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A simple permutation is one that never maps a nontrivial contigu-
ous set of indices contiguously. Given a set of permutations that
is closed under taking subpermutations and contains only finitely
many simple permutations, we provide a framework for enumer-
ating subsets that are restricted by properties belonging to a fi-
nite “query-complete set”. Such properties include being even,
being an alternating permutation, and avoiding a given gener-
alised (blocked or barred) pattern. We show that the generating
functions for these subsets are always algebraic, thereby general-
ising recent results of Albert and Atkinson. We also apply these
techniques to the enumeration of involutions and cyclic closures.

1. INTRODUCTION

Substitution decompositions (known also as modular decompositions, disjunctive decom-
positions, and X-joins) have proved to be a useful technique in a wide range of settings,
ranging from game theory to combinatorial optimization, see Mohring [26] or Mohring
and Radermacher [27] for extensive references. Although substitution decompositions are
most often applied to algorithmic problems, here we apply them enumeratively.

An interval in the permutation 7 is a set of contiguous indices I = [a, b] such that the
set of values 7(I) = {m(i) : i € I} is also contiguous. Every permutation 7 of [n| =
{1,2,...,n} has intervals of length 0, 1, and n; 7 is said to be simple if it has no other
intervals (such intervals are called proper). Figure 1 shows three simple permutations.
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Figure 1: The plots of three simple permutations of length 12.

Our aim is to enumerate subsets of certain sets of permutations closed under taking
subpermutations; the permutation 7 is said to contain the permutation o, written ¢ <
m, if ™ has a subsequence that is order isomorphic to o, and otherwise = is said to avoid
o. For example, 7 = 491867532 contains o = 51342, as can be seen by considering the
subsequence 91672 (= 7(2),7(3),7(5),n(6),7(9)). This pattern-containment relation is a
partial order on permutations, and we refer to downsets of permutations under this order
as permutation classes. In other words, if C is a permutation class, 7 € C, and o < 7, then
oeC.

We denote by C,, the set C N S, i.e. the permutations in C of length n, and we refer
to Y |C,|z™ as the generating function for C. For any permutation class C, there is a unique
antichain® B such that C consists of every permutation that contains no element of B, i.e.,
C ={r: 03 £ wnforall 3 € B}, which we abbreviate to Av(B). The antichain B, which
comprises the minimal permutations not in C, is called the basis of C.

Our main theorem appears below; the definition of query-complete sets of properties
follows.

Theorem 1.1. Let C be a permutation class containing only finitely many simple permutations,
P a finite query-complete set of properties, and Q C P. The generating function for the set of
permutations in C satisfying every property in Q is algebraic over Q|x].

One class to which this theorem applies is Av(132). In any permutation from Av(132),
all entries to the left of the maximum must be greater than all entries to the right. This
shows that Av(132) has only three simple permutations (1, 12, and 21).

Given o € S, and nonempty permutations a1, . .., a,,, the inflation of o by ay, ..., am
—denoted ooy, . . ., o] — is the permutation obtained by replacing each entry o (i) by an
interval that is order isomorphic to «;. For example, 2413[1, 132,321, 12] = 479832156 (see
Figure 2). Simple permutations cannot be deflated. Conversely:

Proposition 1.2 (Albert and Atkinson [2]). Every permutation except 1 is the inflation of a
unique simple permutation of length at least 2.

permutation, simple permutation, substitution decomposition
AMS 2000 Subject Classification. 05A15, 05A05
"Recall that an antichain is a set of pairwise incomparable elements.
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Figure 2: The plot of 479832156, an inflation of 2413.

Sketch of proof. Consider the intervals of the permutation 7 which are not contained in any
other proper intervals. If these intervals are disjoint, then the Proposition clearly holds.
Otherwise two of these intervals, say I and J, intersect; however, I U J must then also be
an interval, and by maximality, / U J must therefore contain every entry of 7. It is easy at
this point to see that 7 is the inflation of either 12 or 21. O

A property, P, is any set of permutations®. We say that  satisfies P if 7 € P. We define
a set P of properties to be query-complete if, for each simple permutation o of length m and
property P € P, there is a procedure to determine whether o[, . . ., oy, ] satisfies P which
requires only knowledge of which properties of P each «; satisfies. For example, the set of
properties consisting of the 132-avoiding permutations, {Av(132)}, is not query-complete,
as witnessed by the fact that 12[1,1] € Av(132) but 12[1,21] ¢ Av(132), while both 1 and
12 avoid 132. However, {Av(132), Av(21)} is query-complete:

12[ag, an] € Av(132) <= a3 € Av(132) and a3 € Av(21),
21[ar, an] € Av(132) <= ay € Av(132) and as € Av(132),
olat,...,an] ¢ Av(132) if o ¢ {1,12,21} is simple,
12[aq, ) € Av(21) <= g € Av(2]1) and ay € Av(21),
olai,...,on) ¢ Av(21) if o ¢ {1,12} is simple.

Note that since oo, . . ., ;] is uniquely determined by o and the «;’s, every property
P lies in some query-complete set, e.g., { P} U {{m} : 7 a permutation} is query-complete
for every P. Thus the finiteness condition in Theorem 1.1 is essential. Another observation
about query-complete sets, which will be liberally applied, is the following.

Proposition 1.3. A union of query-complete sets of properties is itself query-complete.

The next section establishes various query-complete sets of properties. Section 3 con-
tains the proof of Theorem 1.1 while Section 4 gives numerous examples. In Sections 5 and
6 we adapt these techniques to enumerate involutions and cyclic closures, respectively. We
end by discussing the scope of this technique in Section 7.

To demonstrate the applicability of our results, we conclude the introduction by stating
the following corollary (the terms contained in it are reviewed as needed in Section 2).

?For example, permutation classes are properties. Indeed, the graph theoretic analogues of permutation
classes are commonly referred to as hereditary properties.
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Corollary 1.4. In a permutation class C with only finitely many simple permutations, the gener-
ating functions for the following sequences are algebraic over Q[x]:

o the number of permutations in Cy, (this is the result of Albert and Atkinson [2]),

the number of alternating permutations in C,,

the number of even permutations in Cy,

the number of Dumont permutations of the first kind in Cy,

the number of permutations in C,, avoiding any finite set of blocked or barred permutations,
and

e the number of involutions in C,,
Moreover, these conditions can be combined in any finite manner desired.

As mentioned previously, Av(132) contains only three simple permutations, so Corol-
lary 1.4 explains, e.g., why the even permutations in Av (132, 3) have an algebraic gener-
ating function for every f3, first proved in Mansour [24]. Other results in the literature to
which Corollary 1.4 applies appear in [11, 12, 13, 15, 17, 18, 21, 22, 23, 25].

2. FINITE QUERY-COMPLETE SETS

We exhibit several query-complete sets of properties in this section. The first of these is
necessary for the proof of Theorem 1.1, the others for Corollary 1.4.

Lemma 2.1. For every permutation (3, the set {Av(6) : 6 < (B} is query-complete.

Proof. We prove the lemma by induction on the length of 3. The base case 3 = 1 being
trivial, let us suppose that [ is of length at least 2. By induction, {Av(vy) : v < d} is query-
complete for all § < 3, and thus by appealing to Proposition 1.3 it suffices to prove that

whether © = ooy, ..., ;] satisfies Av(3) can be decided entirely by knowing, for each i,
which permutations ¢ satisfy § < o;; and § < .
We define a lenient inflation to be an inflation o[y1, . . ., vy ] in which the ~;’s are allowed

to be empty. List all expressions of 3 as a lenient inflation of ¢ as

B = o\ A,

B = o, ... 4.

Clearly if we have, for some s € [t], a; > fy-(s) for all i € [m], then 7 > (. Equivalently, to

have m € Av(f3), for every s € [t] there must be at least one i € [m] for which «; # %s).
Conversely, every embedding of 3 into 7 gives one of the lenient inflations in the list above,
which completing the proof. O
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In a barred permutation, one or more of the entries is barred; for 7 to avoid the barred
permutation o means that every set of entries of m order isomorphic to the nonbarred en-
tries of o can be extended to a set order isomorphic to o itself. For example, 24315 avoids
213 because every inversion (i.e., copy of 21) can be extended to a copy of 213 (append
the 5), but 24315 contains 312 because the 3 and 1 are order isomorphic to 32, but there
is no way to extend this to a copy of 312. Barred permutations have arisen several times
in the permutation pattern literature. For example, under West’s notion of 2-stack sort-
ing [34] the permutations that can be sorted are those that avoid 2341 and 35241, while
Bousquet-Mélou and Butler [6] characterise the permutations corresponding to locally fac-
torial Schubert varieties in terms of barred permutations.

A blocked permutation is a permutation containing dashes indicating the entries that
need not occur consecutively (in the normal pattern-containment order, no entries need
occur consecutively), or in the case of the beginning or trailing dashes, entries that need not
occur at the beginning or end of the permutation, respectively. For example, 24135 contains
only one copy of -1-23-, namely 235; the entries 245 do not form a copy of -1-23- because the
4 and 5 are not adjacent. Babson and Steingrimsson [5] introduced blocked permutations
(although they called them generalised patterns, and implicitly assumed that their patterns
had beginning and trailing dashes) and showed that they could be used to express most
Mahonian statistics. For example, the major index® of 7 is equal to the total number of
copies of -1-32-, -2-31-, -3-21-, and -21- in 7.

The proof of Lemma 2.1 extends in a straightforward manner to show that the property
of avoiding a blocked or barred permutation (or, for that matter, a permutation combining
these restrictions) also lies in a finite query-complete set, although the sets are not so easily
described®.

The permutation 7 € S,, is said to be alternating if for all i € [2,n — 1], 7(i) does not lie
between 7(i — 1) and 7 (i + 1).

Lemma 2.2. The set of properties consisting of
o AL = {alternating permutations},
e BR = {permutations beginning with a rise, i.e., permutations with m(1) < w(2)},
e ER = {permutations ending with a rise}, and
o {1}

is query-complete.

3The major index is more commonly defined as the sum of the descents of 7, Z i.
w(@)>m(i+1)
“Consider, e.g., the problem of deciding whether m = 3142[a1, a2, a3, a4] avoids -1-23-. First, each of
the «;’s must avoid -1-23-. Then we also need a3 and a4 to not contain ascents (i.e., avoid -12-) since a2 is
nonempty, and a2 to avoid -1-2, since otherwise the third element of the -1-23- could be chosen from a.
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Proof. Clearly {{1}, BR, ER} is query-complete:

olag,...,am]| € BR <= a3 € BRor (g =1ando € BR),
olai,...,an) € ER <= «ay€ ERor (o, =1and o € ER).

For m = olay, . .., ap] to be an alternating permutation, we first need a4, ..., ay, € AL.
Now suppose that the entries of 7 up to and including the o (i) interval are alternating (we
have this for ¢ = 1 from the above). If o(i) > o(i + 1) then 7 contains a descent between its
o(i) interval and its o(i+ 1) interval. Thus o (i) is allowed tobe 1 (i.e., o € {1}) onlyifi =1
oro(i — 1) < o(i), while if a; # 1 then we must have «; € FR, and whether or not «; is 1
we must have a; 11 € BRU {1}. The case where o(i) < o(i + 1) is analogous, completing
the proof. O

Recall that an even permutation is one that can be written as the product of an even
number of transpositions, or (much more conveniently for our purposes) a permutation
with an even number of inversions.

Lemma 2.3. The set of properties consisting of
o EV = {even permutations} and
o EL = {permutations of even length}
is query-complete.
Proof. We have
olaq,...,apy] € EL <= aneven number of «;’s fail to lie in F'L,

so {EL} is query-complete. To see that { EV, EL} is query-complete, we divide the inver-
sions in o[ay, ..., o] into two groups: inversions within a single o (i) interval and inver-
sions between two intervals ¢ (i) and o(j). We need to compute the parity of each of these
numbers. The parity of the first type of inversions depends only on whether o;; € EV. For
the second type, suppose i < j. If o(i) < o(j) then there are an even number of inver-
sions (more specifically, 0) between the intervals o (i) and o(j) while if o(i) > o(j) then
the number of inversions between these intervals is even if o; or «; lie in FL and odd
otherwise. O

A permutation is Dumont of the first kind if each even entry is immediately followed
by a smaller entry and each odd entry is either immediately followed by a larger entry or
occurs last (this dates back to Dumont [9]).

Lemma 2.4. The set of properties consisting of
o DU = {Dumont permutations of the first kind} and

o EL = {permutations of even length}
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is query-complete.

Proof. 1t suffices to determine which entries of o, ..., a;] have even value and which
have odd value, and this can be decided based on the knowledge of which «;’s have even
length. O

The imaginative reader should at this point have no trouble constructing many other
properties that lie in finite query-complete sets. Examples include the property of begin-
ning with a 1, or more generally of mapping any fixed i to any fixed j, or of having major
index congruent to 1 mod 3, or having an odd number of left-to-right minimas, or having
the repeated pattern of two ascents followed by a descent.

3. PROOF OF MAIN RESULT

We begin by refining Proposition 1.2, which shows that every permutation is the inflation
of a unique simple permutation. These propositions follow almost immediately from the
proof of Proposition 1.2. Note that there are no simple permutations of length 3, and that
12 and 21 are simple.

Proposition 3.1 (Albert and Atkinson [2]). If 7 can be written as o[, ..., ouy,] where o is
simple and m > 4, then the «;’s are unique.

In the case where m = 12[aq, az], some caution is needed. A sum indecomposable permu-
tation is one that cannot be written as 12[c, ao] (these are also called connected permuta-
tions), whilst a skew indecomposable permutation is one that cannot be written as 21[ay, az].

Proposition 3.2 (Albert and Atkinson [2]). If 7 is an inflation of 12, then there is a unique sum
indecomposable oy such that m = 12[ay, ag] for some oy, which is itself unique. The same holds
with 12 replaced by 21 and “sum” replaced by “skew”.

We refer to the unique decompositions guaranteed by Propositions 1.2, 3.1, and 3.2 as
the substitution decomposition.

A class C of permutations is wreath-closed® if o[, ..., am] € Cforall o, a4, ...,y € C.
The wreath-closure of a set X, W(X), is defined as the smallest wreath-closed class contain-
ing X. (This concept is well-defined and exists because the intersection of wreath-closed

*Tt is quite easy to decide if a permutation class given by a finite basis is wreath-closed:
Proposition 3.3 (Atkinson and Stitt [3]). A permutation class is wreath-closed if and only if each of its basis elements
is simple.

One may also wish to compute the basis of W(C). This is routine for classes with finitely many simple
permutations (see Proposition 7.3), but much less so in general. In his thesis [28] Murphy gives an example of
a finitely based class whose wreath closure is infinitely based. The natural question is then:

Question 3.4. Given a finite basis B, is it decidable whether W(Av(B)) is finitely based?

(See Proposition 7.3 for a special case.)
The analogous question for graphs was raised by Giakoumakis [16] and has received a sizable amount of
attention, see for example Zverovich [35].
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classes is wreath-closed and the set of all permutations is wreath-closed.) Letting Si(X)
denote the simple permutations in the class C we see that Si(C) = Si(V(C)), and indeed
W(C) is the largest class with this property. For example, the wreath closure of Av(132) is
the largest class whose only simple permutations are 1, 12, and 21. This class is known as
the separable permutations®, Av(2413,3142).

Given a permutation class C and set P of properties, we write Cp for the set of permu-
tations in C that satisfy every property in P, and write fp for the generating function of Cp.
Before beginning the proof of Theorem 1.1 we consider the case where C is wreath-closed
and P = (), which contains many of the main ideas of the proof in a more digestible form.
(This presentation borrows heavily from Albert and Atkinson [2].)

We begin by introducing two properties,

# = {sum indecomposable permutations} and

?@ = {skew indecomposable permutations}.
Note that both {#} and {Z} are query-complete, because for simple o,

olag,...,an] €F <= o#12and
olag,...,an| €3 << o #21.

We also introduce the notation
olct,...,C™ = {o]ai,...,am] : a; € C foralli € [m]}.

By Propositions 1.2, 3.1, and 3.2 and the assumption that C is wreath-closed, C can be
written as
C={1}w12lCy,Clu21[Cx Cly | olC,....C],
c€eSi(C)
lo|>4

while Cy and Cx have the expressions

Cx = {1}w21[Cx Cly [H olc,....C] = C\12[CxkC],
o€eSi(C)
|o|>4

Cx = {LHwi2Cy.Cly [H ofc,....C] = C\21[Cx.Cl.

o€eSi(C)
jo1>4

®The separable permutations seem to have made their first appearance as the permutations that can be
sorted by pop-stacks in series, see Avis and Newborn [4]. Shapiro and Stephens [31] showed that the separable
permutations are those that fill up under bootstrap percolation. The separable permutations are essentially
the permutation analogue of series-parallel posets (see Stanley [32, Section 3.2]) and complement reducible
graphs (see Corneil, Lerchs, and Burlingham [8]). Their enumeration is given by the large Schréder numbers
(see Footnote 7 or Example 4.1).
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These give the system

fo= a+faf+fagf+ > 1
o€Si(C)
lo|>4
S — f-fgl = 1o
o€Si(C)
jo]>4
fp = a+fgft Y £ — F-fpl = 1
£

If we now let s denote the generating function for the simple permutations of length at
least 4 in C, we find that

2f2
1+ f
so if s is algebraic, a fortiori if s is polynomial, f is algebraic’.

The following brief review of algebraic systems is a specialisation of the more general
treatment in Stanley [33, Section 6.6]. Let A = {a1,...,a,} denote an alphabet. A proper
algebraic system over Q[z1, . ..,z ] is a set of equations a; = p;(z1,...,Tm,a1,...,a,) where
each p; is a polynomial with coefficients from @, has constant term 0, and contains no terms
of the form ca; where ¢ € Q. The solution to such a system is a tuple (fi, ..., f,) of formal
power series from Q[[z1, ..., Z;]] such that for all 4, f; is equal to p;(z1,...,Zm,a1,...,a,)
evaluated at (ay,...,a,) = (f1,.-+, fn)-

f=x+ +s(f),

Theorem 3.5 (Stanley [33, Proposition 6.6.3 and Theorem 6.6.10]). Every proper algebraic
system (p1, ..., pn) over Q[z1, ..., xy] has a unique solution (fi,. .., f,). Moreover, each of these
fi’s is algebraic over Q[z1, ..., Tp].

We need one final result before proving Theorem 1.1, which Albert and Atkinson de-
rived from Higman’s Theorem [20]:

Proposition 3.6 (Albert and Atkinson [2]). Permutation classes with only finitely many simple
permutations are finitely based.

Theorem 1.1. Let C be a permutation class containing only finitely many simple permutations,
P a finite query-complete set of properties, and Q C P. The generating function for the set of
permutations in C satisfying every property in Q, i.e., fo, is algebraic over Q[z].

Proof. Let B denote the basis of C, which is finite by Proposition 3.6. Lemma 2.1 shows
that for every 3 € B, the property Av(() lies in a finite query-complete set. Thus the set
{Av(B) : B € B} is contained in a finite query-complete set, and we have

C =W(C)av(3):3eB}-

’In particular, note that the separable permutations correspond to s = 0; making this substitution leaves
f=x+2f*/(1+ f), giving the large Schroder numbers.
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Therefore it suffices to prove the theorem for wreath-closed classes. Furthermore, if P is
query-complete then P U {@#, @} is also query-complete, so we may assume without loss
that &, & € P.

Let P(m) denote the set of properties in P satisfied by 7 and, to avoid inclusion-exclusion,
let gr denote the generating function for the set of 7 € C with P(7w) =R, so

fo= Y 9=

QCRCP
As P is query-complete, for each simple o, P(o[a1, ..., o)) is completely determined by o
and P(ai),...,P(am). Thus for each simple o of length m, there is a finite collection of m-

tuples of sets of properties such that P(c[a,. .., ay]) = R precisely if (P(a1), ..., P(am))
lies in this collection. If m > 4 then Proposition 3.1 implies that the generating function
for all inflations 7 of o with P(7) = R can be expressed nontrivially as a polynomial in
{95 : & C P} of degree m. If m = 2, suppose o = 12 without loss. By Proposition 3.2,
all inflations of 12 have a unique decomposition as 12[a;, az] where a; € @#. Thus the
generating function for inflations 7 of 12 with P(7) = R can be expressed as a sum of
terms of the form gsgr where & € S.

Therefore gr can be expressed as a polynomial in = (depending on whether P(1) = R)
and {gs : S C P}. Moreover, these polynomials have no constant terms and no terms of
the form cgs for constant ¢ # 0. Thus they form a proper algebraic system, so Theorem 3.5
implies that each gs is algebraic. O

Corollary 1.4 — with the exception of the involution case, discussed in Section 5 —
now follows from Theorem 1.1 and the collection of query-complete sets in Section 2.

4. EXAMPLES

While we have already shown how to enumerate separable permutations in Footnote 7,
here we use the approach of Theorem 1.1.

Example 4.1: Separable permutations. With the notation from the proof of Theorem 1.1,
we have that for the separable permutations:

Iga — T
gp = (9@ +92) 98,4 + 9% +9%),
95 = (9p.@ T 9#) 9@ & + 9% + 94);
where our universe of properties P is {{#, #}. We are interested in f = 9%.&+ 93 +94- By

summing the three equalities above and simplifying one obtains f = x + (z + f)f, which
leads, reassuringly, to the generating function for the large Schroder numbers,

1—2—+V1—6x+ 2
f= 5 :
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This system does not change dramatically when another simple permutation is intro-
duced, as shown by the next example.

Example 4.2: The wreath closure of 1, 12, 21, and 2413. Here we again take P = {#, Z}
and the system is

9 = (@@ +92) 9@ & + 9% + 9);
94 = (9@ +9x8) 98 & + 9% +9%)-

The generating function for this class, f = 9.4 + 9% + 9%, satisfies

{ 9p.s = v+ 98,3+ 95+ 95),

f5+f4+f2+(a:—1)f+a::O.

Example 4.3: Av(132). The wreath closure of Av(132) is the class of separable permuta-
tions, so to enumerate Av(132) we need to refine Example 4.1. While Proposition 2.1 shows
that {Av(1),Av(12),Av(21),Av(132)} is query-complete, we remarked at the beginning of
Section 3 that setting P = {#, #, Av(21), Av(132)} will suffice. Our system is then

9B B Av(el) = T

9%, Av(21) = 9% & av21) (9%, & aver) T 92 Av21))s

9 = (gﬁé,ﬁé,Av(zl) + 9& avn T 9%)(9%,%,1“(21) + 94 Av2r) T 9% + 9%);
9% = 998 & Av21) T 9B Av(21))-

(As we are only interested in 132-avoiding permutations we have suppressed the subscript
Av(132), which would otherwise be present in all these terms.) Setting

F= 9% & ave1) T 9% Av(er) T 9% T 9

and solving yields

f_1—2x—\/1—4a:
N 2z ’

the generating function for the Catalan numbers, as expected.

Example 4.4: Av(2413,3142,2143). Here we take P = {#, &, Av(21), Av(2143)} and
our system is

9B & Avi) = L

9& Av(21) = 9% & av21) 9%, & aver) T 92 av21))s

9% = (gﬁé,ﬁé,Av(zl) + 9Z Avin) T 9%)(9%,%,1“(21) T 9Z aver) T 98 + ggé),
9% = 9F & Av(21) (9 + 9%) + 9%(%5@,1@(21) + 9%7Av(21))7

where here we have suppressed the Av(2143) subscript. This gives the generating function

1—3x+ 222 — V1 — 62 + 52
22(2 — x) ’
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and thus the number of permutations of length n in this class is ) (Z) F,, _;. where F,,
denotes the nth term in Fine’s sequence®.

Example 4.5: Alternating separable permutations. Lemma 2.2 shows that we need to
introduce the properties AL (alternating permutations), BR (permutations beginning with
arise), ER (permutations ending with a rise), and {1}. In the separable case {1} = # N &
so we take P = {#, &, BR, ER, AL}, and as AL occurs in each of the terms of our system
we suppress it. We then have

9%.8 = %

9% = (9.2 + 92 er) 98 & + 9% Br + 9% BR)>
9% .BR = gg,BR,ER(Q%,Qé + 9% Br + 9% BR)

9% ER = (9@.# + 9% 6r) 9% BRER T 9% BR,ER):
9% BrRER = 9% BRERIH BRER Y I% BRER)

9¢ = 9p(9@ +9%),

9% BR = (9%.# + 9% r) 9% + 9%)

92 ER = 9%(9%.# + 9% er+ 9% ER):

9% BR.ER (Qgé,gé + 9%,3}2)(9%,% t 9% ERr T QQ,ER)-

The generating function for these permutations satisfies

32— (22% —5x +4)f? — (423 + 2? — 82) f — (22! + 52 4 42?) = 0.

5. INVOLUTIONS

Unfortunately, involutionhood lies just outside the scope of our query-complete-property
machinery: letting I denote the set of involutions we have that 12[a;, 0] € I <=
aq, a9 € I, but when is 21[ay, ag] € I?

We begin by considering the effect of inversion on the substitution decomposition. First

observe that
—1 [ -1 -1 ]

(olag,. .. ,ozm])_1 =0 o Sy ]

Recalling Proposition 1.2 (“every permutation is the inflation of a unique simple permuta-
tion”), we have that if 7 is an involution then it must be the inflation of a simple involution.
By Proposition 3.1 we then obtain the following;:

Proposition 5.1. If 7 = o[ay, . .., auy] is an involution and o # 21 is a simple permutation then
o is an involution and o; = a;,ll(i) = a;(li) forall i € [m].

The case o = 21 must be handled separately but is not any more difficult.

Proposition 5.2. The involutions that are inflations of 21 are precisely those of the form

8Fine’s sequence is defined by 2F,, + F,,_1 = Cy for n > 1, where C,, denotes the nth Catalan number.
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o 21[ay, o] for skew indecomposable oy and o with oy = a2_1, and

o 321[ay, o, avg], where oy and az are skew indecomposable, oy = agl, and oo is an involu-
tion.

Define the inverse of the property Pby P~ = {r~! : 7 € P}, and for a set of properties
P,Pl={Pl:PecP}.

Theorem 5.3. Let C be a permutation class containing only finitely many simple permutations,
P a finite query-complete set of properties, and Q C P. The generating function for the set of
involutions in C satisfying every property in Q is algebraic over Q[z].

Proof. We assume (without loss) both that #, & € P and that P = P~!. As in the proof
of Theorem 1.1, let P(7) denote the set of properties in P satisfied by = and gz denote the
generating function for the set of 7 € C with P(7) = R. Also let hr denote the generating
function for the set of involutions 7 € C with P(7) = R. It suffices to show that each hy is
algebraic over Q[z].

As Propositions 5.1 and 5.2 indicate, we need to count pairs («, a~1) where o and o~ !
satisfy certain sets of properties. To this end define

pR = Z $|Q‘+|a71“

aeC
P(a)=R

Note that if P(a) = R then P(a~!) = R~! because P = P~ !, and thus pr = gr (2?).

Now take o to be a simple permutation. We need to compute the contribution to
hr of inflations of . If ¢ is not an involution, Proposition 5.1 shows that this contri-
bution is 0. Otherwise since P is query-complete, P(o[ai,...,a,]) = R if and only if
(P(a1),...,P(asm)) lies in a certain collection of m-tuples of sets of properties. Choose
one of these m-tuples, say (R1,...,Ry), and suppose first that m = |o| > 4. It suffices
to calculate the contribution of involutions of the form o[a, ..., a;] with P(a;) = R, for
all i € [m]. If there is some j € [m] for which R; # R;(lj) then this contribution is 0 by
Proposition 5.1. Otherwise the contribution is a single term in which each fixed point j
corresponds to an hg; factor and each non-fixed-point pair (j,o(j)) corresponds to a pr,
factor. A similar analysis of inflations of 12 and 21 — in the latter case appealing to Propo-
sition 5.2 — allows us to compute their contributions.

Therefore each hr can be expressed nontrivially as a polynomial in z, {hs : S C P},
and {ps : S C P}. Viewing x and {ps : S C P} as variables, Theorem 3.5 implies that each
hr is algebraic over Q[z, {ps : S C P}]. Furthermore, ps = gs(x?), so Q(z, {ps : S C P})
is an algebraic extension of Q(z) by Theorem 1.1, proving the theorem. O

One could adapt the proof of Theorem 5.3 to count the permutations in C that are invari-
ant under other symmetries. For example, the permutations invariant under the composi-
tion of reverse and complement studied by Guibert and Pergola [19]. Egge [10] considers
the enumeration of restricted permutations invariant under other symmetries.
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Example 5.4: Separable involutions. We take P = {#, #}. Using the notation from the
proof of Theorem 5.3, we wish to find f = hgg o + hgg 4 hez. These generating functions
are related to each other and to the p generating functions by

hﬁéﬁ = z,
hg = (@@ +pz)+ e & +pz)(hg s+ hg+hg),
hg = (h@g + hg)(hgvg + hgg + hg).

From Example 4.1 it can be computed that

rgg-c = 0
Qp% + (322 — Dpg + = 0,

2p% + (322 — Dpe + 2t = 0.
Combining these with the system above and solving as usual shows that

2 (@B 43 -0+ B 62t — )P B2+ Tt 1) f+ 2+ 32 =0,

6. CycLiC CLOSURES

In this section we present an application of Theorem 1.1 which differs in flavour from our
previous uses. The permutation 7 is said to be a cyclic rotation (or simply, rotation) of the
permutation 7, both of length n, if thereis an i € [n] for which 7 = w(i+1) ... 7(n)w(1) ... ().
Given a permutation class C, its cyclic closure, cc(C), consists of all rotations of members of
C. This operation was first studied by the Otago group [1], who proved several basis and
enumeration results. The main result of this section, Theorem 6.2, shows that the cyclic
closure of a class with finitely many simple permutations has an algebraic generating func-
tion.

The cyclic closure of the class C can be partitioned into orbits of permutations under
rotation. As the orbit of a permutation of length n has precisely n elements, to enumerate
a cyclic closure it suffices to count orbits. We do this by distinguishing one permutation
per orbit and then counting these permutations. For us, a distinguished member of cc(C) is
a permutation 7 that satisfies:

(1) m € C (this can clearly be achieved, because every orbit in cc(C) contains at least one
element of C) and

(2) among all permutations in its orbit satisfying (1), 7 is the one in which the entry 1
lies furthest to the left.

For example, one orbit in cc(Av(132)) is

12534,41253, 34125, 53412, 25341.
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Only two of these permutations avoid 132, 34125 and 53412. Since the entry 1 lies further
to the left in 34125, this is the distinguished permutation of its orbit.

Our goal is to show that the property of distinction lies in a finite query-complete set
of properties. We begin by offering a different viewpoint in which instead of rotating per-
mutations we divide them into two parts. A divided permutation is a permutation equipped
with a divider |, i.e., m1|m2, and we refer to 7|72 as a division of the concatenation 7.
We say that the divided permutation 01|03 is contained in the divided permutation 7y |7 if
1y contains a subsequence order isomorphic to o103 in which the entries corresponding
to o1 come from 7; and the entries corresponding to o5 come from 7. For example, 51342
contains 32|1 because of the subsequence 532, but 32|1 is not contained in 51|342.

Suppose now that we are given a permutation 7 € C = Av(B) and we wish to decide
if m is a distinguished member of cc(C). According to (2) above, we need to check all
rotations of m in which the 1 lies further to the left. Instead, let us consider all divisions
71|72 of m in which 7 is nonempty and 73 contains the entry 1, thinking of such a division
as corresponding to the rotation my7m;. For 7 to be distinguished, each of these divisions
must contain (>|3; for some (132 € B, because that will imply that the corresponding
rotation contains (31 3, and thus fails to lie in C.

For a set of divided permutations A, let us therefore define the property DP;(A) to
consist of all permutations 7 for which every division 71|72 where 71 is nonempty and the
1 lies in 75 contains at least one of the divided permutations in A. Our set of distinguished
permutations for cc(C) will then consist of those permutations from C which satisfy

DP({32|61 : 512 € B}).

We also need a similar family: DP(A) consists of all permutations 7 for which every divi-
sion 7 |my of 7 in which 7 is nonempty contains at least one of the divided permutations
in A. (Note that we allow 73 to be empty.)

Lemma 6.1. For any finite set B of permutations, the property DP;({(2|51 : p152 € B}) lies in
a finite query-complete set of properties.

Proof. The finite query-complete set we take consists of
{Av(0) : § < 8 for some 3 € B}

and the properties DP(A) and DP;(A) for all A C {d2]d; : 6102 < 3 for some 5 € B}.

Let 7 = o[a,...,qn]. Propositions 1.3 and 2.1 show that the Av properties form a
query-complete set, so it suffices to prove that membership in the DP and DP; can be
decided based on ¢ and which of these properties each «; satisfies. Since these properties
are very similar, we consider only the DP; (A) case.

Suppose that o(¢) = 1, so that the entry 1 in 7 occurs in its o(¢) interval. First, for each
k < ¢, we need to consider divisions of m which slice its o(k) interval (or slice between
this interval and the next). As in the proof of Proposition 2.1 we consider lenient inflations
(inflations in which intervals are allowed to be empty), although we now insist that the
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divider occur in the kth interval of the lenient inflations (we allow that interval to contain
the divider alone). List all such lenient inflations of all divided permutations in A as

(1) (1)]

O'[’Yl se sV (® (t)]

Y Al L A B

We need to determine whether every division of = which slices its (k) interval contains
one of these lenient inflations. If for some s € [t] and j # k, a;; does not contain ,Y](s) (which
can be determined from the Av properties), then none of these divisions of 7 can contain
that lenient inflation. Remove these infeasible inflations from the list, leaving

(uﬂ) (uv)

) W™ ],

0-[71 7"-77m

Now a division of 7 slicing its o (k) interval contains the ith lenient inflation in this list if
and only if 7,(;“) is either a lone divider or is contained (as a divided permutation) in the
resulting, divided «j. Thus every division of © which slices its o(k) interval contains a

divided permutation from A if and only if

ap € DP({y™), ... 4=y,

and this property is in our set of properties. The analysis for divisions of = which slice the
o(¢) interval (the block containing the entry 1) is identical, except that D P is replaced by
DP;. O

Theorem 6.2. If a permutation class C contains only finitely many simple permutations then its
cyclic closure cc(C) has an algebraic generating function over Q[z].

Proof. Let C = Av(B) contain only finitely many simple permutations, so by Proposi-
tion 3.6, B is finite. Lemma 6.1 the shows that the property DP;({32|01 : /152 € B})
lies in a finitely query-complete set. Thus the distinguished permutations, which are the
permutations in C that satisfy this property, have an algebraic generating function by The-
orem 1.1. Call this generating function f. Since every orbit of length n permutations in
cc(C) contains n elements, precisely one of which is distinguished, the generating func-
tion for cc(C) is z f’(z), which is also algebraic. O

We conclude the section with an abridged example.

Example 6.3: The cyclic closure of Av(132). The distinguished elements for cc(Av(132))
are those that lie in Av(132) and satisfy

DPy({Ba|B1 : 8182 = 132}) = DP;(132],32|1,2[13, |132).

If any division of a permutation contains 132| or |132 then the permutation itself contains
132; since we are only counting 132-avoiding permutations, we may write the generating
function for the distinguished elements as fpp, (32/1,2/13), Where fg denotes the generating
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function for the permutations in Av(132) which satisfy every property in Q but may sat-
isfy additional properties. In the other examples we have given the complete system of g
generating functions. Owing to the number of properties involved and the labour neces-
sary for their specification, here we only describe how to compute two of the f generating
functions.

Let us begin with the fg pp, (32/1,0513) term. Since our only simple permutations are 1,
12, 21, the ®©-indecomposable permutations are 1 and those that can be expressed uniquely
as 21[aq, az] where oy € . First consider divisions of 21[ay, a] which slice a4 ; for these to
contain either 32|1 or 2|13, the divided «; must contain either 21|, which can be extended
to 32|1 by including an entry of ay, or 2|13. All such permutations must contain 21, so they
are counted by £ 1, p(21] 213) = /& av(21), DP(21),213)- Now observe that the divisions which
slice oy before its entry 1 necessarily contain a copy of 32|1 where the ‘3’ comes from oy
and the ‘2" comes from an entry of ay preceding 1 (if there is no such entry, then none of
these divisions need checking), and so every 132-avoiding permutation may serve as axs.
Thus we have

f%,DP1(32\1,2\13) =r+ <f§é,DP(21\,2|13) - f%,AV(zl),DP(21\,2|13)) I

This leaves us to determine f5 1, p(91| 2/13)- These permutations (except for 1) can be written
uniquely as 7 = 12[a;, az] where «; € @ and as they avoid 132 we have ay € Av(21). The
divisions slicing a; must create 21| or 2|13 patterns in 7, which will occur if and only if o €
DP(21],21). This rules out a; = 1, so these permutations are counted by f pp(21),21) — 2-
Because o € DP(21],2|1), oy must contain 21, and thus all divisions which slice ay will
contain 21|. Therefore the only restriction on as is that it must avoid 21, giving the equation

J#.ppei1j2ns) =2+ (fﬁ,DP(zleu) - 33) fav(z1)-
Similar reasoning allows one to compute the entire system, which leads to the solution

(1 —2z)(1 — 2z — /1 —4x)

fppi32p,2113) = 22(1 — ) '

From this we find that the generating function for cc(Av(132)) is

, 1—dz+42? —42® — (1 - 22)V/1—da
TfDpy(3211,2113) = 20(1 — 2)2y/1 4z )

which agrees with the results of Albert et al. [1].

7. APPLICABILITY AND APPLICATION

With the results of the paper now established, we conclude by discussing their use.
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Determining if these methods apply. As these techniques apply only to permutation
classes with finitely many simple permutations, it would be useful to be able to deter-
mine whether a permutation class contains finitely many simple permutations. This can
be done:

Theorem 7.1 (Brignall, Ruskuc, and Vatter [7]). It is decidable whether a permutation class
given by a finite basis contains only finitely many simple permutations.

Finding the simple permutations. Thus far we have tacitly assumed that the set of simple
permutations in our class is known. Since classes are often specified by their bases, this set
of simple permutations must first be computed. Assuming that this set is finite, it can be
computed via a result of Schmerl and Trotter. While we state only the permutation case
(a proof of this case is also given by Murphy [28]), their result covers all irreflexive binary
relational structures. See Ehrenfeucht and McConnell [14] for a version of this theorem for
certain other structures.

Theorem 7.2 (Schmerl and Trotter [30]). Every simple permutation of length n > 2 contains a
simple permutation of length n — 1 or n — 2.

For example, the number of simple permutations in Av(1324, 2143, 4231) of lengths 1 to
7is1,2,0,2,4,0,0. Because there are no simple permutations of length 6 or 7 in this class,
Theorem 7.2 ensures that it contains no longer simple permutations.

Computing wreath-closures. Conversely, given a finite set of simple permutations, one
may ask for the basis of its wreath closure. Theorem 7.2 gives a method for its computation:

Proposition 7.3. If the longest simple permutations in C have length k then the basis elements of
W(C) have length at most k + 2.

Proof. Thebasis of W(C) is easily seen to consist of the minimal (under the pattern-containment
order) simple permutations not contained in C (cf. Proposition 3.3). Let 7w be such a per-
mutation of length n. Theorem 7.2 shows that 7 contains a simple permutation o of length
n—1lorn—2 Ifn>k+3,theno ¢ C,soo ¢ W(C) and thus 7 cannot lie in the basis of
W(C). O

Using this proposition it can be computed that the wreath closure of 1, 12, 21, and 2413
considered in Example 4.2 is Av(3142, 25314, 246135, 362514).

Other reasons for algebraicity. Having finitely many simple permutations is a suffi-
cient condition for a class to possess an algebraic generating function, but it is by no
means necessary. Consider Av(123), which, like Av(132), is enumerated by the Cata-
lan numbers. However, Av(123) contains the infinite sequence of simple permutations
2n —1,2n — 3,...,3,1,2n,2n — 2,...,4,2 (one such permutation is plotted in Figure 1).
Indeed, every class of the form Av(/3) where |3| > 4 contains either this infinite family or
a symmetry of it.
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Derangements. Notably absent from our list of finite query-complete sets in Section 2 are
derangements, despite the fact that the 132-avoiding derangements are counted by Fine’s
sequence (Robertson, Saracino, and Zeilberger [29]), which has an algebraic generating
function. To see that the set of derangements does not lie in a finite query-complete set
of properties, for a € S,, define D(a) = {«a(i) —i : i € [n]}. Then 21[12---j,a] is a
derangement if and only if j ¢ D(«). This shows that «; and as must lie in different sets
of properties whenever D(a1) NN # D(a2) NN, implying that the set of derangements can
only lie in an infinite query-complete set of properties.
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