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We consider well-quasi-order for classes of permutation graphs which

omit both a path and a clique. Our principle result is that the class of

permutation graphs omitting P5 and a clique of any size is well-quasi-

ordered. This is proved by giving a structural decomposition of the corre-

sponding permutations. We also exhibit three infinite antichains to show

that the classes of permutation graphs omitting tP6, K6u, tP7,K5u, and

tP8,K4u are not well-quasi-ordered.

1. INTRODUCTION

While the Minor Theorem of Robertson and Seymour [17] shows that the set of all graphs is well-
quasi-ordered under the minor relation, it is well known that this set is not well-quasi-ordered un-
der the induced subgraph order. Consequently, there has been considerable interest in determining
which classes of graphs are well-quasi-ordered under this order. Here we consider finite graphs
and permutation graphs which omit both a path Pk and a clique Kℓ. Our main result, proved in
Section 4, is that permutation graphs which avoid both P5 and a clique Kℓ are well-quasi-ordered
under the induced subgraph order for every finite ℓ. We also prove, in Section 5, that the three
classes of permutation graphs defined by forbidding tP6,K6u, tP7,K5u and tP8,K4u respectively
are not well-quasi-ordered, by exhibiting an infinite antichain in each case.

We begin with elementary definitions. We say that a class of graphs is a set of graphs closed un-
der isomorphism and taking induced subgraphs. A class of graphs is well-quasi-ordered (wqo) if it
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Figure 1: This figure shows the known wqo results for classes of graphs and permutation graphs
avoiding paths and cliques, including the results of this paper. Filled circles indicate that all
graphs avoiding the specified path and clique are wqo. Half-filled circles indicate that the cor-
responding class of permutation graphs are wqo, but that the corresponding class of all graphs
are not wqo. Empty circles indicate that neither class is wqo. Note that for the three unknown
cases (indicated by question marks), it is known that the corresponding class of graphs contains
an infinite antichain.

contains neither an infinite strictly decreasing sequence nor an infinite antichain (a set of pairwise
incomparable graphs) under the induced subgraph ordering. Note that as we are interested only
in classes of finite graphs, wqo is synonymous with a lack of infinite antichains.

Given a permutation π “ πp1q ¨ ¨ ¨πpnq, its corresponding permutation graph is the graph Gπ on
the vertices t1, . . . , nu in which i is adjacent to j if both i ď j and πpiq ě πpjq. This mapping is
many-to-one, because, for example, G231 – G312 – P3. Given permutations σ “ σp1q ¨ ¨ ¨σpkq and
π “ πp1q ¨ ¨ ¨πpnq, we say that σ is contained in π and write σ ď π if there are indices 1 ď i1 ă ¨ ¨ ¨ ă
ik ď n such that the sequence πpi1q ¨ ¨ ¨πpikq is in the same relative order as σ. For us, a class of
permutations is a set of permutation closed downward under this containment order, and a class
is wqo if it does not contain an infinite antichain.

The mapping π ÞÑ Gπ is easily seen to be order-preserving, i.e., if σ ď π then Gσ is an induced
subgraph of Gπ . Therefore if a class C of permutations is wqo then the associated class of permu-
tation graphs tGπ : π P Cu must also be wqo. However, it is possible to exploit the many-to-one
nature of this mapping to construct infinite antichains of permutations which do not correspond
to antichains of permutation graphs (though currently there are no examples of this in the litera-
ture). For this reason, when showing that classes of permutation graphs are wqo we instead prove
the stronger result that the associated permutation classes are wqo, but when constructing infinite
antichains, we must construct antichains of permutation graphs.

A summary of our results is shown in Figure 1, with our new contributions in the upper-right
highlighted. The rest of this paper is organised as follows: in Section 2 we briefly summarise
the status of the analogous question for non-permutation graphs. Section 3 sets up the necessary
notions from the study of permutation classes, before the proof of the well-quasi-orderability of
P5, Kℓ-free permutation graphs in Section 4. Section 5 contains three non-wqo results, Section 6
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Figure 2: The construction of Bπ from a permutation π.

briefly presents some enumerative consequences of our results, and the final section contains a few
concluding remarks about the three remaining open cases.

2. NON-PERMUTATION GRAPHS

When the graphs needn’t be permutation graphs, well-quasi-ordering is of course harder to attain.
On the side of wqo, graphs avoiding K2 are trivially wqo and graphs avoiding P4 (co-graphs) are
well-known to be wqo, so there are only two nontrivial results, namely graphs avoiding K3 and P5

or P6. Of course, it suffices to show that K3, P6-free graphs are wqo, and this was recently proved
by Atminas and Lozin [6].

On the side of non-wqo, two infinite antichains are required: one (from [13]) in the class of graphs
with neither P5 (or even 2K2) nor K4, and one (from [14]) in the class omitting both P7 and K3. For
completeness, we outline both constructions here.

For graphs which omit P5 and K4, Korpelainen and Lozin [13] construct an infinite antichain by
adapting a correspondence between permutations and graphs due to Ding [8]. The correspondence
we require for our antichain can be described as follows, and is accompanied by Figure 2. For a
permutation π of length n, first note that π can be thought of as a structure with n points, equipped
with two linear orderings.

With this in mind, form a graph Bπ which consists of three independent sets, U , V and W , each
containing n vertices. Let U “ tu1, u2, . . . , unu. Between U and V , there is a chain graph: vertex ui

in U is adjacent to i vertices of V , and for i ą 1 the neighbourhood of ui´1 in V is contained in the
neighbourhood of ui in V . Note that this containment of neighbourhoods defines a linear ordering
on the vertices of U : u1 ă u2 ă ¨ ¨ ¨ ă un.

Next, between U and W , we build another chain graph. This time, vertex uπpiq has i neighbours
in W , and for i ą 1 the neighbourhood of uπpiq in W contains the neighbourhood of uπpi´1q in W .
This defines a second linear ordering on U , namely uπp1q ă uπp2q ă ¨ ¨ ¨ ă uπpnq, and hence π has
been encoded in Bπ. Finally, to complete the construction, between V and W there is a complete
bipartite graph, i.e., every edge is present.

Now it is routine to verify that Bπ does not contain 2K2 ď P5 or K4 for any π. Moreover for
permutations σ and π, we have σ ď π if and only if Bσ ď Bπ as induced subgraphs. Thus, one may
take any infinite antichain of permutations (for example, the “increasing oscillating” antichain),
and encode each element of the antichain as a graph, yielding an infinite antichain in the class of
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2K2, K4-free graphs.

For graphs which omit P7 and K3, a modification of this construction was used by [14] to answer
a question of Ding [8], who had asked whether P7-free bipartite graphs are wqo. Starting with Bπ,
the modification “splits” every vertex u of U into two, up1q and up2q, with an edge between them.
The new vertex up1q takes the neighbourhood of u with V , while up2q takes the neighbourhood of u
with W . The result is a graph with four independent sets U p1q, U p2q, V and W each of size n, with a
perfect matching between U p1q and U p2q, a complete bipartite graph between V and W , and chain
graphs between U p1q and V , and between U p2q and W .

This construction yields a 2P3-free bipartite graph. Moreover, the permutation π is still encoded
in such a way as to ensure an infinite antichain of permutations maps to an infinite antichain of
graphs.

3. STRUCTURAL TOOLS

Instead of working directly with permutation graphs, we establish our wqo results for the corre-
sponding permutation classes (which, by our observations in the introduction, is a stronger result).
The permutations 24153 and 31524 are the only permutations which correspond to the permutation
graph P5, and thus to establish our main result we must determine the structure of the permutation
class

Avp24153, 31524, ℓ ¨ ¨ ¨21q.

Considering the wqo problem from the viewpoint of permutations has the added benefit of al-
lowing us to make use of the recently developed tools in this field. In particular, we utilise grid
classes and the substitution decomposition. Thus before establishing our main result we must first
introduce these concepts.

We frequently identify a permutation π of length n with its plot, the set tpi, πpiqq : 1 ď i ď nu of
points in the plane. We say that a rectangle in the plane is axis-parallel if its top and bottom sides
are parallel with the x-axis while its left and right sides are parallel with the y-axis. Given natural
numbers i and j we denote by ri, js the closed interval ti, i ` 1, . . . , ju and by ri, jq the half-open
interval ti, i` 1, . . . , j ´ 1u. Thus the axis-parallel rectangles we are interested in may be described
by rx, x1s ˆ ry, y1s for natural numbers x, x1, y, and y1.

Monotone grid classes are a way of partitioning the entries of a permutation (or rather, its plot)
into monotone axis-parallel rectangles in a manner specified by a 0{˘1 matrix. In order for these
matrices to align with plots of permutations, we index them with Cartesian coordinates. Suppose
that M is a t ˆ u matrix (thus M has t columns and u rows). An M -gridding of the permutation π

of length n consists of a pair of sequences 1 “ c1 ď ¨ ¨ ¨ ď ct`1 “ n ` 1 and 1 “ r1 ď ¨ ¨ ¨ ď ru`1 “
n ` 1 such that for all k and ℓ, the entries of (the plot of) π that lie in the axis-parallel rectangle
rck, ck`1q ˆ rrℓ, rℓ`1q are increasing if Mk,ℓ “ 1, decreasing if Mk,ℓ “ ´1, or empty if Mk,ℓ “ 0.

We say that the permutation π is M -griddable if it possesses an M -gridding, and the grid class of
M , denoted by GridpMq, consists of the set of M -griddable permutations. We further say that the
permutation class C is M -griddable if C Ď GridpMq, and that this class is monotone griddable if there
is a finite matrix M for which it is M -griddable.

Grid classes were first described in this generality (albeit under a different name) by Murphy and
Vatter [16], who studied their wqo properties. To describe their result we need the notion of the cell
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graph of a matrix M . This graph has vertex set tpi, jq : Mi,j ‰ 0u and pi, jq is adjacent to pk, ℓq if
they lie in the same row or column and there are no nonzero entries lying between them in this row
or column. We typically attribute properties of the cell graph of M to M itself; thus we say that M
is a forest if its cell graph is a forest.

Theorem 3.1 (Murphy and Vatter [16]). The grid class GridpMq is wqo if and only if M is a forest.

(This is a slightly different form of the result than is stated in [16], but the two forms are equivalent
as shown by Vatter and Waton [19], who also gave a much simpler proof of Theorem 3.1.)

The monotone griddable classes were characterised by Huczynska and Vatter [12]. In order to
present this result we also need some notation. Given permutations σ and τ of respective lengths
m and n, their sum is the permutation π ‘ τ whose plot consists of the plot of τ above and to the
right of the plot of σ. More formally, this permutation is defined by

σ ‘ τpiq “

"

σpiq for 1 ď i ď m,
τpi ´ mq ` m for m ` 1 ď i ď m ` n.

The obvious symmetry of this operation (in which the plot of τ lies below and to the right of the plot
of σ) is called the skew sum of σ and τ and is denoted σ a τ . We can now state the characterisation
of monotone griddable permutation classes.

Theorem 3.2 (Huczynska and Vatter [12]). The permutation C is monotone griddable if and only if it does
not contain arbitrarily long sums of 21 or skew sums of 12.

The reader might note that the classes we are interested in are not monotone griddable, let alone
M -griddable for a forest M . However, our proof will show that these classes can be built from a
monotone griddable class via the “substitution decomposition”, which we define shortly. Before
this, though, we must introduce a few more concepts concerning monotone grid classes, the first
two of which are alternative characterisations of monotone griddable classes.

Given a permutation π, we say that the axis-parallel rectangle R is monotone if the entries of π

which lie in R are monotone increasing or decreasing (otherwise R is non-monotone). We say that
the permutation π can be covered by s monotone rectangles if there is a collection R of s monotone
axis-parallel rectangles such that every point in the plot of π lies in at least one rectangle in R.
Clearly if C Ď GridpMq for a t ˆ u matrix M then every permutation in C can be covered by tu

monotone rectangles. To see the other direction, note that every permutation which can be covered
by s monotone rectangles is M -griddable for some matrix M of size at most p2s ´ 1q ˆ p2s ´ 1q.
There are only finitely many such matrices, say M p1q, . . . , M pmq, so their direct sum,

¨

˚

˝

M pmq

. .
.

M p1q

˛

‹

‚

is a finite matrix whose grid class contains all such permutations.1

This characterisation of monotone griddability is recorded in Proposition 3.3 below, which also
includes a third characterisation. We say that the line L slices the rectangle R if L X R ‰ H. If

1By adapting this argument it follows that if every permutation in the class C lies in the grid class of a forest of size at most
t ˆ u, then C itself lies in the grid class of a (possibly much larger) forest.
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C Ď GridpMq for a t ˆ u matrix then for every permutation π P C there is a collection of t ` u

horizontal and vertical lines (the grid lines) which slice every non-monotone axis-parallel rectangle
of π. Conversely, every such collection of lines defines a gridding of π, completing the sketch of the
proof of the following result.

Proposition 3.3 (specialising Vatter [18, Proposition 2.3]). For a permutation class C, the following are
equivalent:

(1) C is monotone griddable,

(2) there is a constant ℓ such that for every permutation π P C the set of non-monotone axis-parallel
rectangles of π can be sliced by a collection of ℓ horizontal and vertical lines, and

(3) there is a constant s such that every permutation in C can be covered by s monotone rectangles.

We now move on to the substitution decomposition, which will allow us to build the classes we
are interested in from grid classes of forests. An interval in the permutation π is a set of contiguous
indices I “ ra, bs such that the set of values πpIq “ tπpiq : i P Iu is also contiguous. Given a
permutation σ of length m and nonempty permutations α1, . . . , αm, the inflation of σ by α1, . . . , αm

— denoted σrα1, . . . , αms — is the permutation of length |α1|`¨ ¨ ¨`|αm| obtained by replacing each
entry σpiq by an interval that is order isomorphic to αi in such a way that the intervals themselves
are order isomorphic to σ. Thus the sum and skew sum operations are particular cases of inflations:
σ ‘ τ “ 12rσ, τ s and σ a τ “ 21rσ, τ s. Given two classes C and U , the inflation of C by U is defined as

CrUs “ tσrα1, . . . , αms : σ P Cm and α1, . . . , αm P Uu.

The class C is said to be substitution closed if CrCs “ C. The substitution closure, xCy, of a class C is
defined as the smallest substitution closed class containing C. A standard argument shows that xCy
exists, and by specialising a result of [4] we obtain the following.

Theorem 3.4 (Albert, Ruškuc, and Vatter [4, specialisation of Theorem 4.4]). If the matrix M is a
forest then the class xGridpMqy is wqo.

The permutation π is said to be simple if the only ways to write it as an inflation are trivial — that
is, it can only be written either as the inflation of a permutation by singletons, or as the inflation
of a singleton by a permutation. Thus if π has length n, it is simple if and only if its only intervals
have length 0, 1, and n. Thus every permutation can be expressed as the inflation of a simple
permutation. Moreover, in most cases, this decomposition is unique. A permutation is said to be
sum (resp., skew) decomposable if it can be expressed as the sum (resp., skew sum) of two shorter
permutations. Otherwise it is said to be sum (resp., skew) indecomposable.

Proposition 3.5 (Albert and Atkinson [1]). Every permutation π except 1 is the inflation of a unique
simple permutation σ. Moreover, if π “ σrα1, . . . , αms for a simple permutation σ of length m ě 4, then
each interval αi is unique. If π is an inflation of 12 (i.e., is sum decomposable), then there is a unique sum
indecomposable α1 such that π “ α1 ‘ α2. The same holds, mutatis mutandis, with 12 replaced by 21 and
sum replaced by skew.

We close this section by noting how easily this machinery can show that permutation graphs omit-
ting both Pk and K3 are wqo for all k, a result originally due to Korpelainen and Lozin [14]. The
corresponding permutations all avoid 321 and thus lie in the grid class of an infinite matrix, known
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Figure 3: The impossible configuration for a simple permutation in Proposition 4.1.

as the infinite staircase (see Albert and Vatter [5]). Moreover, the sum indecomposable permuta-
tions which avoid 321 and the two permutations corresponding to Pk can be shown to lie in the
grid class of a finite staircase,

¨

˚

˚

˚

˝

1 1

. .
.

. .
.

1 1

1 1

˛

‹

‹

‹

‚

.

Finally, it follows by an easy application of Higman’s Theorem [11] that if the sum indecomposable
permutations in a class are wqo, then the class itself is wqo. (In this case, the wqo conclusion also
follows by Theorem 3.4.)

4. PERMUTATION GRAPHS OMITTING P5 AND Kℓ

In this section we prove that the class of permutations corresponding to permutation graphs omit-
ting P5 and Kℓ,

Avp24153, 31524, ℓ ¨ ¨ ¨21q,

is wqo. Our proof basically consists of two steps. First, we show that the simple permutations
in these classes are monotone griddable, and then we show that these griddings can be refined to
forests. The conclusion then follows from Theorem 3.4.

Given a set of points in the plane, their rectangular hull is defined to be the smallest axis-parallel
rectangle containing all of them. We begin with a very simple observation about these simple
permutations.

Proposition 4.1. For every simple permutation π P Avp24153, 31524q, either its greatest entry lies to the
left of its least entry, or its leftmost entry lies above its rightmost entry.

Proof. Suppose, for a contradiction, that π is a simple permutation in Avp24153, 31524q such that its
greatest entry lies to the right of its least, and its leftmost entry lies below its rightmost entry. Thus,
these four extremal entries form the pattern 2143, and the situation is as depicted in Figure 3(i).
Since π is simple, regions A and B cannot both be empty, so, without loss of generality, suppose
that A is non-empty and label the greatest entry in this region as point x.

Since π is simple, the rectangular hull of the leftmost entry, the least entry, and the point x cannot
be an interval in π. Therefore, there must be a point either in B, or in that part of C lying below
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x. Take the rightmost such point, and label it y. If y is in region C, we immediately encounter
the contradiction illustrated in Figure 3(ii): our choices of x and y, and the forbidden permutation
24153 causes the permutation to be sum decomposable. Therefore, y is placed in region B, and we
have the picture depicted in Figure 3(iii). Since π is simple, there must now be a point in the region
labelled D. However, in order for this permutation to not be sum decomposable, we must insert
another point in the region to the right of region D, and below the greatest entry in D, but this
would force an occurrence of 31524.

The class Avp24153, 31524, ℓ ¨ ¨ ¨21q is closed under group-theoretic inversion (because 24153´1 “
31524 and ℓ ¨ ¨ ¨ 21´1 “ ℓ ¨ ¨ ¨ 21), so we may always assume that the latter option in Proposition 4.1
holds.

The rest of our proof adapts several ideas from Vatter [18]. Two rectangles in the plane are said
to be dependent if their projections onto either the x- or y-axis have nontrivial intersection, and
otherwise they are said to be independent. A set of rectangles is called independent if its members
are pairwise independent. Thus an independent set of rectangles may be viewed as a permutation,
and it satisfies the Erdős-Szekeres Theorem (every permutation of length at least pa ´ 1qpb ´ 1q ` 1

contains either 12 ¨ ¨ ¨a or b ¨ ¨ ¨ 21). We construct independent sets of rectangles in the proofs of both
Propositions 4.3 and 4.5. In these settings, the rectangles are used to capture “bad” areas in the
plot of a permutation, and our desired result is obtained by slicing the rectangles with horizontal
and vertical lines in the sense of Proposition 3.3. The following result shows that we may slice a
collection of rectangles with only a few lines, so long as we can bound its independence number.

Theorem 4.2 (Gyárfás and Lehel [10]). There is a function fpmq such that for any collection R of axis-
parallel rectangles in the plane which has no independent set of size greater than m, there exists a set of fpmq
horizontal and vertical lines which slice every rectangle in R.

Our next two results both rest upon Theorem 4.2.

Proposition 4.3. For every ℓ, the simple permutations in Avp24153, 31524, ℓ ¨ ¨ ¨21q are contained in
GridpMq for a finite 0{1 matrix M .

Proof. By Proposition 3.3 it suffices to show that there is a function gpℓq such that every permutation
in Avp24153, 31524, ℓ ¨ ¨ ¨21q can be covered by gpℓq increasing axis-parallel rectangles (i.e., rectan-
gles which only cover increasing sets of points). We prove this statement by induction on ℓ. For the
base case, we can take gp2q “ 1. Now take a simple permutation π P Avp24153, 31524, ℓ ¨ ¨ ¨21q for
ℓ ě 3 and suppose that the claim holds for ℓ ´ 1.

By Proposition 4.1, we may assume that the leftmost entry of π lies above its rightmost entry. Let πt

be the permutation formed by all entries of π lying above its rightmost entry and πb the permutation
formed by all entries of π lying below its leftmost entry (as shown in Figure 4). Thus every entry
of π corresponds to an entry in πt, to an entry in πb, or to entries in both permutations. Moreover,
both πt and πb avoid pℓ ´ 1q ¨ ¨ ¨ 21.

We would like to apply induction to find monotone rectangle coverings of both πt and πb but
of course these permutations needn’t be simple. Nevertheless, if πt is the inflation of the simple
permutation σt and πb of σb then both σt and σb can be covered by gpℓ ´ 1q increasing axis-parallel
rectangles by induction. Now we stretch these rectangles so that they cover the corresponding
regions of π. By adapting the proof of Proposition 3.3, we may then extend this rectangle covering
to a gridding of size at most 4gpℓ´ 1q ˆ 4gpℓ´ 1q. While this gridding needn’t be monotone, inside
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Figure 4: On the left, the division of π used in Proposition 4.3. In the centre and on the right, the
final contradictions in the proof.

each of its cells we see points which correspond either to inflations of increasing sequences of σt or
of σb. Let L denote the grid lines of this gridding.

We now say that the axis-parallel rectangle R is bad if it is fully contained in a cell of the above
gridding and the points it covers contain a decreasing interval in either πt or πb. Further let R
denote the collection of all bad rectangles. We aim to show that there is a collection of fp2ℓpℓ ´
1qq lines which slice every bad rectangle, where f is the function defined in Theorem 4.2. This,
together with Proposition 3.3 and the comments before it, will complete the proof because these
lines together with L will give a gridding of π of bounded size.

Theorem 4.2 will give us the desired lines if we can show that R has no independent set of size
greater than 2ℓpℓ ´ 1q ` 1. Suppose to the contrary that R does contain an independent set of this
size. Thus at least ℓpℓ ´ 1q ` 1 of these bad rectangles lie in one of πt or πb; suppose first that these
ℓpℓ ´ 1q ` 1 bad rectangles lie in πt. Because πt avoids pℓ ´ 1q ¨ ¨ ¨ 21, the Erdős-Szekeres Theorem
implies that at least ℓ`1 of its bad rectangles occur in increasing order (when read from left to right).
Because π itself is simple, each such rectangle must be separated, and this separating point must lie
in πbzπt since (by definition) the points inside this bad rectangle form a decreasing interval in πt.
Appealing once more to Erdős-Szekeres we see that two such separating points must themselves
lie in increasing order, as shown in the centre of Figure 4. However, this is a contradiction to our
assumption that π avoids 31524 (given by the solid points). As shown on the rightmost pane of this
figure, if the ℓpℓ ´ 1q ` 1 bad rectangles lie in πb we instead find a copy of 24153.

A submatrix of a matrix is obtained by deleting any collection of rows and columns from the matrix.
Our next result shows that the simple permutations in Avp24153, 31524, ℓ ¨ ¨ ¨21q can be gridded in

a matrix which does not contain

ˆ

1 1

1 ˚

˙

as a submatrix, i.e., in this matrix, there is no non-zero

cell with both a non-zero cell below it in the same column, and a non-zero cell to its right in the
same row. (The ˚ indicates an entry that can be either 0 or 1.)

The following result is in some sense the technical underpinning of our entire argument. We advise
the reader to note during the proof that if the hulls in H are assumed to be increasing, then the
resulting gridding matrix M will be 0{1, not 0{˘1.

Proposition 4.4. Suppose that π is a permutation and H is a collection of m monotone rectangular hulls
which cover the entries of π satisfying
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Figure 5: Propagating a side of a hull in H, and its corresponding propagation tree.

(H1) the hulls in H are pairwise nonintersecting,

(H2) no single vertical or horizontal line slices through more than k hulls in H, and

(H3) no hull in H is dependent both with a hull to its right and a hull beneath it.

Then there exists a function fpm, kq such that π is M -griddable for a 0{˘1 matrix M of size at most

fpm, kq ˆ fpm, kq which does not contain

ˆ

˘1 ˘1

˘1 ˚

˙

as a submatrix.

Proof. We define a gridding of π using the sides of the hulls in H. For a given side from a given
hull, form a gridline by extending it to the edges of the permutation. By our hypothesis (H2), this
line can slice at most k other hulls.

Whenever a hull is sliced in this way, a second gridline, perpendicular to the first, is induced so
that all of the entries within the hull are contained in the bottom left and top right quadrants (for a
hull containing increasing entries), or top left and bottom right quadrants (for a hull containing
decreasing entries) defined by the two lines. This second gridline may itself slice through the
interior of at most k further hulls in H, and each such slice will induce another gridline, and so on.
We call this process the propagation of a line. See Figure 5 for an illustration. For a given propagation
sequence, the propagation tree has gridlines for vertices, is rooted at the original gridline for the side,
and has an edge between two gridlines if one induces the other in this propagation.

Before moving on, we note that it is clear that the propagation tree is connected, but less obvious
that it is in fact a tree. This is not strictly required in our argument (we will only need to bound the
number of vertices it contains), but if the tree were to contain a cycle it would have to correspond
to a cyclic sequence of hulls, and this is impossible without contradicting hypothesis (H3).

In order to bound the size of a propagation tree, we first show that it has height at most 2m ´ 1.
In the propagation tree of a side from some hull H0 P H, take a sequence H1, H2, . . . , Hp of hulls
from H corresponding to a longest path in the propagation tree, starting from the root. Thus, H1 is
sliced by the initial gridline formed from the side of H0, and Hi is sliced by the gridline induced
from Hi´1 for i “ 2, . . . , p.

We now define a word w “ w1w2 ¨ ¨ ¨wp from this sequence, based on the position of hull Hi relative
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to hull Hi´1. For i “ 1, 2, . . . , p, let

wi “

$

’

’

’

&

’

’

’

%

u if Hi lies above Hi´1

d if Hi lies below Hi´1

l if Hi lies to the left of Hi´1

r if Hi lies to the right of Hi´1

Note that by the process of inducing perpendicular gridlines, successive letters in w must alternate
between tu, du and tl, ru. Moreover, since no hull interacts with hulls both below it and to its right,
w cannot contain a ur or ld factor. In other words, after the first instance of u or l, there are no more
instances of r or d. This means that w consists of a (possibly empty) alternating sequence drdr ¨ ¨ ¨ or
rdrd ¨ ¨ ¨ followed by a (possibly empty) alternating sequence ulul ¨ ¨ ¨ or lulu ¨ ¨ ¨ .

Any alternating sequence of the form drdr ¨ ¨ ¨ or rdrd ¨ ¨ ¨ can have at most m ´ 1 letters, as each
hull in H (other then H0) can be sliced at most once in such a sequence. Similarly, any alternating
sequence of the form ulul ¨ ¨ ¨ or lulu ¨ ¨ ¨ can have at most m ´ 1 letters. Consequently, we have
p ď 2m ´ 2, and thus every propagation sequence has length at most 2m ´ 1, as required.

Since each gridline in the propagation tree has at most k children, this means that the propagation
tree for any given side has at most

1 ` k ` k2 ` ¨ ¨ ¨ ` k2m´1 ă k2m

vertices, yielding a gridding of π with fewer than 4mk2m gridlines, and we may take this number to
be fpm, kq. The gridding matrix M is then naturally formed from the cells of this gridding of π: each
empty cell corresponds to a 0 in M , each cell containing points in decreasing order corresponds to
a ´1 in M , and each cell containing points in increasing order corresponds to a 1 in M .

Finally, we verify that M satisfies the conditions in the proposition. The process of propagating
gridlines ensures that each rectangular hull in H is divided into cells no two of which occupy the

same row or column of the M -gridding. This means that there can be no

ˆ

˘1 ˘1

˘1 ˚

˙

submatrix

of M with two cells originating from the same hull in H. Thus, the cells of a submatrix of the form
ˆ

˘1 ˘1

˘1 ˚

˙

must be made up from points in distinct hulls in H, but this is impossible since H

contains no hulls which are dependent with hulls both below it and to its right.

We now apply this proposition to refine the gridding provided to us by Proposition 4.3.

Proposition 4.5. For every ℓ, the simple permutations in Avp24153, 31524, ℓ ¨ ¨ ¨21q are contained in

GridpMq for a finite 0{1 matrix M which does not contain

ˆ

1 1

1 ˚

˙

as a submatrix.

Proof. Let π be an arbitrary simple permutation in Avp24153, 31524, ℓ ¨ ¨ ¨21q. As we observed in
Footnote 1, it suffices to show that there are constants a and b such that π P GridpMq for an a ˆ b

matrix M satisfying the desired conditions.

By Proposition 4.3, π is contained in GridpNq for some 0{1 matrix N , of size (say) t ˆ u. We say
that a bad rectangle within any specified cell is an axis-parallel rectangle which contains two entries
which are split both by points below and to the right. Since π does not contain 24153, no cell can
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Figure 6: Two independent bad rectangles. The filled points form a copy of 24153, irrespective
of the relative orders of the splitting points.

contain more than one independent bad rectangle — see Figure 6. Therefore an independent set
of bad rectangles can have size at most tu, so Theorem 4.2 shows that the bad rectangles can all be
sliced by fptuq lines.

In any cell of the original gridding, the additional fptuq slices that have been added can at most
slice these points into fptuq `1 maximal unsliced pieces. In the entire permutation, therefore, these
slices (together with the original gridlines from N ) divide the points into at most tupfptuq ` 1q
maximal unsliced pieces. Let H denote the rectangular hulls of these maximal unsliced pieces.

We now check that H satisfies the hypotheses of Proposition 4.4. Condition (H1) follows immedi-
ately by construction. Next, note that no two hulls of H from the same cell of the N -gridding can
be dependent, since every cell is monotone, so we may take k “ maxpt, uq to satisfy (H2). Finally,
no hull can contain a bad rectangle (since all bad rectangles have been sliced), and so no hull can
simultaneously be dependent with a hull from a cell below it, and a hull from a cell to its right, as
required by (H3).

Now, applying Proposition 4.4 (noting that all the rectangular hulls in H contain increasing entries),
we have a 0{1 gridding matrix Mπ for π, of dimensions at most v ˆ w for some v, w, which does

not contain

ˆ

1 1

1 ˚

˙

as a submatrix. We are now done by our comments at the beginning of the

proof.

Having proved Proposition 4.5, we merely need to put the pieces together to finish the proof of our
main theorem. This proposition shows that there is a finite 0{1 matrix M with no submatrix of the
form

ˆ

1 1

1 ˚

˙

such that the simple permutations of Avp24153, 31524, ℓ ¨ ¨ ¨21q are contained in GridpMq. It follows
that

Avp24153, 31524, ℓ ¨ ¨ ¨21q Ď xGridpMqy.

Moreover, M is a forest because if it were to contain a cycle, it would have to contain a submatrix

of the form

ˆ

1 1

1 ˚

˙

. Therefore the permutation class Avp24153, 31524, ℓ ¨ ¨ ¨21q is wqo by Theo-

rem 3.4.

Theorem 4.6. For every ℓ, the permutation class Avp24153, 31524, ℓ ¨ ¨ ¨21q is wqo. Therefore the class of
permutation graphs omitting P5 and Kℓ is also wqo.
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5. PERMUTATION GRAPHS OMITTING P6, P7 OR P8

In this section, we establish the following:

Proposition 5.1. The following three classes of graphs are not wqo:

(1) the P6, K6-free permutation graphs,

(2) the P7, K5-free permutation graphs, and

(3) the P8, K4-free permutation graphs.

In order to prove these three classes are not wqo, it suffices to show that each class contains an infi-
nite antichain. This is done by showing that the related permutation classes contain “generalised”
grid classes, for which infinite antichains are already known. In general, we cannot immediately
guarantee that the permutation antichain translates to a graph antichain, but we will show that this
is in fact the case for the three we construct here.

We must first introduce generalised grid classes. Suppose that M is a t ˆ u matrix of permutation
classes (we use calligraphic font for matrices containing permutation classes). An M-gridding of
the permutation π of length n in this context is a pair of sequences 1 “ c1 ď ¨ ¨ ¨ ď ct`1 “ n ` 1 (the
column divisions) and 1 “ r1 ď ¨ ¨ ¨ ď ru`1 “ n ` 1 (the row divisions) such that for all 1 ď k ď t

and 1 ď ℓ ď u, the entries of π from indices ck up to but not including ck`1, which have values
from rℓ up to but not including rℓ`1 are either empty or order isomorphic to an element of Mk,ℓ.
The grid class of M, written GridpMq, consists of all permutations which possess an M-gridding.
The notion of monotone griddability can be analogously defined, but we do not require this.

Here, our generalised grid classes are formed from gridding matrices which contain the monotone
class Avp21q, and a non-monotone permutation class denoted

À

21. This is formed by taking all
finite subpermutations of the infinite permutation 21436587 ¨ ¨ ¨ . In terms of minimal forbidden
elements, we have

À

21 “ Avp321, 231, 312q.

Our proof of Proposition 5.1 requires some further theory to ensure we can convert the permutation
antichains we construct into graph antichains. The primary issue is that a permutation graph G can
have several different corresponding permutations. With this in mind, let

ΠpGq “ tpermutations π : Gπ – Gu

denote the set of permutations each of which corresponds to the permutation graph G.

Denote by π´1 the (group-theoretic) inverse of π, by πrc the reverse-complement (formed by reversing
the order of the entries of π, then replacing each entry i by |π| ´ i ` 1), and by pπ´1qrc the inverse-
reverse-complement, formed by composing the two previous operations (in either order, as the two
operations commute). It is then easy to see that if π P ΠpGq, then ΠpGq must also contain all of
π´1, πrc and pπ´1qrc. However, it is possible that ΠpGq may contain other permutations, and this
depends on the graph-theoretic analogue of the substitution decomposition, which is called the
modular decomposition.

We also need to introduce the graph analogues of intervals and simplicity, which have different
names in that context. A module M in a graph G is a set of vertices such that for every u, v P M and
w P V pGqzM , u is adjacent to w if and only if v is adjacent to w. A graph G is said to be prime if it
has no nontrivial modules, that is, any module M of G satisfies |M | “ 0, 1, or |V pGq|.
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The following result, arising as a consequence of Gallai’s work on transitive orientations, gives us
some control over ΠpGq:

Proposition 5.2 (Gallai [9]). If G is a prime permutation graph, then, up to the symmetries inverse, reverse-
complement, and inverse-reverse-complement, ΠpGq contains a unique permutation.

We now extend Proposition 5.2 to suit our purposes. Consider a simple permutation σ of length
m ě 4, and form the permutation π by inflating two2 of the entries of σ each by the permutation 21.
Note that G21 “ K2, and ΠpK2q “ t21u. In the correspondence between graphs and permutations,
modules map to intervals and vice versa, so prime graphs correspond to simple permutations, and
there is an analogous result to Proposition 3.5 for (permutation) graphs.

Thus, for any permutation ρ P ΠpGπq, it follows that ρ must be constructed by inflating two en-
tries of some simple permutation τ by the permutation 21. Moreover, τ must be one of σ, σ´1,
σrc or pσ´1qrc, and the entries of τ which are inflated are determined by which entries of σ were
inflated, and which of the four symmetries of σ is equal to τ . In other words, we still have
ΠpGπq “ tπ, π´1, πrc, pπ´1qrcu.

We require one further easy observation:

Lemma 5.3. If G and H are permutation graphs such that H ď G, then for any π P ΠpGq there exists
σ P ΠpHq such that σ ď π.

Proof. Given any π P ΠpGq, let σ denote the subpermutation of π formed from the entries of π which
correspond to the vertices of an embedding of H as an induced subgraph of G. Clearly Gσ – H , so
σ P ΠpHq and σ ď π, as required.

We are now in a position to prove Proposition 5.1. Since the techniques are broadly similar for all
three cases, we will give the details for case (2), and only outline the key steps for the other two
cases.

Proof of Proposition 5.1 (2). First, the graph P7 corresponds to two permutations, namely 3152746

and 2416375 respectively. Thus the class of P7, K5-free permutation graphs corresponds to the
permutation class Avp3152746, 2416375, 54321q. This permutation class contains the grid class

Grid
`

à

21
à

21

˘

,

because this grid class avoids the permutations 241635 (contained in both 3152746 and 2416375),
and 54321.

We now follow the recipe given by Brignall [7] to construct an infinite antichain which lies in
Grid p

À

21
À

21 q. Call the resulting antichain A, the first three elements and general term of
which are illustrated in Figure 7. This antichain is related to the “parallel” antichain in Murphy’s
thesis [15].

Now set GA “ tGπ : π P Au, and note that GA is contained in the class of permutation graphs
omitting P7 and K5 by Lemma 5.3. If GA is an antichain of graphs, then we are done, so suppose
for a contradiction that there exists G,H P GA with H ď G. Take the permutation π P A for which

2It is, in fact, possible to inflate more than two entries and establish the same result, but we do not require this here.
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Figure 7: The first three elements and the general structure of the infinite antichain A in
Grid

`

À

21
À

21
˘

. The grey lines indicate the sequence used to place the entries.

Figure 8: The first three elements of an infinite antichain in Grid

ˆ

À

21 Avp21q
À

21

˙

.

Gπ “ G. Applying Lemma 5.3, there exists σ P ΠpHq such that σ ď π. We cannot have σ P A since
A is an antichain, so σ must be some other permutation with the same graph. Choose τ P AXΠpHq.

It is easy to check that the only non-trivial intervals in any permutation in A are the two pairs
of points in Figure 7 which are circled. Thus, τ is formed by inflating two entries of a simple
permutation each by a copy of 21. By the comments after Proposition 5.2, we conclude that σ is
equal to one of τ´1, τ rc or pτ´1qrc.

Note that every permutation in A is closed under reverse-complement, so τ “ τ rc and thus σ ‰ τ rc.
If σ “ τ´1, by inspection every element of A contains a copy of 24531, which means that σ contains
p24531q´1 “ 51423. Since σ ď π, it follows that π must also contain a copy of 51423. However this
is impossible, because 51423 is not in Grid p

À

21
À

21 q.

Thus, we must have σ “ pτ´1qrc, in which case σ must contain a copy of pp24531qrcq
´1

“ 34251.
However, this permutation is also not in Grid p

À

21
À

21 q so cannot be contained in π. Thus
σ R π, and from this final contradiction we conclude that H ę G, so GA is an infinite antichain of
permutation graphs, as required.

Sketch proof of Proposition 5.1 (1) and (3). For (1), the class of P6, K6-free permutation graphs corre-

sponds to Avp241635, 315264, 654321q. This class contains Grid

ˆ

À

21 Avp21q
À

21

˙

because this grid

class does not contain 23154 (contained in 241635), 31254 (contained in 315264) and 654321.

By [7], this grid class contains an infinite antichain whose first three elements are illustrated in
Figure 8. The permutations in this antichain have exactly two proper intervals, indicated by the
circled pairs of points in each case, and this means that for any permutation π in this antichain,
ΠpGπq “ tπ, π´1, πrc, pπ´1qrcu.
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Following the proof of Proposition 5.1 (2), it suffices to show that for any permutations σ and π in
the antichain, none of σ, σ´1, σrc, or pσ´1qrc is contained in π. This is done by identifying permu-
tations which are not contained in any antichain element π, but which are contained in one of the
symmetries σ´1, σrc, or pσ´1qrc. We omit the details.

For (3), The P8, K4-free permutation graphs correspond to Avp4321, 24163857, 31527486q, and this

permutation class contains the (monotone) grid class Grid

ˆ

Avp21q Avp21q
Avp21q Avp21q

˙

. In this case, we

appeal to Murphy and Vatter [16] for an infinite antichain, and the same technique used to prove
cases (1) and (2) can be applied.

6. ENUMERATION

One significant difference between studies of the induced subgraph order and the subpermutation
order is the research interests of the different camps of investigators. In the latter area, a great
proportion of the work is enumerative in nature. Therefore, having established the structure of
permutation graphs avoiding P5 and cliques, we briefly study the enumeration of the correspond-
ing permutation classes in this section. Our goal is to show that these classes are strongly rational,
i.e., that they and every one of their subclasses have rational generating functions. Here we refer to

ÿ

πPC

x|π|

as the generating function of the class C, where |π| denotes the length of the permutation π. Note
that by a simple counting argument (made explicit in Albert, Atkinson, and Vatter [3]), strongly
rational permutation classes must be wqo.

Proposition 3.5 allows us to associate with any permutation π a unique substitution decomposition
tree. This tree is recursively defined by decomposing each node of the tree as

• σrα1, . . . , αms where σ is a nonmonotone simple permutation,

• α1 ‘ ¨ ¨ ¨ ‘ αm where each αi is sum indecomposable, or

• α1 a ¨ ¨ ¨ a αm where each αi is skew indecomposable.

See Figure 9 for an example. In particular, note that by our indecomposability assumptions, sum
nodes (resp., skew sum nodes) cannot occur twice in a row when reading up a branch of the tree.
The substitution depth of π is then the height of its substitution decomposition tree, so for exam-
ple, the substitution depth of the permutation from Figure 9 is 3, while the substitution depth of
any simple (or monotone) permutation is 1. As we show in our next result, substitution depth is
bounded for the classes we are interested in. This result is a special case of Vatter [18, Proposition
4.2], but we include a short proof for completeness.

Proposition 6.1. The substitution depth of every permutation in Avpℓ . . . 21q is at most 2ℓ ´ 3 for ℓ ě 2.

Proof. We prove the result using induction on ℓ. Only increasing permutations avoid 21 and they
have substitution depth 1, so the result holds for ℓ “ 2. Suppose to the contrary that the result
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2413

1 3142

1 1
Á

1 1

1

À

1 1

1

Á

1
À

Á

1 1

1

Figure 9: The substitution decomposition tree of 375896214 (of height 3), and a pruned version
of the same height which alternates between the labels ‘ and a.

holds for ℓ ě 2 but that there is a permutation π P Avppℓ ` 1q ¨ ¨ ¨ 21q of substitution depth 2ℓ (we
may always assume that the depth is precisely this value, because of downward closure). If π is a
sum decomposable permutation, express it as π “ π1 ‘ ¨ ¨ ¨ ‘ πm and note that at least one πi must
have substitution depth 2ℓ ´ 1.

Thus we may now assume that there is a sum indecomposable permutation π P Avppℓ ` 1q ¨ ¨ ¨ 21q
of substitution depth 2ℓ ´ 1. Write π “ σrα1, . . . , αms where σ is either a simple permutation or
decreasing of length at least 2 (to cover the case where π is skew decomposable). At least one of
the αi must have substitution depth 2ℓ ´ 2, and contains ℓ ¨ ¨ ¨ 21 by induction. However, there is at
least one entry of σ which forms an inversion with σpiq, and thus π itself must contain pℓ` 1q ¨ ¨ ¨21,
as desired.

It was shown in Albert, Atkinson, Bouvel, Ruškuc and Vatter [2, Theorem 3.2] that if M is a forest,
then GridpMq is a geometric grid class. In the same paper, two strong properties of geometric grid
classes were established: they are defined by finitely many minimal forbidden permutations and
they are strongly rational. We refer the reader to that paper for a comprehensive introduction to
geometric grid classes. Our enumerative result follows from the following theorem proved in a
subsequent paper.

Theorem 6.2 (Albert, Ruškuc, and Vatter [4, Theorem 7.6]). The class CrUs is strongly rational for all
geometrically griddable classes C and strongly rational classes U .

Applying induction on the height of substitution decomposition trees (which are bounded in all of
our classes by Proposition 6.1), we immediately obtain the following result.

Theorem 6.3. For every ℓ, the class Avp24153, 31524, ℓ ¨ ¨ ¨21q is strongly rational.

7. CONCLUDING REMARKS

As shown in Figure 1, there are only three cases remaining: permutation graphs avoiding tP6,K5u,
tP6,K4u and tP7,K4u. Due to the absence of an “obvious” infinite antichain in these cases, we
conjecture that they are all wqo. However, all three classes contain (for example) the generalised
grid class Grid p

À

21 Avp21q q, so these classes all contain simple permutations which are not
monotone griddable. Thus our approach would have to be significantly changed to approach this
conjecture.
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A natural first step might be to show that the corresponding permutation classes are D-griddable
(in the sense of Section 5) for a “nice” class D. As any proof along these lines would need to use
some sort of slicing argument as well (such as we used to prove Proposition 4.5), D would have to
be nice enough to allow for such arguments. Vatter [18, Lemma 5.3] has shown that such slicing
arguments can be made to work when D has only finitely many simple permutations and finite
substitution depth (in the sense of Section 6). As we already have finite substitution depth by
Proposition 6.1, it would suffice to show that we could take D to contain only finitely many simple
permutations.

Again, though, this would only be an encouraging sign and not a proof, because one would then
have to develop more sophisticated tools to prove wqo for such classes. Specifically, it is unlikely
that the existing machinery of Brignall [7] would suffice.
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