it satisfiesX). Recall that A, As, By, B2) is a bichain partition of
G satisfying &). Namely for eachi € {1, 2}, bothG — A; andG — B; are chain graphs.

Claim 8.1: G — B! is a chain graph for each € {1, 2}.

Clearly,G — Bj is a chain graph, since it is an induced subgraptfef B, which itself is a chain graph. Suppose
thatG — B/, contains an induce?lK». Namely, suppose that there are vertices € A andz,y € B\ B) such that

z € N(u)\ N(v) andy € N(v) \ N(u). If u,v € A; oru,v € As, thenG — A, or G — A; is not a chain graph,
impossible. Thus, by symmetry, we may assumethatA; andv € As. Therefore, sinc€A;, A, By, By) satisfies
(x), we must conclude that € B; andy € Bs. Now, recall thaty ¢ B, = By \ W. Thusy € W, sincey € Bs.
This means thaW(y) 2 A;. Howeveru € A; anduy ¢ E(G), a contradiction. This proves Claim 8.1.

Claim 8.2: (A1, As, B, BY) satisfies %).

Suppose that there exigte A, v € Ay, and verticex € N(u) \ N(v) andy € N(v) \ N(u) suchthat: ¢ B} or

y ¢ B, If x,y € B} orz,y € B}, thenG — B} or G — B} is not a chain graph, contradicting Claim 8.1. Thus we
must conclude that € B}, andy € Bj. Recall thatB, = B, \ W. Since(A;, Az, By, B) satisfies £), we deduce

x € By andy € By. Thusy € Bo N B] = W. This means thalV(y) 2 A;. However,u € A; anduy € E(G), a
contradiction. Therefore, no such vertiees, =, y exist. This proves Claim 8.2.

From Claims 8.1 and 8.2, we deduce thalt;, A5, B}, B}) is indeed a bichain partition aff and it indeed
satisfies £). We now show that it also satisfiesx) which will imply the lemma. LetX be the set of all vertices
u € A;j such thatV(u) C Bj. Suppose thak = (. SinceG — Bj is a chain graph by Claim 8.1, there exist
y € B such thatV(y) O N(b) forall b € Bj. Sincey € B} andB) = By \ W, we conclude thay ¢ W, namely
N(y) 2 A;. Thus there exista € A; such thatu ¢ N(y). If N(u) C Bf, thenu € X and henceX # (). But
we assumeX = (). So there exists € N(u) N Bj. By the choice ofy, we haveN(y) 2 N(b). However, this is
impossible, since: € N(b) \ N(y). We must therefore conclud€ # (. ThusX is a non-empty subset of;, and
we haveN (X) C Bf, sinceN (u) C Bj forall u € X. This shows thatA4,, As, B, BS) indeed satisfiesx).

That concludes the proof. O

Now we are in a position to prove the main result of the sedtating that every bichain graghwith »n vertices
is contained in the grid,, ,, as an induced subgraph. Moreover, we will prove a strongrritretating thatZ,, ,,
contains an induced copy Gf such that every row contains at most one verte&ofVe call such a copsow-sparse

Theorem 9. LetG be ann-vertex bichain graph. The@' is isomorphic to a row-sparse induced subgraplZgf,,.
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PrRoOOF Consider am-vertex bichain grapiG. We show how to find a row-sparse copy @fin 2, ,. Let
(A1, A, By, By) be a bichain partition off satisfying both£) and &x). Such a partition is guaranteed by Lemma 8.
We iteratively define the following sets: for eath= 0,1,2,... in turn, having defined’y, Wa, ..., Wy;, we

define the set®/y; 11, Wair2, Waits, Waira as follows:

— Wypristhesetofalb e Ay \ (Wi UW5U---UWy,_3) suchthatV(u) C By U Wy UWgU---UWy;)

— Wygoisthesetofalu € By \ (Wo UWgU---UWy_o) suchthatV(u) D Ay \ (WL UW5U -+~ U Wyit1)
— Wyysisthesetofalu € Ao\ (W3 UW7 U -+ UWy,;—1) suchthatV(u) C Bo U (W UWg U -+ U Wy,12)
— Wyipqisthesetofal € Bo\ (Wy UWg U ---UWy;) such thatV(u) D As \ (W3 U W7 U -+ U Wyis)

Recall that the conditions) holds for(A;, As, By, Be). This gives ud¥; # (. Also, observe thalVy; 1 C A;
andWy; 1o C By while Wy, 3 C As andWy,; 14 C By, forall7 > 0. Thus, by construction, all these sets are pairwise
disjoint. In the following claim, we show that they complgteover (and thus partition.

Claim9.1: V(G) = U2, Wi
Define the following sets:

Cr= A\ (U Wair1) D= Bi\ (U Waies) Co= Ao\ (U2 Wairs) Do = B2\ (Ui Waira)

First, suppose thaty, # (. SinceG — A, is a chain graph, so i§' = G — Ay — (41 \ C1). Thus there
existsu € C; such thatNg/ (u) C Ng(a) forall a € C;. In fact, Ng(u) € Ng(a) for all a € Cy, since
Ng(u) € B1U By C V(G'). Sinceu € C = Ay \ (Ujo g Wait1), we haveu ¢ Wy, 44 for all i > 0. This implies
thatw has a neighbour il \ (Wy U Ws U --- U Wy;) for all « > 0, for otherwise we would have included it in
Wit for somei. Thusu has a neighbour i \ (;-, Wait+4) = D2. Letz € D, be any such neighbour. Since
x € Doy, note thate ¢ Wy, 4 forall i > 0. Sox has a non-neighbourid; \ (W3 UW7 U --- U Wy, 3) foralli > 0,
otherwise we would have included it ;4 for somei. Thusz has a non-neighbour id; \ (;2, Wait+3) = Ca.
Letv € C5 be any such non-neighbour. Sineec Cs, we have that ¢ Wy, 3 for all i > 0. Sov has a neighbour
in By \ (Woa UWgU---U---Wyo) forall i > 0, otherwise we would have included it Wiy; 5 for somei. Thus
v has a neighbour iB; \ (U;o, Wait+2) = Di1. Lety € D; be any such neighbour. Singec D;, we have that
y & Wyqo forall i > 0. Soy has a non-neighbour id; \ (W7, U W5 U --- U Wy,41) forall i > 0, otherwise we
would have included it ifi¥y;» for somei. Thusy has a non-neighbour id; \ (J;=, Wai+1) = C1. Leta € Cy
be any such non-neighbour. Recall that alse C, and by the choice af, we haveN (v) C N(a). Therefore also
u IS a non-neighbour of.

Altogether, we have € Ay, v € Ay, z € By andy € By wherex € N(u) \ N(v) andy € N(v) \ N(u). This
means that) fails for (4, Az, By, B2). But we assume thak) holds for(A;, Az, By, Ba).

Therefore, we must conclude th@f = (. We show that this implies that also each@f, D1, D, is empty.
Indeed, if there existg € D;, then (repeating the argument from the above paragraphowelude thaty has a
non-neighbour irCy. However,C; is empty. Thus we deduce that alBg is empty. Next, if there exists € C5, we
conclude thav has a neighbour i;. But D; is empty, so als@’s must be. Finally, if there is € D, thenz has a
non-neighbour irCs, but Cs is empty. ThusDs is empty. This proves that each of the s€{s C>, D1, D5 is empty,
and hencé/(G) = |J;=, W; as promised.

This proves Claim 9.1.

We further notice that the way the vertices are assignedrt@sapossible setdl’;, the construction guarantees
the following useful properties. See Figure 5 for a depittbthese properties.

Claim9.2:Forall k € {1,2,...}:

(a) eachx € W11 has a neighbour iy, (c) Wk iscomplete tdVo U W, U -+ - U Wai_o,

(b) eachy € Wy, has a non-neighbour i1, (d) Wy is anticomplete tdV; U W5 U -+ - U Woy_s.
To prove (a), consider € Wy, 1 wherek > 1.

Suppose first that is even, i.e.k = 2i for somei > 1. In other wordsy € Wy,,1 and the definition oV, 1
givesusthat € A, \ (W1 UWsU---UWy_3)andN(z) C By U (W, UWgU---UWy,). Sincex was not put in
any of the set§V, W, ..., Wy;_3, itfollows that N (z) € By U (W, UWsU---UWy, ) forall i/ < i. From this we
must conclude that has a neighbour if,;. Sox has a neighbour ify, sincek = 2i.
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A similar argument works ik is odd, i.e. ifk = 2i + 1 for somei > 0. Herex € Wy, 3 which implies that
x € A\ (W UWrzU---UWy—1)andN(z) C Bo U (Wo UWsU---UWy,12). Sincex was not putin any of the
setsiWs, Wy, ..., Wy,_1, we conclude thalV (z) € Bo U(Wo UWgU---UWy,;4o) forall i’ < i. We must conclude
thatz has a neighbour ifV,; 2. So, as required; has a neighbour in i85y, sincek = 2i + 1. This proves (a).

The proof of (b) is analogous. Considee Wy, wherek > 1. If k = 2i+ 1 for somei > 0, theny € Wy, 2 and
soy € By \ (Wo UWgU---UWy_o)andN(y) 2 Ay \ (Wi UWsU---UWy;41). Sincey is not in any of the sets
Wa, We, ..., Wyi—o, we conclude thaV (y) 2 A1\ (W1 UWsU---UWyy 1) forall i’ < 4. Thusy must have a non-
neighbour inWy, ;1 = Wa,_1, as required. Similarly, ik = 2i + 2 fori > 0, theny € Bo \ (W, UWsU--- U Wy,)
andN(y) D A, \ (Wg UuWwr,u---u W4i+3). ThUSN(y) D A \ (Wg UuWwr,u---U W4il+3) forall i/ < 4, and SOy
must have a non-neighbouriiy; 5 = Ws,_1, as required. This proves (b).

To prove (c), consider smallest indgxor which W5 1 is not complete tdVo U W, U - - - U W _s. Then there
existsu € Wo,11 andv € Wy, wherej < k — 1 such thatuw ¢ E(G). Clearly,k > 2. By (a) and sincé > 1, we
deduce that: has a neighboup in Ws;,. Similarly, by (b),w has a non-neighbourin Ws;,_;. Recall that € Wy;.

Suppose first that is odd. Therv € B; andN(v) D A; \ (W1 UW5 U --- U Wa,_1) by the definition ofity;.
Sinceu ¢ N(v) andu € W11 wherek > j + 1, we deduce that € A,. This implies that is odd. Sow € B;
andz € Ay, sincew € Wy, andz € Wo,_1. Now, since bothj andk are odd whilej < k — 1, we deduce that
j < k — 2. Thus the minimality ok implies thatiV,,_, is complete tdV5;. In particular, we have thatis adjacent
to v. However, then we have w € By, z € Ay, u € Ay whereuw, vz € E(G) while uv, zw ¢ E(G). In addition,
uz,vw € E(QG), sinceA; U A, andB; are independent sets. This shows that the verticesz, w induce a copy of
2K, in G — B, which is therefore not a chain graph. But theh, A>, B1, Bs) is not a bichain partition.

Similarly, if j is even, thew € B, andN(v) D Ay \ W3 UW7 U--- U Ws;_1). Thusu € Ay, sinceu ¢ N (v)
andu € W1 wherek > j + 1. This implies thatt is even and saw € B, andz € A,, sincew € Wo;, and
z € Wa_1. In addition, we deducg < k — 2, since bothyj andk are even. Thusv € E(G) by the minimality ofk.
We conclude that, w € Bs, u € A1, z € As, and sou, v, z, w induce a copy 02K, in G — By, a contradiction.

This proves (c).

The proof of (d) is analogous. Consider smallegbr which W5, is not anticomplete tdl; UWs U - - - U Woy_3.
Then there exists € W5, adjacentto some € W,;_; wherej < k—1. Clearly,k > 2. By (b),v is non-adjacent to
somew € Wy,_1, and by (a)w is adjacent to some € W, _o. Recall that, € Wy;_;. Suppose first thatis even.
Thenu € Ay andN(u) C Bo U (Wo U W5 U --- U Wa;_2). This yields that € B, sincev € N(u) andv € Way
wherek > j+ 1. Thereforek is even, and hence; € A; andz € By, sincew € Wy,_1 andz € Wai_o. Moreover,
j < k — 2, since bothj andk are even. Thusz ¢ E(G) by the minimality ofk. Together, we have, w € A,,
z € By, v € By, andu, v, w, z induce a2K> in G — Ay, a contradiction. Similarly ifj is odd. In that casey € A;
andN (u) C B U(W4 UWgU---UWas;_3). Thusv € By, sincev € N(u) andv € Wo, wherek > j+ 1. It follows
thatk is odd. Sow € Ay, z € By, andj < k — 2, since alsgj is odd. Thereforeyz ¢ E(G) by the minimality ofk.
Togetheru,w € Ay, v € By, z € By, andu, v, z, w induce & K5 in G — Az, a contradiction.

This proves Claim 9.2.

Clam93: V(G) =W UWaU---UW,

To see this, note first that, by Claim 9.1, we h&¥#e7) = J;=; W; 2 Wy UW, U--- U W,,. Thus, for contradiction,
suppose thdt);._, W; is a proper subset df (G). In other words, assume that> ||J;_, W;| = >, |[W;|. This
implies that there exists € {1,...,n} such thai?}, is empty. We claim thal’; for eachj > k + 1 is also empty.

For contradiction, consider smallgst> k + 1 such thatV; is non-empty, i.eJ¥; contains some vertex Note
thatj > 2, sincek > 1. Thus ifj is odd, then we deduce, by Claim 9.2a, thahas a neighbour if;_;. In
particular,IW;_, is non-empty. Similarly, ifj is even, therx has a non-neighbour ii/;_; by Claim 9.2b, and so
W;_1 is non-empty. Thus we conclude thyat 1 # k, sincel¥;, is empty. This implies that—1 > £+ 1 andW;_;
is non-empty, which contradicts the minimality pf

So we conclude that no such indgexists, and hencé/(G) is equal td J¥_, W; which is a subset dfJ!"_, W,
sincek € {1,...n}. But we assume thayj;__, W; is a proper subset df (&), a contradiction.

This proves Claim 9.3.
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Figure 5: Decomposition of a bichain graph (two ways of drait).

We are ready to describe how to define an isomorphis@ ob Z,, ,,. To this end, we consider the partition
Wa, ..., W, of G as described above. Recall tifal; , A2, B1, B) is a special bichain partition. Thus by Lemma 4,
there exist® < a < n such that the systenaY) has a solution,, = =}, u € V(G).

In order to show thafr is isomorphic to an induced subgraph#f ,,, we map, for each, the vertices ofV; to
thei-th column ofZ,, ,,. The position inside the columns will be dictated by the ealj;.

Foreach € {1,...,n} and each: € W;, we define the heigtit, of « as follows:

hy =25+ (n—[i/2]) - a.

We order the vertices df (G) based on their heiglit, (ties broken arbitrarily). In other words, we fix an ordering
U1, U2, - .., up Of V(G) in which hy; < h, , wheneverj < j’. Using this ordering, we define a mappifi@f V(G)
into V(Z,,,) as follows: for each € {1,...,n}, we consider each; € W; and definef (u;) = v;;.

Clearly, the mapping’ is a well-defined mapping int¥’(Z,, ,,), sincei,j € {1,...,n}. Moreover,f is an
injective mapping, since each vertex is mapped to thg-th row of Z,, ,,. In particular, the image of induces in
Z, » arow-sparse subgraph &f, ,,. Thus to finish the proof, it remains to show ttfais an isomorphism. In other
words, it remains to show that for distingtj’, we haveu;u; € E(G) if and only if f(u;) f(u;) € V(Zp n).

Considerj, j' € {1,...,n} wherej # j'. Leti,i’ be indices such that; € W; andu; € W;,. Then we have
f(u;) = vy and f(u; ) = virj. Thus we need to that;u;, € E(G) if and only if v;jvy 50 € E(Z,, ).

Suppose first that, i’ are both odd or both even. Then, u;; € Ay U Ay oruj,uy € By U By, andv;;, vy
are either in the same column, or in two odd-numbered coluoms two even-numbered columns &f, ,,. By the
definition of Z,, ,,, there are no edges in and between such columns. Therefo@mnelude that; v, & E(Z, ).
Moreover, bothd; U A, andB; U B, are independent sets. Thus we have thaty ¢ E(G), as required.

Therefore, by symmetry, we may assume tha odd andi’ is even. Ifi’ < i — 3, thenu,u; € E(G) by
Claim 9.2c, since is odd whilei’ is even. For this reason, alsg;v.;; € E(Z, ) by the definition ofZ, ..
Similarly, if i > ¢ + 3, thenu;u; ¢ E(G) by Claim 9.2d, and;; vy j» & E(Z, ) by the definition 0fZ,, ,,.

So we may assume thdt= i + 1. First suppose that = i + 1. This implies that.; € A, andu; € B, for
somer € {1,2}. Moreover, since’ is even and is odd, we have’/2 = [i/2]. Suppose that;u,;, € E(G). Then
Zuy — Zuy < 71, because the valueg are a solution to4.). So,z;;j, < 2, Wwhich implies thath, , < h,,, since
[i'/2] =4'/2 = [i/2]. Therefore, from the definition of the ordering, . . ., u,, we deduce that' < j. Therefore,
vy € E(Z,.,) by the definition ofZ,, ,,, sincei’ = i + 1 and: is odd whilei’ is even.

Conversely, suppose thaju; ¢ E(G). Thenz; — Zu, <1, because the valueg are a solution to4). So
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zy. < z;jj, which impliesh,,; < huj/. Thusj < 5" and sov;;vij» & E(Z,,), as required.

It remains to conside’ = i — 1. Sincei is odd whilei’ is even, this implies that; € A, anduj € B;
for r,s € {1,2} wherer # s. Moreover, we have’/2 = [i/2] — 1. Suppose first that;u;; € E(G). Then
o Ziij < —a — 1, since the values’ are a solution to4\). Thuszj;j/ < z;;j — aand sohuj, < hy, as follows:

hu,, :z,,jj, +n—i'/2) a<zi +(n—9/2-1) a=z +(n—T[i/2]) a=hy,
Thusj’ < j and we conclude that;v, j» € E(Z, ) by the definition ofZ,, ..
Conversely, suppose thatu;, ¢ E(G). Then Zy, = zj;j, < a — 1, since the values; satisfy (A\). Thus
Zuy < Zu, T and sohy; < hy,, sincehy; = z; + (n — [i/2]) - a < Zu, T (n—1Ti/2]+1) a = hy,.
We conclude thaj < j’ and hence; ;v ;» & E(Z, ), as required.

This completes the proof of Theorem 9. d
6. Concluding remarks

In the present paper, we proved a number of results aboutibignaphs, the bipartite analog of split permutation
graphs. In particular, we developed a geometric representtor bichain graphs and constructed a quadratic
universal graph for this class. Among various open probleteed to bichain and split permutation graphs, let us
mention the conjecture from [9] asking whether split pemion (and hence bichain) graphs constitutamiaimal
hereditary class of graphs of unbounded clique-width. Témilts obtained in this paper suggest the following
approach to the above question.

In [14], it was shown that graphs in a hereditary class hawented clique-width if and only if they have
bounded rank-width. Also, in [13] it was shown that bip&rifraphs of large rank-width contain a large universal
bipartite permutation graph as a vertex minor. Vertex nsnare defined in terms of vertex deletions and local
complementations. Local complementation is the operatfa@omplementing the edges in the neighbourhood of a
vertex. The importance of this operation is due to the featittdoes not change the rank-width of a graph. Therefore,
a possible approach to proving minimality of bichain grapbhsld be to transform a universal bichain graph into a
universal bipartite permutation graph via a sequence @il loemplementations. While bipartite graphs are not closed
under local complementation, circle graphs are. Both licgeaphs are circle graphs (by Corollary 6) and it is well-
known that permutation graphs are circle graphs, so theesmguof local complementations from a universal bichain
graph to a universal bipartite permutation will all happethim the class of circle graphs. Moreover, for circle graph
the operation of local complementation has a nice geomietecpretation: the local complementation applied at a
vertexz of a circle graph corresponds to cutting the circle alongetiard representing and turning over one of the
semicircles along this chord. This may suggest a geomegipeoach to transforming bichain graphs into bipartite
permutation graphs and vice versa. A more challenging w&ask show that this transformation is possible within
4-polygon graphs, as both bichain graphs and bipartite petion graphs are subclasses of this class. We leave this
challenging task for future research.
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