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Abstract

Bichain graphs form a bipartite analog of split permutationgraphs, also known as split graphs of Dilworth number 2.
Unlike graphs of Dilworth number 1 that enjoy many nice properties, split permutation graphs are substantially more
complex. To better understand the global structure of splitpermutation graphs, in the present paper we study their
bipartite analog. We show that bichain graphs admit a simplegeometric representation and have a universal element
of quadratic order, i.e. a bichain graph withn2 vertices that contains alln-vertex bichain graphs as induced subgraphs.
The latter result improves a recent cubic construction of universal split permutation graphs.
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1. Introduction

The class of bichain graphs is a generalization of chain graphs. The latter class has appeared in the literature
under various names, such as difference graphs [7] or bisplit graphs [5], and has been extensively studied by many
researchers, because graphs in this class enjoy many nice properties. In particular, chain graphs admit a simple
characterization in terms of forbidden induced subgraphs:these are precisely2K2-free bipartite graphs. Many
algorithmic problems that are generally NP-hard admit polynomial-time solutions when restricted to the class of
chain graphs (see e.g. [8]), which is partially due to the fact that chain graphs have bounded clique-width [4]. Also,
graphs in this class are well-quasi-ordered by the induced subgraph relation [15] and they have a small universal
element [11], i.e. a graph with2n vertices containing alln-vertex graphs from the class as induced subgraphs. The
class of chain graphs also plays a critical role in the study of the speed of hereditary graph properties. In particular,
this is one the nine minimal hereditary classes whose speed (i.e. asymptotic growth) is factorial [2].

Another minimal class with factorial speed is the class of threshold graphs. This has also received considerable
attention in the literature (see e.g. [12]) and it has many attractive properties including bounded clique-width, well-
quasi-orderability by induced subgraphs and small universal graphs [6]. The similarity between these two classes is
no surprise, as they are closely related. To reveal this relationship, observe that every threshold graph is a split graph,
i.e. its vertices can be partitioned into a clique and an independent set. If we remove the edges from the clique part of
a threshold graph, then what is left is a chain graph. Conversely, inserting all the edges in one part of the bipartition
of a chain graph yields a threshold graph. So, in a sense, the class of chain graphs is the bipartite analog of threshold
graphs.

Both classes, chain graphs and threshold graphs, have many important generalizations. One of them is known as
bipartite permutation graphs (generalizes chains graphs)and one as split permutation graphs (generalizes threshold
graphs). The class of split permutation graphs contains allthreshold graphs, because threshold graphs are graphs of
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Dilworth number 1, while split permutation graphs are splitgraphs of Dilworth number at most 2 [3]. This small jump
from 1 to 2 changes the situation dramatically. In particular, the clique-width of split permutation graphs is unbounded
and graphs in this class are not well-quasi-ordered by induced subgraphs, which was recently shown in [9]. Moreover,
in the same paper it was conjectured that split permutation graphs constitute aminimalhereditary class of unbounded
clique-width. This property is quite rare and to date only two classes possessing this property are known: bipartite
permutation graphs and unit interval graphs [10]. In both cases, the proof of minimality exploits the idea of universal
graphs, because universal graphs describe a typical structure of graphs in the class. It is known that not every class
admits a universal element. For the two minimal classes of unbounded clique-width, bipartite permutation graphs and
unit interval graphs, ann-universal graph exists and for both of them it hasn2 vertices. However, for split permutation
graphs even the existence of a universal element was an open question until recently. In [1], this question was answered
affirmatively by constructing a split permutation graph with 4n3 vertices containing all split permutation graphs with
n vertices as induced subgraphs. However, this constructionis complicated and tells us very little about the typical
structure of split permutation graphs.

To better understand the global structure of split permutation graphs, in the present paper we reduce the problem
to their bipartite analog. Let us repeat that a split graph isa graph partitionable into a clique and an independent set.
The edges inside the clique part of a split graph are irrelevant for the purposes of our study, because all complications
occur between the two parts. By removing the edges from the clique part of a split permutation graph we obtain a
bipartite graph which we call a bichain graph.

We formally introduce the class of bichain graphs and derivesome useful properties of these graphs in Section 3.
Then in Section 4 we propose a geometric model to represent bichain graphs. Finally, in Section 5 we construct ann-
universal bichain graph withn2 vertices. By inserting the edges in one of its parts, we obtain ann-universal split graph
with n2 vertices, thus improving the construction proposed in [1] from cubic to quadratic. Section 6 concludes the
paper by discussing some open problems related to bichain and split permutation graphs. All preliminary information
related to the topic of the paper can be found in Section 2.

2. Preliminaries

A graphG = (V,E) has vertex setV (G) and edge setE(G). We writeuv for an edge(u, v) ∈ E(G). We denote
byN(u) the set of neighbours ofu in G, and writeN [u] for the setN(u)∪ {u}. For a setS ⊆ V (G), we writeN [S]
to denote the set

⋃

u∈S N [u], and writeN(S) for the setN [S] \ S.
For disjoint setsX ⊆ V (G) andY ⊆ V (G), we say thatX is completeto Y if xy ∈ E(G) for all x ∈ X and

all y ∈ Y . We say thatX is anticompleteto Y if xy 6∈ E(G) for all x ∈ X and ally ∈ Y . We denote byG[X ] the
subgraph ofG induced byX , and we writeG−X for the graphG[V (G) \X ].

By 2K2 we denote the disjoint union of two edges.

In a graph, an independent set is a subset of vertices no two ofwhich are adjacent. A graphG is said to be
bipartite if V (G) can be partitioned into two independent setsA,B. We say that(A,B) is a bipartition of G and
writeG = (A,B,E) to denote a bipartite graph with a bipartition(A,B) and edge setE.

We say that a set of vertices in a graph forms achain if their neighbourhoods form a chain with respect to set
inclusion, i.e. if for any two vertices in the set, the neighbourhood of one of them includes (not necessarily properly)
the neighbourhood of the other.

2.1. Chain graphs and alternating sequences

A bipartite graph such that each part in its bipartition forms a chain is called achain graph. It is well-known (and
not difficult to see) that a bipartite graph is a chain graph ifand only if it is2K2-free, i.e. it does not contain2K2 as
an induced subgraph. From this it follows, in particular, that a chain in one part of a bipartite graph implies a chain
in the other part, i.e. a bipartite graph is a chain graph if and only if at least one of its parts forms a chain. Below we
provide an alternative characterization of chain graphs. To this end, we introduce the following definition.

A sequence of verticesu1, u2, . . . , ut in a bipartite graphG = (A,B,E) is called analternating sequenceif
ui ∈ A anduiui+1 ∈ E for all oddi, andui ∈ B anduiui+1 6∈ E for all eveni. We say that an alternating sequence
u1, . . . , ut consists of edgesuiui+1 for oddi, and non-edgesui+1ui for eveni.

2



An alternating sequenceu1, . . . , ut, ut+1 is closedif u1 = ut+1. This implies thatt is even (sinceu1 ∈ A and so
ut+1 = u1 ∈ A), and thust ≥ 4 (sinceu1u2 is an edge whileut+1ut is not).

For instance, for the graph in Figure 1, the sequencea1, b2, a4, b3, a1 is a closed alternating sequence, where
a1b2, a4b3 are the edges of this sequence, anda4b2, a1b3 are the non-edges of this sequence.

Lemma 1. A bipartite graphG is a chain graph if and only ifG contains no closed alternating sequence.

PROOF. (⇐) We prove the contrapositive. LetG is a bipartite graph with bipartition(A,B). Suppose thatG is
not a chain graph. ThenG contains an induced2K2, i.e. G contains verticesu, z ∈ A andv, w ∈ B such that
uv, zw ∈ E(G) anduw, vz 6∈ E(G). We see thatu, v, z, w, u is a closed alternating sequence ofG.

(⇒) For contradiction, assume thatG is a chain graph but contains a closed alternating sequence.Let
u1, . . . , ut, ut+1 be a shortest such sequence. Recall thatu1 = ut+1 andui ∈ A, uiui+1 ∈ E(G) if i is odd, while
ui ∈ B, uiui+1 6∈ E(G) if i is even. Moreover,t is even andt ≥ 4. If u1u4 6∈ E(G), then the verticesu1, u2, u3, u4

are all distinct and induce a2K2 in G. Indeed, we haveu1, u3 ∈ A, u2, u4 ∈ B, andu1u2, u3u4 ∈ E(G) while
u2u3, u1u4 6∈ E(G). This is impossible, sinceG is a chain graph. So we concludeu1u4 ∈ E(G). This implies that
t > 4, sinceu1ut = ut+1ut 6∈ E(G). Thust ≥ 6, sincet is even. But nowu1, u4, u5, . . . , ut+1 is also a closed
alternating sequence ofG, contradicting the minimality ofu1, . . . , ut+1. �

3. Bichain graphs

In this section, we introduce the main notion of the paper, bichain graphs, and derive a number of properties of
these graphs.

We say that a bipartite graph is abichain graphif each part in its bipartition can be split into at most two chains.
In other words,G = (A,B,E) is a bichain graph ifA can be partitioned intoA1, A2 andB can be partitioned into
B1, B2 such that for eachi ∈ {1, 2}, bothG − Ai andG − Bi are chain graphs. We say that(A1, A2, B1, B2) is a
bichain partitionof G. Figure 1 represents an example of a bichain graph with the bichain partitionA1 = {a1, a2},
A2 = {a3, a4}, B1 = {b1, b2}, B2 = {b3, b4}.

•

•

•

•

••

• •

a1

b2

a3

b3

a4a2

b1 b4

Figure 1: Example of a bichain graph and its diagonal representation.

A bichain partition(A1, A2, B1, B2) of G is specialif

(⋆) for all u ∈ A1, v ∈ A2 and allx ∈ N(u) \N(v) andy ∈ N(v) \N(u), we havex ∈ B1 andy ∈ B2.

(Note that this simply excludes the possibility thatx ∈ B2 andy ∈ B1.)

Lemma 2. If G is a bichain graph, then there exists a special bichain partition ofG.

PROOF. Suppose thatG = (A,B,E) is a bichain graph, and let(A1, A2, B1, B2) be an arbitrary bichain partition of
G.

For verticesu ∈ A1, v ∈ A2, andx ∈ N(u) \ N(v), y ∈ N(v) \ N(u), we say(u, v, x, y) is aparallel 2K2 if
x ∈ B1 andy ∈ B2, and we say that(u, v, x, y) is acrossing2K2 if x ∈ B2 andy ∈ B1.

For eachi ∈ {1, 2}, letCi denote the set of all vertices ofBi that belong to a crossing2K2. LetDi denote the set
of all vertices ofBi that belong to a parallel2K2. We have the following property.
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Claim 2.1: Ci ∩Di = ∅ for eachi ∈ {1, 2}.

By symmetry, it suffices to prove the claim fori = 1. Suppose that there existsx ∈ C1 ∩D1. This means that there
are verticesu, u′ ∈ A1, v, v′ ∈ A2, andy, x′ ∈ B2 (possiblyu = u′ or v = v′ or y = x′) such that(u, v, x, y) is
a parallel2K2 while (u′, v′, x′, x) is a crossing2K2. Namely, we havex ∈ N(u) \ N(v) andx ∈ N(v′) \ N(u′)
while y ∈ N(v) \ N(u) andx′ ∈ N(u′) \ N(v′). Observe thatu 6= u′ andv 6= v′, sincex ∈ N(u) \ N(u′) and
x ∈ N(v′) \N(v). If vx′ ∈ E(G), then the verticesv, v′, x, x′ induce a2K2 in G−A1. To see this, note thatv 6= v′

andv′x ∈ E(G), while vx, v′x′ 6∈ E(G). This is impossible, so we must conclude thatvx′ 6∈ E(G). Similarly, if
ux′ 6∈ E(G), then the verticesu, u′, x, x′ induce a2K2 in G−A2. Thus we conclude thatux′ ∈ E(G). This implies
thaty 6= x′, sinceu ∈ N(x′) \N(y) andv ∈ N(y) \N(x′). But that also means that the verticesu, v, x′, y induce a
2K2 in G−B1, a contradiction. This proves Claim 2.1.

Now we define a new partition ofV (G) as follows. LetB′
1 = (B1 \C1) ∪C2, and letB′

2 = (B2 \C2) ∪C1. We
show that(A1, A2, B

′
1, B

′
2) is a bichain partition ofG and it satisfies(⋆). This will imply the lemma.

Recall that for eachi ∈ {1, 2}, bothG−Ai andG−Bi are chain graphs.

Claim 2.2: G− B′
i is a chain graph for eachi ∈ {1, 2}.

By symmetry, it suffices to prove the claim fori = 1. Suppose thatG − B′
1 contains an induced2K2 on vertices

u, v, x, y. Namely, we haveu, v ∈ A andx, y ∈ B′
2 wherex ∈ N(u) \N(v) andy ∈ N(v) \N(u). If x, y ∈ B1 or

x, y ∈ B2, thenG−B2 orG−B1 is not a chain graph, impossible. Thus by symmetry, we may assume thatx ∈ B1

andy ∈ B2. Sincex, y 6∈ B′
1 = (B1 \ C1) ∪ C2, this means thatx ∈ C1 andy ∈ B2 \ C2.

Now, if u, v ∈ A1 or u, v ∈ A2, thenG−A2 orG−A1 is not a chain graph, impossible. Ifu ∈ A1 andv ∈ A2,
then(u, v, x, y) is a parallel2K2. This means thatx ∈ D1, but we assumex ∈ C1 which contradicts Claim 2.1,
Therefore,u ∈ A2 andv ∈ A1, which means that(v, u, y, x) is a crossing2K2. This implies thaty ∈ C2, but we
assume thaty ∈ B2 \ C2, impossible. This proves Claim 2.2.

From Claim 2.2 we deduce that(A1, A2, B
′
1, B

′
2) is indeed a bichain partition ofG. It remains to show that it

satisfies(⋆). Suppose not. Then there are verticesu ∈ A1, v ∈ A2, x ∈ N(u) \ N(v), y ∈ N(v) \ N(u) such that
x ∈ B′

2 andy ∈ B′
1. First, we show thatx 6∈ C1. Suppose thatx ∈ C1. If y ∈ B1, thenG− B2 is not a chain graph

because of the2K2 on verticesu, v, x, y. Thusy ∈ B2 which means that(u, v, x, y) is a parallel2K2. This implies
x ∈ D1, but we assumex ∈ C1, contradicting Claim 2.1. Thereforex 6∈ C1 and hencex ∈ B2 \C2, since we assume
x ∈ B′

2 = (B2 \C2)∪C1. If alsoy ∈ B2, thenG−B1 is not a chain graph. Soy ∈ B1 which means that(u, v, x, y)
is a crossing2K2. This impliesx ∈ C2 but we assumex ∈ B2 \ C2, a contradiction. Therefore, no such vertices
u, v, x, y exist which proves that(A1, A2, B

′
1, B

′
2) indeed satisfies(⋆).

That concludes the proof. �

3.1. Characterizing special bichain partitions

We say that an edge (non-edge)uv of G is a crossing edge (non-edge)with respect to a bichain partition
(A1, A2, B1, B2) of G if u ∈ A1 andv ∈ B2, or if u ∈ A2 andv ∈ B1.

We say that a closed alternating sequence ofG is badwith respect to a bichain partition(A1, A2, B1, B2) if the
sequence contains more crossing edges than crossing non-edges (with respect to this partition).

For instance, consider the graph in Figure 1 and the bichain partition A1 = {a1, a2}, A2 = {a3, a4}, B1 =
{b1, b2}, B2 = {b3, b4}. The sequencea1, b2, a4, b3, a1 contains 2 crossing non-edges with respect to this partition,
namelya4b2, a1b3, and has no crossing edges (both its edgesa1b2, a4b3 are not crossing).

Lemma 3. Let G be bichain graph. Then a bichain partition ofG is a special if and only if no closed alternating
sequence ofG is bad with respect to this partition.

PROOF. (⇐) We prove the contrapositive. Consider a bichain partition(A1, A2, B1, B2) of G and assume that it is
not special. This means that there existu ∈ A1, v ∈ A2 andx ∈ N(u) \N(v), y ∈ N(v) \N(u) such thatx 6∈ B1 or
y 6∈ B2. Note thatx, y ∈ B1 ∪B2 and the verticesu, x, v, y are all distinct and induce a2K2 in G. Thus ifx, y ∈ B1,
thenu, x, v, y induce a2K2 in G − B2, and ifx, y ∈ B2, thenu, x, v, y induce a2K2 in G − B1. Since neither is
possible (because(A1, A2, B1, B2) is a bichain partition) and sincex 6∈ B1 or y 6∈ B2, we must conclude thatx ∈ B2

andy ∈ B1. This implies thatu, x, v, y, u is a closed alternating sequence ofG that contains two crossing edges
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ux, vy with respect to(A1, A2, B1, B2), while neither of its non-edgesuy, vx is crossing. ThereforeG contains a
closed alternating sequence that is bad with respect to(A1, A2, B1, B2).

(⇒) Consider a special bichain partition(A1, A2, B1, B2) of G. Suppose thatG contains a closed alternating
sequence that is bad (with respect to this partition). Letu1, . . . , ut, ut+1 be a shortest such sequence. Recall that
u1 = ut+1 andui ∈ A1∪A2, uiui+1 ∈ E(G) if i is odd, whileui ∈ B1∪B2, uiui+1 6∈ E(G) if i is even. Moreover,
t is even andt ≥ 4. Sinceu1, . . . , ut+1 is bad, it contains strictly more crossing edges than crossing non-edges. In
particular, it contains at least one crossing edge. Withoutloss of generality (up to cyclically renaming the vertices in
the sequence), we may assume that the edgeu1u2 is a crossing edge. We show that the minimality ofu1, . . . , ut+1

implies that actually every edge in this sequence is crossing.

Claim 3.1: Every edge of the sequenceu1, . . . , ut+1 is a crossing edge with respect to(A1, A2, B1, B2).

For contradiction, leti be the smallest index such thatuiui+1 is an edge that is not crossing. Thusi is odd and
i ≥ 3, sinceu1u2 is a crossing edge. Without loss of generality (by symmetry), we may assume thatui ∈ A1. Thus
ui+1 ∈ B1, sinceuiui+1 is not crossing. Note thati − 2 ≥ 1 and so the verticesui−2 andui−1 exist. Thus we have
thatui−2 ∈ A1 ∪A2 andui−2ui−1 ∈ E(G) while ui−1 ∈ B1 ∪B2 andui−1ui 6∈ E(G), sincei− 2 is odd andi− 1
is even. This shows thatui−2, ui−1, ui, ui+1 are all distinct, andui−2ui−1 is a crossing edge, by the minimality ofi.

Suppose first thatui−2ui+1 is not an edge. Then the verticesui−2, ui−1, ui, ui+1 induce a2K2 in G. Thus if
ui−2 ∈ A1, thenui−2, ui−1, ui, ui+1 induce a2K2 in G−A2, while if ui−2 ∈ A2, thenui−1 ∈ B1, sinceui−2ui−1

is a crossing edge. But thenui−2, ui−1, ui, ui+1 induce a2K2 in G − B2. Neither of these is possible, because
(A1, A2, B1, B2) is a bichain partition. Therefore we must conclude thatui−2ui+1 ∈ E(G).

This shows thatu1, . . . , ui−2, ui+1, . . . , ut+1 is a closed alternating sequence ofG. Recall thatui−2 ∈ A1 ∪ A2.
Suppose first thatui−2 ∈ A1. Sinceui+1 ∈ B1, the edgeui−2ui+1 is non-crossing. On the other hand,ui−2ui−1

is a crossing edge, and thusui−1 ∈ B2. This means thatui−1ui is a crossing non-edge, sinceui ∈ A1. Finally,
recall thatuiui+1 is a non-crossing edge. This shows that the sequenceu1, . . . , ut+1 contains exactly one more
crossing edge and one more crossing non-edge than the sequenceu1, . . . , ui−2, ui+1, . . . , ut+1. But then the sequence
u1, . . . , ui−2, ui+1, . . . , ut+1 is bad becauseu1, . . . , ut+1 is, which contradicts the minimality ofu1, . . . , ut+1.

We may therefore assume thatui−2 ∈ A2. This implies thatui−2ui+1 is a crossing edge, and sinceui−2ui−1

is also crossing, we deduceui−1 ∈ B1. Thusui−1ui is a non-crossing non-edge, sinceui ∈ A1, and we recall that
uiui+1 is a non-crossing edge. Thus the sequenceu1, . . . , ui−2, ui+1, . . . , ut+1 contains the same number of crossing
edges and non-edges asu1, . . . , ut+1, again contradicting the minimality ofu1, . . . , ut+1.

This proves Claim 3.1.

Using this claim, we derive a contradiction. Recall thatt is even, thatu1 = ut+1, and thatutut+1 6∈ E(G).
Thusu1ut 6∈ E(G) and we can leti be the smallest even index in{1, . . . , t} such thatu1ui 6∈ E(G). Note that
ui ∈ B1 ∪B2, sincei is even. Without loss of generality (by symmetry), we may assume thatui ∈ B1.

Observe thati > 2, sinceu1u2 ∈ E(G). Thusi ≥ 4, sincei is even. In particular,i − 2 ≥ 2 which implies that
the vertexui−2 exists and it is distinct fromu1. From the minimality ofi, we further deduce thatu1ui−2 ∈ E(G).
Also, we recall thatui−2 ∈ B1 ∪ B2 andui−2ui−1 6∈ E(G), sincei − 2 is even, whileu1, ui−1 ∈ A1 ∪ A2 and
ui−1ui ∈ E(G), since1 andi − 1 are odd. Thus the verticesu1, ui−2, ui−1, ui are all distinct and induce a2K2 in
G. By Claim 3.1, the edgeui−1ui is a crossing edge. Thusui−1 ∈ A2, sinceui ∈ B1. Consequently, ifu1 ∈ A2,
thenu1, ui−2, ui−1, ui induce a2K2 in G−A1, and ifui−2 ∈ B1, thenu1, ui−2, ui−1, ui induce a2K2 in G −B2.
Again, neither is possible, since(A1, A2, B1, B2) is a bichain partition ofG. So we must conclude thatu1 ∈ A1

andui−2 ∈ B2. But now we contradict(⋆) for the verticesu1 ∈ A1, ui−1 ∈ A2, ui−2 ∈ N(u1) \ N(ui−1), and
ui ∈ N(ui−1) \N(u1). Therefore, the bichain partition(A1, A2, B1, B2) is not special, which is a contradiction.

That concludes the proof. �

Lemma 4. Let (A1, A2, B1, B2) be a special bichain partition ofG. Then there exists an integer0 ≤ α ≤ |V (G)|
such that the following system(△) of inequalities in variables{zu}u∈V (G) has a solution:

zb − za ≤ −1 for all a ∈ Ai andb ∈ Bi wherei ∈ {1, 2} andab ∈ E(G),
za − zb ≤ −1 for all a ∈ Ai andb ∈ Bi wherei ∈ {1, 2} andab 6∈ E(G),
zb − za ≤ −α− 1 for all a ∈ Ai andb ∈ Bj wherei 6= j andab ∈ E(G),
za − zb ≤ α− 1 for all a ∈ Ai andb ∈ Bj wherei 6= j andab 6∈ E(G).

(△)
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α = 5 A1 = {a1, a2} A2 = {a3, a4} B1 = {b1, b2} B2 = {b3, b4}

za1
− zb1 ≤ −1

zb2 − za1
≤ −1

zb1 − za2
≤ −1

zb2 − za2
≤ −1

za4
− zb4 ≤ −1

zb3 − za4
≤ −1

zb4 − za3
≤ −1

zb3 − za3
≤ −1

za1
− zb3 ≤ 4

za1
− zb4 ≤ 4

za2
− zb4 ≤ 4

za3
− zb1 ≤ 4

za4
− zb1 ≤ 4

za4
− zb2 ≤ 4

zb3 − za2
≤ −6

zb2 − za3
≤ −6

(−1)

(−1)

(−1)

(−1) (−1)

(−1)

(−1)

(−1)

4

4

4

4

4

4

(−6)

(−6)

a1

a2

a3

a4b1

b2

b3

b4

Solution: za1
= 5 za2

= 9 za3
= 9 za4

= 5 zb1 = 6 zb2 = 2 zb3 = 3 zb4 = 7

Figure 2: The inequalities and directed graphH for the graph from Figure 1.

In fact, there exists a solutionzu = z∗u , u ∈ V (G), such that eachz∗u is a positive integer andz∗u ≤ |V (G)| · (α+1).

PROOF. Let (A1, A2, B1, B2) be a special bichain partition ofG. We show that the system (△) has a solution for
α = |V (G)|. To this end, we construct the following directed graphH (see Figure 2 for illustration):

– the vertices ofH areV (G), and
– there is a directed arce of weightw(e) = β from u to v if the system (△) contains the inequalityzv − zu ≤ β.

In order to find a solution to (△), we show that no directed cycle ofH has negative total weight. For contradiction,
suppose thatH contains a directed cycleC on verticesu1, . . . , ut whereet = (ut, u1) and ei = (ui, ui+1) for
i ∈ {1, . . . , t− 1} are the arcs ofC and where

∑t

i=1 w(ei) < 0. Defineut+1 = u1.
Observe thatt ≤ |V (G)| = α, since all vertices onC are distinct. By examining the system of inequalities, note

that eachei is an arc either from a vertex ofA1 ∪ A2 to a vertex ofB1 ∪B2, or from a vertex ofB1 ∪B2 to a vertex
of A1 ∪ A2. In particular, ifei = (ui, ui+1) is an arc ofH from A1 ∪ A2 to B1 ∪ B2, thenuiui+1 ∈ E(G), while
if ei = (ui, ui+1) is an arc ofH fromB1 ∪B2 to A1 ∪ A2, thenuiui+1 6∈ E(G). Without loss of generality (by the
symmetry of the cycleC), we may assume thatu1 ∈ A1 ∪A2.

From this it follows thatu1, u2, . . . , ut, ut+1 is a closed alternating sequence ofG. Moreover, observe that if
uiui+1 is an edge ofG, and it is a crossing edge with respect to(A1, A2, B1, B2), thenw(ei) = −α − 1, while if it
is a non-crossing edge, thenw(ei) = −1. Similarly, if uiui+1 is a not an edge ofG and it is a crossing non-edge with
respect to(A1, A2, B1, B2), thenw(ei) = α− 1, while if it is non-crossing, thenw(ei) = −1.

Since(A1, A2, B1, B2) is a special bichain partition ofG, we conclude by Lemma 3 thatu1, . . . , ut, ut+1 is not a
bad sequence with respect to(A1, A2, B1, B2). This means that the numberγe of crossing edges of this sequence is
at most the numberγn of crossing non-edges of this sequence. Therefore we can calculate:

t∑

i=1

w(ei) =
∑

uiui+1∈E(G)
is crossing

w(ei) +
∑

uiui+1 6∈E(G)
is crossing

w(ei) +
∑

uiui+1

is not crossing

w(ei) =

= γe(−α− 1) + γn(α − 1)− (t− γe − γn) = α(γn − γe)− t ≥ α− t ≥ 0

This shows that the total weight of the cycleC is non-negative, a contradiction. Thus no such a cycleC exists in
H , and soH indeed contains no directed cycle of negative total weight,as claimed.

Using this fact, we construct a solution to the inequalitites (△). To this end, we add an new “source” vertexs toH
and connect it to every other vertex by an arc of weightM (to be chosen later). Then for eachu ∈ V (G), the valuez∗u
is defined as the distance (the length of a shortest walk) froms tou in this augmented graph. Clearly, sinceH contains
no cycles of negative weight, the valuesz∗u are well-defined real numbers (each shortest walk is in fact ashortest path
– does not repeat vertices). Moreover, for every arce = (u, v) of H , the triangle inequality for the distance (when we
travel tov by going tou and then taking the edgee) yieldsz∗v ≤ z∗u + w(e); in other words,z∗v − z∗u ≤ w(e). This
shows that the valuesz∗u constructed this way indeed form a solutionzu = z∗u to (△).
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Finally, by takingM = |V (G)| · (α+1), we make sure that1 ≤ z∗u ≤ |V (G)| · (α+1) for eachu ∈ V (G), since
no shortest walk inH repeats vertices and smallest negative weight of an arc inH is −(α + 1). Moreover, since the
weights of all arcs inH are integers, it follows that eachz∗u is also an integer. This completes the proof. �

4. Diagonal representations

In this section, we introduce a geometric model for bichain graphs, which we call diagonal representation.

A diagonal representationof G is an intersection representation that assigns to each vertex of G a segment
connecting two points on the boundary of a fixed axis-parallel rectangleR so that

(i) all segments are distinct,
(ii) every segment is parallel either to the liney = −x, or to the liney = x,
(iii) no segment connects points on opposite sides of the rectangleR, and
(iv) two vertices ofG are adjacent if and only if the corresponding segments crosseach other.

See Figure 1 for an illustration of this representation. We show that this representation characterizes bichain graphs.

Theorem 5. LetG be a graph. Then the following are equivalent.

(i) G is a bichain graph.

(ii) G admits a diagonal representation.

PROOF. (ii)⇒(i): Suppose thatG admits a diagonal representation in a rectangleR = [x1, x2] × [y1, y2] where
x1, x2, y1, y2 ∈ R. Let A denote those vertices whose segments are parallel to the line y = −x. Let B denote the
remaining vertices (those parallel to the liney = x). SplitA intoA1 andA2 whereA1 are the vertices whose segments
connect the bottom side ofR with the left side ofR, andA2 are the vertices whose segments connect the top side
of R with the right side ofR. Likewise, splitB into B1 andB2 whereB1 are the vertices whose segments connect
the top and the left side ofR while B2 are the vertices whose segments connect the bottom and the right side ofR.
For instance, for the graph in Figure 1, we haveA = {a1, a2, a3, a4} andB = {b1, b2, b3, b4}, whereA1 = {a1, a2},
A2 = {a3, a4}, B1 = {b1, b2}, andB2 = {b3, b4}.

We show that(A1, A2, B1, B2) is a bichain partition ofG which will imply thatG is a bichain graph. First, note
thatA is an independent set. Indeed, the segments assigned to the vertices inA are all parallel to the liney = −x and
are all distinct. So they do not pairwise intersect. Similarly, we see thatB is an independent set.

It remains to verify for eachi ∈ {1, 2} thatG −Ai andG− Bi are chain graphs. By symmetry (betweenA and
B and betweenA1 andA2, resp.B1 andB2), it suffices to check this forG−A1.

Suppose thatG − A1 contains an induced2K2 on verticesu, v, p, q with edgesuv andpq whereu, p ∈ A and
v, q ∈ B. Sinceu, p ∈ A, the segments representingu andv are parallel to the liney = −x. Thus there areδu, δp ∈ R

such that the segment representingu lies on the liney = −x + δu and the segment representingp lies on the line
y = −x+ δp. Similarly, the segments representingv, q ∈ B are parallel to the liney = x. So there existδv, δq ∈ R

such that the segment representingv lies on the liney = x + δv and the segment representingq lies on the line
y = x+ δq. By symmetry, we may assume thatδu ≥ δp. (If not, we exchangeu with p, andv with q.) Further, since
u, p ∈ A andG− A1 contains no vertices ofA1, we concludeu, p ∈ A2. Therefore the segments representingu and
p intersect the top and right sides of the rectangleR. In other words, the linesy = −x+ δu andy = −x+ δp intersect
the sets[x1, x2]× {y2} and{x2} × [y1, y2]. This gives the following inequalities (recall thatδp ≤ δu):

x1 + y2 ≤ δp ≤ δu ≤ x2 + y2 x2 + y1 ≤ δp ≤ δu ≤ x2 + y2

Sinceuv ∈ E(G), the segments representingu andv intersect. In other words, the intersection point of the lines
y = −x + δu andy = x + δv lies inside the rectangleR = [x1, x2] × [y1, y2]. Note that the point where these two
lines intersect has coordinatesx = (δu − δv)/2 andy = (δu + δv)/2. This yields the following:

x1 ≤
δu − δv

2
≤ x2 y1 ≤

δu + δv
2

≤ y2

Similarly, note that the intersection point of the linesy = −x+δp andy = x+δv has coordinatesx = (δp−δv)/2
andy = (δp + δv)/2. We can bound these coordinates using the above inequalities as follows:
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Figure 3: Illustration of the construction.

x2 ≥
δu − δv

2
≥

δp − δv
2

≥
x1 + y2 − δv

2
≥

x1 +
δu+δv

2 − δv

2
≥

x1 +
δu−δv

2

2
≥

x1 + x1

2
= x1

y2 ≥
δu + δv

2
≥

δp + δv
2

≥
x2 + y1 + δv

2
≥

δu−δv
2 + y1 + δv

2
≥

δu+δv
2 + y1

2
≥

y1 + y1
2

= y1

This shows that the linesy = −x + δp andy = x + δv intersect inside the rectangleR. But this means that the
segments representingv andp intersect. However, we havevp 6∈ E(G), a contradiction.

So we conclude that no such verticesu, v, p, q exist and thusG −A1 is indeed a chain graph. By the same token
(by symmetry), alsoG− A2, G−B1, andG−B2 are chain graphs. Therefore,G is indeed a bichain graph.

This proves (ii)⇒(i).

(i)⇒(ii): Suppose thatG is a bichain graph. Then by Lemma 2, there exists a special bichain partition ofG. Let
us denote this partition as(A1, A2, B1, B2). LetA = A1 ∪A2 andB = B1 ∪B2.

We apply Lemma 4 to the partition(A1, A2, B1, B2). This yields an integerα ≥ 0 for which the system (△) has
a solutionzu = z∗u , u ∈ V (G) where eachz∗u is a positive integer.

Let n = |V (G)|. We fix an ordering ofV (G) and denote itu1, u2, . . . , un. We further define the following:

– N = 1 + n · max
u∈V (G)

z∗u,

– M = N + n · α,

– for eachk = 1, . . . , n, definez+uk
= n · z∗uk

+ k − n.

Note that1 ≤ z+u ≤ N − 1 for all u ∈ V (G), which follows from the definition ofN and the fact that1 ≤ z∗u.
In fact, for distinctk, ℓ ∈ {1, . . . , n}, we have thatz+uk

6= z+uℓ
, sincez∗uk

, z∗uℓ
are positive integers and1 ≤ k, ℓ ≤ n.

Moreover, we observe the following property.

Claim 5.1: Letuk ∈ Ai anduℓ ∈ Bj wherei, j ∈ {1, 2}.
(a) If i = j, thenukuℓ ∈ E(G) if and only ifz+uℓ

≤ z+uk
.

(b) If i 6= j, thenukuℓ ∈ E(G) if and only ifz+uℓ
+ n · α ≤ z+uk

.

To prove this, consideruk ∈ Ai anduℓ ∈ Bj . Suppose first thati = j. Then, ifukuℓ ∈ E(G), we havez∗uℓ
− z∗uk

≤
−1, since the valuesz∗u form a solution to (△). Thus sincek, ℓ ∈ {1, . . . , n}, we deduce thatz+uℓ

< z+uk
as follows:

z+uℓ
= n · z∗uℓ

+ ℓ− n ≤ n · z∗uℓ
≤ n · (z∗uk

− 1) < n · z∗uk
+ k − n = z+uk

.
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Similarly, if ukuℓ 6∈ E(G), thenz∗uk
− z∗uℓ

≤ −1 and we deduce thatz+uk
< z+uℓ

. This shows thatukuℓ ∈ E(G) if
and only ifz+uℓ

≤ z+uk
, as claimed.

Now, assume thati 6= j. Then, ifukuℓ ∈ E(G), we havez∗uℓ
− z∗uk

≤ −α− 1, since the valuesz∗u form a solution
to the system (△). From this we deduce thatz+uℓ

< z+uk
− n · α as follows:

z+uℓ
= n · z∗uℓ

+ ℓ− n ≤ n · z∗uℓ
≤ n · (z∗uk

− α− 1) < n · z∗uk
+ k − n− n · α = z+uk

− n · α.

Similarly, if ukuℓ 6∈ E(G), thenz∗uk
− z∗uℓ

≤ α − 1 in which case we deduce thatz+uk
< z+uℓ

+ n · α. Together, we
conclude, as required, thatukuℓ ∈ E(G) if and only if z+uℓ

+ n · α ≤ z+uk
. This proves Claim 5.1.

Now we are ready to describe the construction. We construct adiagonal representation ofG as follows. The
underlying rectangle is chosen to have corner points(0, 0), (M, 0), (0, N), and(M,N). Fora ∈ A1, we represent
a as the segment connecting the pointPa = (0, z+a ) to the pointQa = (z+a , 0). For a ∈ A2, we representa as
the segment connecting the pointPa = (M,N − z+a ) to the pointQa = (M − z+a , N). For b ∈ B1, the segment
representingb goes fromPb = (0, z+b ) to Qb = (N − z+b , N), while for b ∈ B2, the segment forb goes from
Pb = (M,N − z+b ) toQb = (z+b +M −N, 0). See Figure 3 for a detailed illustration of this construction.

We verify that the segments form a diagonal representation of G. Clearly, the segments connect points on
consecutive sides of the rectangle, where the segments for the vertices inA are all parallel to the liney = −x,
while the segments for the vertices inB are parallel to the liney = x. Further, note that the segments are all distinct.
Namely, the segments representing the vertices inA are all distinct, and the segment representing the verticesin B
are all distinct. In particular, foruk, uℓ ∈ A wherek 6= ℓ, the segments representinguk anduℓ are distinct, because
z+uk

6= z+uℓ
andz+uℓ

< N ≤ M . Foruk, uℓ ∈ B wherek 6= ℓ, the two segments foruk anduℓ are distinct, because
againz+uk

6= z+uℓ
and1 ≤ z+uℓ

. Thus all segments in the representation are indeed distinct. Consequently, the segments
representing the vertices inA are pairwise non-intersecting, since they are all parallelto the liney = −x. Likewise,
the segments representing the vertices inB are pairwise non-intersecting, since they are all parallelto y = x.

To conclude that the representation is indeed a diagonal representation ofG, it remains to verify that foruk, uℓ

whereuk ∈ A anduℓ ∈ B, the segments representinguk anduℓ intersect if and only ifukuℓ ∈ E(G).
Suppose first thatuk ∈ A1 anduℓ ∈ B1. Then it follows that the segment representinguk lies on the line

y = −x+z+uk
while the segment representinguℓ lies on the liney = x+z+uℓ

. The intersection point of the two lines is
(x∗, y∗) wherex∗ = 1

2z
+
uk
− 1

2z
+
uℓ

andy∗ = 1
2z

+
uk
+ 1

2z
+
uℓ

. Therefore, the two segments representinguk anduℓ intersect
if and only if (x∗, y∗) lies in the rectangle. Note thatx∗ < M and0 < y∗ < N , since0 < z+uk

, z+uℓ
< N ≤ M .

Thus(x∗, y∗) lies in the rectangle if and only ifx∗ ≥ 0. In other words, if and only ifz+uℓ
≤ z+uk

. By Claim 5.1a, this
happens if and only ifukuℓ ∈ E(G), sinceuk ∈ A1 anduℓ ∈ B1. Put together, we conclude that the two segments
representinguk anduℓ intersect if and only ifukuℓ ∈ E(G), as required.

We proceed similarly in all the other cases. Ifuk ∈ A2 anduℓ ∈ B2, then the point of (possible) intersection
of the segments is(x∗, y∗) wherex∗ = M − 1

2z
+
uk

+ 1
2z

+
uℓ

andy∗ = N − 1
2z

+
uk

− 1
2z

+
uℓ

. Thus the point lies in the
rectangle if and only ifx∗ ≤ M which is if and only ifz+uℓ

≤ z+uk
which is if and only ifukuℓ ∈ E(G) by Claim 5.1a.

If uk ∈ A1 anduℓ ∈ B2, then the (potential) intersection point of the segments is(x∗, y∗) wherex∗ = 1
2z

+
uk

+
1
2z

+
uℓ

+ 1
2n · α andy∗ = 1

2z
+
uk

− 1
2z

+
uℓ

− 1
2n · α. This implies that the point lies in the rectangle if and onlyif y∗ ≥ 0

if and only if z+uℓ
+ n · α ≤ z+uk

if and only if ukuℓ ∈ E(G) by Claim 5.1b. Finally, ifuk ∈ A2 anduℓ ∈ B1, then
we havex∗ = M − 1

2z
+
uk

− 1
2z

+
uℓ

− 1
2n · α andy∗ = N − 1

2z
+
uk

+ 1
2z

+
uℓ

+ 1
2n · α. Thus the point(x∗, y∗) lies in the

rectangle if and only ify∗ ≤ N if and only if z+uℓ
+ n · α ≤ z+uk

if and only if ukuℓ ∈ E(G) by Claim 5.1b.
This completes all cases and so we can conclude that the segments indeed form a diagonal representation ofG.

This proves (i)⇒(ii) and concludes the proof. �

Theorem 5 implies the following immediate corollary, whereby a circle graph we mean the intersection graph of
a set of chords of a circle.

Corollary 6. Evey bichain graph is a circle graph.

5. Universal bichain graphs

In this section, we construct a universal graph for bichain graphs. We start with the description of our construction,
which we call theZ-grid.
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Figure 4: The Z-gridZn,m with n = 7 columns andm = 6 rows, where in addition (indicated in green) every vertex inthe i-th column with an
eveni is adjacent to every vertex in thej-th column with an oddj ≥ i+ 3.

TheZ-gridZn,m is the graph defined as follows:

– vertex set isV (Zn,m) =
{

vij

∣
∣
∣ i ∈ {1, . . . , n} andj ∈ {1, . . . ,m}

}

– vertexvij is adjacent to vertexvi′j′ if and only if

(a) eitheri is even,i′ is odd,i′ ≥ i− 1, and
– if i′ = i− 1, thenj′ > j,
– if i′ = i+ 1, thenj′ ≥ j,

(b) or i is odd,i′ is even,i′ ≤ i+ 1, and
– if i′ = i+ 1, thenj′ < j,
– if i′ = i− 1, thenj′ ≤ j.

An example of theZ-grid is represented in Figure 4. Following the depiction therein, we shall speak of rows and
columns of a Z-grid. Namely, the set of vertices{vij | j ∈ {1, . . . ,m}} is thei-th columnof Zn,m, while the vertices
{vij | i ∈ {1, . . . , n}} form thej-th rowof Zn,m.

The main goal of this section is to prove that theZ-grid Zn,n is ann-universal bichain graph, i.e. it is a bichain
graph containing every bichain graph withn vertices as an induced subgraph. We start by showing that theZ-grid
itself is a bichain graph.

Lemma 7. For any positive integersn,m, theZ-grid Zn,m is a bichain graph.

PROOF. We define a partition of the vertices ofZn,m and show that it is a bichain partition. This will imply thatZn,m

is a bichain graph. We define the sets as follows:

A1 = {vij | i ≡ 1 (mod 4) andj ∈ {1, . . . ,m}} B1 = {vij | i ≡ 2 (mod 4) andj ∈ {1, . . . ,m}}

A2 = {vij | i ≡ 3 (mod 4) andj ∈ {1, . . . ,m}} B2 = {vij | i ≡ 0 (mod 4) andj ∈ {1, . . . ,m}}

We show that(A1, A2, B1, B2) is a bichain partition ofZn,m. Note that by definition, if the vertexvij is adjacent
to vi′j′ , theni is odd andi′ even, ori is even andi′ odd. This implies thatA = A1 ∪ A2 andB = B1 ∪ B2 are
independent sets. It remains to show thatZn,m − Ai andZn,m − Bi are chain graph fori = 1, 2. By symmetry, it
suffices to check thatZn,m −A1 is a chain graph.

Suppose otherwise, and letx, y, z, w denote vertices inZn,m that induce a2K2 with edgesxy, zw such that
x, y, z, w 6∈ A1. Thusx, y, z, w ∈ A2 ∪B1∪B2. In particular, sinceB1∪B2 is an independent set andxy is an edge,
it follows that one ofx, y belongs toA2. By the same token, one ofz, w belongs toA2. By symmetry, we may assume
thatx, z ∈ A2. Thusy, w ∈ B1 ∪ B2. Sincex, y, z, w denote vertices inZn,m, we have thatx = vi1j1 , y = vi2j2 ,

10



z = vi3j3 , andw = vi4j4 for some indicesi1, . . . , i4, j1, . . . , j4. In particular, sincex, z ∈ A2 andy, w ∈ B, we
deduce thati1 andi3 are odd, whilei2, i4 are even. Sincexy, zw are edges whilexw, yz are non-edges, we deduce:

i2 ≤ i1 + 1 i4 ≤ i3 + 1 i1 ≤ i4 + 1 i3 ≤ i2 + 1.

From this we deduce that|i1 − i3| ≤ 2, since−2 ≤ i2 − i3 − 1 ≤ i1 − i3 ≤ i4 − i3 + 1 ≤ 2. This allows us to
conclude thati1 = i3, since(i1− i3) ≡ 0 (mod 4) becausex, z ∈ A2. Thereforei2, i4 ∈ {i1− 1, i1+1}, sincei2, i4
are even andi1 = i3 while i3 − 1 ≤ i2 ≤ i1 + 1 andi1 − 1 ≤ i4 ≤ i3 + 1. This implies, by the definition ofZn,m,
thatj2 ≤ j1 andj4 ≤ j3, becausexy, zw are edges, while it also implies thatj1 ≤ j4 andj3 ≤ j2 becausexw, yz
are non-edges. Put together, we havej1 ≤ j4 ≤ j3 ≤ j2 ≤ j1. Thereforej1 = j3 but since alsoi1 = i3, we deduce
thatx = z, impossible. We must conclude that no such verticesx, y, z, w exist, which yields the claim. �

In order to prove the main result of this section, we need a particular decomposition of bichain graphs. The starting
point of the decomposition is described in the following lemma.

Lemma 8. If G is a bichain graph, then there is a special bichain partition(A1, A2, B1, B2) ofG such that

(⋆⋆) there exists a non-empty setX ⊆ A1 such thatN(X) ⊆ B1.

PROOF. By Lemma 2, let(A1, A2, B1, B2) be a special bichain partition ofG, i.e. a partition satisfying (⋆). LetW
denote the set of all verticesy ∈ B2 such thatN(y) ⊇ A1 (possiblyW = ∅).

We construct a new partition ofV (G) as follows. LetB′
1 = B1 ∪ W . Let B′

2 = B2 \ W . We claim that
(A1, A2, B

′
1, B

′
2) is a bichain partition ofG and it satisfies (⋆). Recall that(A1, A2, B1, B2) is a bichain partition of

G satisfying (⋆). Namely for eachi ∈ {1, 2}, bothG−Ai andG−Bi are chain graphs.

Claim 8.1: G− B′
i is a chain graph for eachi ∈ {1, 2}.

Clearly,G − B′
1 is a chain graph, since it is an induced subgraph ofG − B1 which itself is a chain graph. Suppose

thatG− B′
2 contains an induced2K2. Namely, suppose that there are verticesu, v ∈ A andx, y ∈ B \B′

2 such that
x ∈ N(u) \ N(v) andy ∈ N(v) \ N(u). If u, v ∈ A1 or u, v ∈ A2, thenG − A2 or G − A1 is not a chain graph,
impossible. Thus, by symmetry, we may assume thatu ∈ A1 andv ∈ A2. Therefore, since(A1, A2, B1, B2) satisfies
(⋆), we must conclude thatx ∈ B1 andy ∈ B2. Now, recall thaty 6∈ B′

2 = B2 \W . Thusy ∈ W , sincey ∈ B2.
This means thatN(y) ⊇ A1. However,u ∈ A1 anduy 6∈ E(G), a contradiction. This proves Claim 8.1.

Claim 8.2: (A1, A2, B
′
1, B

′
2) satisfies (⋆).

Suppose that there existu ∈ A1, v ∈ A2, and verticesx ∈ N(u) \N(v) andy ∈ N(v) \N(u) such thatx /∈ B′
1 or

y /∈ B′
2. If x, y ∈ B′

1 or x, y ∈ B′
2, thenG − B′

1 or G − B′
2 is not a chain graph, contradicting Claim 8.1. Thus we

must conclude thatx ∈ B′
2 andy ∈ B′

1. Recall thatB′
2 = B2 \W . Since(A1, A2, B1, B2) satisfies (⋆), we deduce

x ∈ B1 andy ∈ B2. Thusy ∈ B2 ∩ B′
1 = W . This means thatN(y) ⊇ A1. However,u ∈ A1 anduy 6∈ E(G), a

contradiction. Therefore, no such verticesu, v, x, y exist. This proves Claim 8.2.

From Claims 8.1 and 8.2, we deduce that(A1, A2, B
′
1, B

′
2) is indeed a bichain partition ofG and it indeed

satisfies (⋆). We now show that it also satisfies (⋆⋆) which will imply the lemma. LetX be the set of all vertices
u ∈ A1 such thatN(u) ⊆ B′

1. Suppose thatX = ∅. SinceG − B′
1 is a chain graph by Claim 8.1, there exist

y ∈ B′
2 such thatN(y) ⊇ N(b) for all b ∈ B′

2. Sincey ∈ B′
2 andB′

2 = B2 \W , we conclude thaty 6∈ W , namely
N(y) 6⊇ A1. Thus there existsu ∈ A1 such thatu 6∈ N(y). If N(u) ⊆ B′

1, thenu ∈ X and henceX 6= ∅. But
we assumeX = ∅. So there existsb ∈ N(u) ∩ B′

2. By the choice ofy, we haveN(y) ⊇ N(b). However, this is
impossible, sinceu ∈ N(b) \N(y). We must therefore concludeX 6= ∅. ThusX is a non-empty subset ofA1, and
we haveN(X) ⊆ B′

1, sinceN(u) ⊆ B′
1 for all u ∈ X . This shows that(A1, A2, B

′
1, B

′
2) indeed satisfies (⋆⋆).

That concludes the proof. �

Now we are in a position to prove the main result of the sectionstating that every bichain graphG with n vertices
is contained in the gridZn,n as an induced subgraph. Moreover, we will prove a stronger result stating thatZn,n

contains an induced copy ofG such that every row contains at most one vertex ofG. We call such a copyrow-sparse.

Theorem 9. LetG be ann-vertex bichain graph. ThenG is isomorphic to a row-sparse induced subgraph ofZn,n.

11



PROOF. Consider ann-vertex bichain graphG. We show how to find a row-sparse copy ofG in Zn,n. Let
(A1, A2, B1, B2) be a bichain partition ofG satisfying both (⋆) and (⋆⋆). Such a partition is guaranteed by Lemma 8.

We iteratively define the following sets: for eachi = 0, 1, 2, . . . in turn, having definedW1,W2, . . . ,W4i, we
define the setsW4i+1,W4i+2,W4i+3,W4i+4 as follows:

– W4i+1 is the set of allu ∈ A1 \ (W1 ∪W5 ∪ · · · ∪W4i−3) such thatN(u) ⊆ B1 ∪ (W4 ∪W8 ∪ · · · ∪W4i)

– W4i+2 is the set of allu ∈ B1 \ (W2 ∪W6 ∪ · · · ∪W4i−2) such thatN(u) ⊇ A1 \ (W1 ∪W5 ∪ · · · ∪W4i+1)

– W4i+3 is the set of allu ∈ A2 \ (W3 ∪W7 ∪ · · · ∪W4i−1) such thatN(u) ⊆ B2 ∪ (W2 ∪W6 ∪ · · · ∪W4i+2)

– W4i+4 is the set of allu ∈ B2 \ (W4 ∪W8 ∪ · · · ∪W4i) such thatN(u) ⊇ A2 \ (W3 ∪W7 ∪ · · · ∪W4i+3)

Recall that the condition (⋆⋆) holds for(A1, A2, B1, B2). This gives usW1 6= ∅. Also, observe thatW4i+1 ⊆ A1

andW4i+2 ⊆ B1 whileW4i+3 ⊆ A2 andW4i+4 ⊆ B2, for all i ≥ 0. Thus, by construction, all these sets are pairwise
disjoint. In the following claim, we show that they completely cover (and thus partition)G.

Claim 9.1: V (G) =
⋃∞

i=1 Wi

Define the following sets:

C1 = A1 \
(
⋃∞

i=0 W4i+1

)

D1 = B1 \
(
⋃∞

i=0 W4i+2

)

C2 = A2 \
(
⋃∞

i=0 W4i+3

)

D2 = B2 \
(
⋃∞

i=0 W4i+4

)

First, suppose thatC1 6= ∅. SinceG − A2 is a chain graph, so isG′ = G − A2 − (A1 \ C1). Thus there
existsu ∈ C1 such thatNG′(u) ⊆ NG′(a) for all a ∈ C1. In fact, NG(u) ⊆ NG(a) for all a ∈ C1, since
NG(u) ⊆ B1 ∪ B2 ⊆ V (G′). Sinceu ∈ C1 = A1 \ (

⋃∞
i=0 W4i+1), we haveu 6∈ W4i+1 for all i ≥ 0. This implies

thatu has a neighbour inB2 \ (W4 ∪ W8 ∪ · · · ∪ W4i) for all i ≥ 0, for otherwise we would have included it in
W4i+1 for somei. Thusu has a neighbour inB2 \ (

⋃∞
i=0 W4i+4) = D2. Let x ∈ D2 be any such neighbour. Since

x ∈ D2, note thatx 6∈ W4i+4 for all i ≥ 0. Sox has a non-neighbour inA2 \ (W3 ∪W7 ∪ · · · ∪W4i+3) for all i ≥ 0,
otherwise we would have included it inW4i+4 for somei. Thusx has a non-neighbour inA2 \ (

⋃∞
i=0 W4i+3) = C2.

Let v ∈ C2 be any such non-neighbour. Sincev ∈ C2, we have thatv 6∈ W4i+3 for all i ≥ 0. Sov has a neighbour
in B1 \ (W2 ∪W6 ∪ · · · ∪ · · ·W4i+2) for all i ≥ 0, otherwise we would have included it inW4i+3 for somei. Thus
v has a neighbour inB1 \ (

⋃∞
i=0 W4i+2) = D1. Let y ∈ D1 be any such neighbour. Sincey ∈ D1, we have that

y 6∈ W4i+2 for all i ≥ 0. Soy has a non-neighbour inA1 \ (W1 ∪ W5 ∪ · · · ∪ W4i+1) for all i ≥ 0, otherwise we
would have included it inW4i+2 for somei. Thusy has a non-neighbour inA1 \ (

⋃∞
i=0 W4i+1) = C1. Let a ∈ C1

be any such non-neighbour. Recall that alsou ∈ C1, and by the choice ofu, we haveN(u) ⊆ N(a). Therefore also
u is a non-neighbour ofy.

Altogether, we haveu ∈ A1, v ∈ A2, x ∈ B2 andy ∈ B1 wherex ∈ N(u) \N(v) andy ∈ N(v) \N(u). This
means that (⋆) fails for (A1, A2, B1, B2). But we assume that (⋆) holds for(A1, A2, B1, B2).

Therefore, we must conclude thatC1 = ∅. We show that this implies that also each ofC2, D1, D2 is empty.
Indeed, if there existsy ∈ D1, then (repeating the argument from the above paragraph) we conclude thaty has a
non-neighbour inC1. However,C1 is empty. Thus we deduce that alsoD1 is empty. Next, if there existsv ∈ C2, we
conclude thatv has a neighbour inD1. ButD1 is empty, so alsoC2 must be. Finally, if there isx ∈ D2, thenx has a
non-neighbour inC2, butC2 is empty. ThusD2 is empty. This proves that each of the setsC1, C2, D1, D2 is empty,
and henceV (G) =

⋃∞
i=1 Wi as promised.

This proves Claim 9.1.

We further notice that the way the vertices are assigned to earliest possible setsWi, the construction guarantees
the following useful properties. See Figure 5 for a depiction of these properties.

Claim 9.2: For all k ∈ {1, 2, . . .}:
(a) eachx ∈ W2k+1 has a neighbour inW2k,
(b) eachy ∈ W2k has a non-neighbour inW2k−1,

(c) W2k+1 is complete toW2 ∪W4 ∪ · · · ∪W2k−2,
(d) W2k is anticomplete toW1 ∪W3 ∪ · · · ∪W2k−3.

To prove (a), considerx ∈ W2k+1 wherek ≥ 1.
Suppose first thatk is even, i.e.k = 2i for somei ≥ 1. In other words,x ∈ W4i+1 and the definition ofW4i+1

gives us thatx ∈ A1 \ (W1 ∪W5 ∪ · · · ∪W4i−3) andN(x) ⊆ B1 ∪ (W4 ∪W8 ∪ · · · ∪W4i). Sincex was not put in
any of the setsW1,W5, . . . ,W4i−3, it follows thatN(x) 6⊆ B1 ∪ (W4 ∪W8 ∪ · · · ∪W4i′ ) for all i′ < i. From this we
must conclude thatx has a neighbour inW4i. Sox has a neighbour inW2k, sincek = 2i.
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A similar argument works ifk is odd, i.e. ifk = 2i + 1 for somei ≥ 0. Herex ∈ W4i+3 which implies that
x ∈ A2 \ (W3 ∪W7 ∪ · · · ∪W4i−1) andN(x) ⊆ B2 ∪ (W2 ∪W6 ∪ · · · ∪W4i+2). Sincex was not put in any of the
setsW3,W7, . . . ,W4i−1, we conclude thatN(x) 6⊆ B2 ∪ (W2 ∪W6 ∪ · · · ∪W4i′+2) for all i′ < i. We must conclude
thatx has a neighbour inW4i+2. So, as required,x has a neighbour in isW2k, sincek = 2i+ 1. This proves (a).

The proof of (b) is analogous. Considery ∈ W2k wherek ≥ 1. If k = 2i+1 for somei ≥ 0, theny ∈ W4i+2 and
soy ∈ B1 \ (W2 ∪W6 ∪ · · · ∪W4i−2) andN(y) ⊇ A1 \ (W1 ∪W5 ∪ · · · ∪W4i+1). Sincey is not in any of the sets
W2,W6, . . . ,W4i−2, we conclude thatN(y) 6⊇ A1 \(W1∪W5∪· · ·∪W4i′+1) for all i′ < i. Thusy must have a non-
neighbour inW4i+1 = W2k−1, as required. Similarly, ifk = 2i+2 for i ≥ 0, theny ∈ B2 \ (W4 ∪W8 ∪ · · · ∪W4i)
andN(y) ⊇ A2 \ (W3 ∪W7 ∪ · · · ∪W4i+3). ThusN(y) 6⊇ A2 \ (W3 ∪W7 ∪ · · · ∪W4i′+3) for all i′ < i, and soy
must have a non-neighbour inW4i+3 = W2k−1, as required. This proves (b).

To prove (c), consider smallest indexk for whichW2k+1 is not complete toW2 ∪W4 ∪ · · · ∪W2k−2. Then there
existsu ∈ W2k+1 andv ∈ W2j wherej ≤ k − 1 such thatuv 6∈ E(G). Clearly,k ≥ 2. By (a) and sincek ≥ 1, we
deduce thatu has a neighbourw in W2k. Similarly, by (b),w has a non-neighbourz in W2k−1. Recall thatv ∈ W2j .

Suppose first thatj is odd. Thenv ∈ B1 andN(v) ⊇ A1 \ (W1 ∪W5 ∪ · · · ∪W2j−1) by the definition ofW2j .
Sinceu 6∈ N(v) andu ∈ W2k+1 wherek ≥ j + 1, we deduce thatu ∈ A2. This implies thatk is odd. Sow ∈ B1

andz ∈ A1, sincew ∈ W2k andz ∈ W2k−1. Now, since bothj andk are odd whilej ≤ k − 1, we deduce that
j ≤ k − 2. Thus the minimality ofk implies thatW2k−1 is complete toW2j . In particular, we have thatz is adjacent
to v. However, then we havev, w ∈ B1, z ∈ A1, u ∈ A2 whereuw, vz ∈ E(G) while uv, zw 6∈ E(G). In addition,
uz, vw 6∈ E(G), sinceA1 ∪ A2 andB1 are independent sets. This shows that the verticesu, v, z, w induce a copy of
2K2 in G−B2 which is therefore not a chain graph. But then(A1, A2, B1, B2) is not a bichain partition.

Similarly, if j is even, thenv ∈ B2 andN(v) ⊇ A2 \ (W3 ∪W7 ∪ · · · ∪W2j−1). Thusu ∈ A1, sinceu 6∈ N(v)
andu ∈ W2k+1 wherek ≥ j + 1. This implies thatk is even and sow ∈ B2 andz ∈ A2, sincew ∈ W2k and
z ∈ W2k−1. In addition, we deducej ≤ k − 2, since bothj andk are even. Thuszv ∈ E(G) by the minimality ofk.
We conclude thatv, w ∈ B2, u ∈ A1, z ∈ A2, and sou, v, z, w induce a copy of2K2 in G−B1, a contradiction.

This proves (c).

The proof of (d) is analogous. Consider smallestk for whichW2k is not anticomplete toW1 ∪W3 ∪ · · · ∪W2k−3.
Then there existsv ∈ W2k adjacent to someu ∈ W2j−1 wherej ≤ k−1. Clearly,k ≥ 2. By (b),v is non-adjacent to
somew ∈ W2k−1, and by (a),w is adjacent to somez ∈ W2k−2. Recall thatu ∈ W2j−1. Suppose first thatj is even.
Thenu ∈ A2 andN(u) ⊆ B2 ∪ (W2 ∪W6 ∪ · · · ∪W2j−2). This yields thatv ∈ B2, sincev ∈ N(u) andv ∈ W2k

wherek ≥ j+1. Therefore,k is even, and hence,w ∈ A2 andz ∈ B1, sincew ∈ W2k−1 andz ∈ W2k−2. Moreover,
j ≤ k − 2, since bothj andk are even. Thusuz 6∈ E(G) by the minimality ofk. Together, we haveu,w ∈ A2,
z ∈ B1, v ∈ B2, andu, v, w, z induce a2K2 in G − A1, a contradiction. Similarly ifj is odd. In that case,u ∈ A1

andN(u) ⊆ B1∪ (W4∪W8∪· · ·∪W2j−2). Thusv ∈ B1, sincev ∈ N(u) andv ∈ W2k wherek ≥ j+1. It follows
thatk is odd. Sow ∈ A1, z ∈ B2, andj ≤ k − 2, since alsoj is odd. Therefore,uz 6∈ E(G) by the minimality ofk.
Together,u,w ∈ A1, v ∈ B1, z ∈ B2, andu, v, z, w induce a2K2 in G−A2, a contradiction.

This proves Claim 9.2.

Claim 9.3: V (G) = W1 ∪W2 ∪ · · · ∪Wn

To see this, note first that, by Claim 9.1, we haveV (G) =
⋃∞

i=1 Wi ⊇ W1 ∪W2 ∪ · · · ∪Wn. Thus, for contradiction,
suppose that

⋃n

i=1 Wi is a proper subset ofV (G). In other words, assume thatn > |
⋃n

i=1 Wi| =
∑n

i=1 |Wi|. This
implies that there existsk ∈ {1, . . . , n} such thatWk is empty. We claim thatWj for eachj ≥ k + 1 is also empty.

For contradiction, consider smallestj ≥ k + 1 such thatWj is non-empty, i.e.Wj contains some vertexx. Note
that j ≥ 2, sincek ≥ 1. Thus if j is odd, then we deduce, by Claim 9.2a, thatx has a neighbour inWj−1. In
particular,Wj−1 is non-empty. Similarly, ifj is even, thenx has a non-neighbour inWj−1 by Claim 9.2b, and so
Wj−1 is non-empty. Thus we conclude thatj− 1 6= k, sinceWk is empty. This implies thatj − 1 ≥ k+1 andWj−1

is non-empty, which contradicts the minimality ofj.
So we conclude that no such indexj exists, and hence,V (G) is equal to

⋃k
i=1 Wi which is a subset of

⋃n
i=1 Wi,

sincek ∈ {1, . . . n}. But we assume that
⋃n

i=1 Wi is a proper subset ofV (G), a contradiction.
This proves Claim 9.3.
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W2 W4 W6 W8 W10W1 W3 W5 W7 W9

W2 W4 W6 W8 W10

W1 W3 W5 W7 W9

Figure 5: Decomposition of a bichain graph (two ways of drawing it).

We are ready to describe how to define an isomorphism ofG to Zn,n. To this end, we consider the partition
W1, . . . ,Wn of G as described above. Recall that(A1, A2, B1, B2) is a special bichain partition. Thus by Lemma 4,
there exists0 ≤ α ≤ n such that the system (△) has a solutionzu = z∗u , u ∈ V (G).

In order to show thatG is isomorphic to an induced subgraph ofZn,n, we map, for eachi, the vertices ofWi to
thei-th column ofZn,n. The position inside the columns will be dictated by the valuesz∗u.

For eachi ∈ {1, . . . , n} and eachu ∈ Wi, we define the heighthu of u as follows:

hu = z∗u + (n− ⌈i/2⌉) · α.

We order the vertices ofV (G) based on their heighthu (ties broken arbitrarily). In other words, we fix an ordering
u1, u2, . . . , un of V (G) in whichhuj

≤ huj′
wheneverj ≤ j′. Using this ordering, we define a mappingf of V (G)

into V (Zn,n) as follows: for eachi ∈ {1, . . . , n}, we consider eachuj ∈ Wi and definef(uj) = vij .
Clearly, the mappingf is a well-defined mapping intoV (Zn,n), sincei, j ∈ {1, . . . , n}. Moreover,f is an

injective mapping, since each vertexuj is mapped to thej-th row ofZn,n. In particular, the image off induces in
Zn,n a row-sparse subgraph ofZn,n. Thus to finish the proof, it remains to show thatf is an isomorphism. In other
words, it remains to show that for distinctj, j′, we haveujuj′ ∈ E(G) if and only if f(uj)f(uj′) ∈ V (Zn,n).

Considerj, j′ ∈ {1, . . . , n} wherej 6= j′. Let i, i′ be indices such thatuj ∈ Wi anduj′ ∈ Wi′ . Then we have
f(uj) = vij andf(uj′) = vi′j′ . Thus we need to thatujuj′ ∈ E(G) if and only if vijvi′j′ ∈ E(Zn,n).

Suppose first thati, i′ are both odd or both even. Thenuj , uj′ ∈ A1 ∪ A2 or uj , uj′ ∈ B1 ∪ B2, andvij , vi′j′
are either in the same column, or in two odd-numbered columns, or in two even-numbered columns ofZn,n. By the
definition ofZn,n, there are no edges in and between such columns. Therefore, we conclude thatvijvi′j′ 6∈ E(Zn,n).
Moreover, bothA1 ∪ A2 andB1 ∪B2 are independent sets. Thus we have thatujuj′ 6∈ E(G), as required.

Therefore, by symmetry, we may assume thati is odd andi′ is even. Ifi′ ≤ i − 3, thenujuj′ ∈ E(G) by
Claim 9.2c, sincei is odd whilei′ is even. For this reason, alsovijvi′j′ ∈ E(Zn,n) by the definition ofZn,n.
Similarly, if i′ ≥ i+ 3, thenujuj′ 6∈ E(G) by Claim 9.2d, andvijvi′j′ 6∈ E(Zn,n) by the definition ofZn,n.

So we may assume thati′ = i ± 1. First suppose thati′ = i + 1. This implies thatuj ∈ Ar anduj′ ∈ Br for
somer ∈ {1, 2}. Moreover, sincei′ is even andi is odd, we havei′/2 = ⌈i/2⌉. Suppose thatujuj′ ∈ E(G). Then
z∗uj′

− z∗uj
≤ −1, because the valuesz∗u are a solution to (△). Soz∗uj′

< z∗uj
which implies thathuj′

< huj
, since

⌈i′/2⌉ = i′/2 = ⌈i/2⌉. Therefore, from the definition of the orderingu1, . . . , un, we deduce thatj′ < j. Therefore,
vijvi′j′ ∈ E(Zn,n) by the definition ofZn,n, sincei′ = i + 1 andi is odd whilei′ is even.

Conversely, suppose thatujuj′ 6∈ E(G). Thenz∗uj
− z∗uj′

≤ −1, because the valuesz∗u are a solution to (△). So
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z∗uj
< z∗uj′

which implieshuj
< huj′

. Thusj < j′ and sovijvi′j′ 6∈ E(Zn,n), as required.
It remains to consideri′ = i − 1. Sincei is odd whilei′ is even, this implies thatuj ∈ Ar anduj′ ∈ Bs

for r, s ∈ {1, 2} wherer 6= s. Moreover, we havei′/2 = ⌈i/2⌉ − 1. Suppose first thatujuj′ ∈ E(G). Then
z∗uj′

− z∗uj
≤ −α− 1, since the valuesz∗u are a solution to (△). Thusz∗uj′

< z∗uj
− α and sohuj′

< huj
as follows:

huj′
= z∗uj′

+ (n− i′/2) · α < z∗uj
+ (n− i′/2− 1) · α = z∗uj

+ (n− ⌈i/2⌉) · α = huj

Thusj′ < j and we conclude thatvijvi′j′ ∈ E(Zn,n) by the definition ofZn,n.
Conversely, suppose thatujuj′ 6∈ E(G). Thenz∗uj

− z∗uj′
≤ α − 1, since the valuesz∗u satisfy (△). Thus

z∗uj
< z∗uj′

+ α and sohuj
< huj′

, sincehuj
= z∗uj

+ (n − ⌈i/2⌉) · α < z∗uj′
+ (n − ⌈i/2⌉ + 1) · α = huj′

.
We conclude thatj < j′ and hencevijvi′j′ 6∈ E(Zn,n), as required.

This completes the proof of Theorem 9. �

6. Concluding remarks

In the present paper, we proved a number of results about bichain graphs, the bipartite analog of split permutation
graphs. In particular, we developed a geometric representation for bichain graphs and constructed a quadraticn-
universal graph for this class. Among various open problemsrelated to bichain and split permutation graphs, let us
mention the conjecture from [9] asking whether split permutation (and hence bichain) graphs constitute aminimal
hereditary class of graphs of unbounded clique-width. The results obtained in this paper suggest the following
approach to the above question.

In [14], it was shown that graphs in a hereditary class have bounded clique-width if and only if they have
bounded rank-width. Also, in [13] it was shown that bipartite graphs of large rank-width contain a large universal
bipartite permutation graph as a vertex minor. Vertex minors are defined in terms of vertex deletions and local
complementations. Local complementation is the operationof complementing the edges in the neighbourhood of a
vertex. The importance of this operation is due to the fact that it does not change the rank-width of a graph. Therefore,
a possible approach to proving minimality of bichain graphscould be to transform a universal bichain graph into a
universal bipartite permutation graph via a sequence of local complementations. While bipartite graphs are not closed
under local complementation, circle graphs are. Both bichain graphs are circle graphs (by Corollary 6) and it is well-
known that permutation graphs are circle graphs, so the sequence of local complementations from a universal bichain
graph to a universal bipartite permutation will all happen within the class of circle graphs. Moreover, for circle graphs
the operation of local complementation has a nice geometricinterpretation: the local complementation applied at a
vertexx of a circle graph corresponds to cutting the circle along thechord representingx and turning over one of the
semicircles along this chord. This may suggest a geometric approach to transforming bichain graphs into bipartite
permutation graphs and vice versa. A more challenging task is to show that this transformation is possible within
4-polygon graphs, as both bichain graphs and bipartite permutation graphs are subclasses of this class. We leave this
challenging task for future research.
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