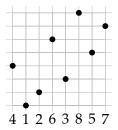


Permutations and permutation graphs

Robert Brignall

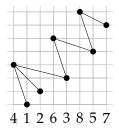
Schloss Dagstuhl, 8 November 2018

Permutations and permutation graphs



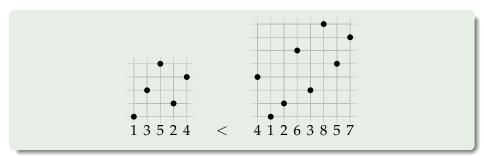
- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Inversion graph G_{π} : for i < j, $ij \in E(G_{\pi})$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .
- Permutation graph = can be made from a permutation

Permutations and permutation graphs



- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Inversion graph G_{π} : for i < j, $ij \in E(G_{\pi})$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .
- Permutation graph = can be made from a permutation

Ordering permutations: containment



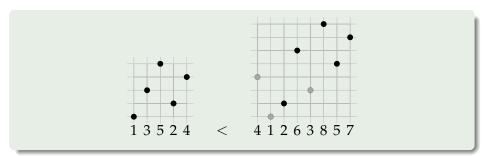
- 'Classical' pattern containment: $\sigma \leq \pi$.
- Translates to induced subgraphs: $G_{\sigma} \leq_{\text{ind}} G_{\pi}$.
- Permutation class: a downset:

 $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

• Avoidance: minimal forbidden permutation characterisation:

$$\mathcal{C} = \operatorname{Av}(B) = \{ \pi : \beta \not\leq \pi \text{ for all } \beta \in B \}.$$

Ordering permutations: containment



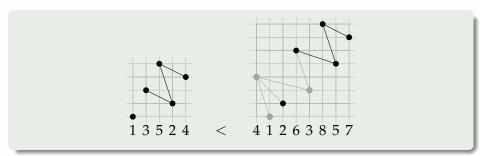
- 'Classical' pattern containment: $\sigma \leq \pi$.
- Translates to induced subgraphs: $G_{\sigma} \leq_{\text{ind}} G_{\pi}$.
- Permutation class: a downset:

 $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

• Avoidance: minimal forbidden permutation characterisation:

$$\mathcal{C} = \operatorname{Av}(B) = \{ \pi : \beta \leq \pi \text{ for all } \beta \in B \}.$$

Ordering permutations: containment



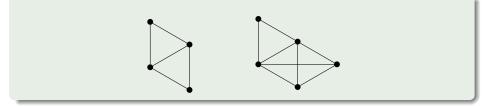
- 'Classical' pattern containment: $\sigma \leq \pi$.
- Translates to induced subgraphs: $G_{\sigma} \leq_{\text{ind}} G_{\pi}$.
- Permutation class: a downset:

 $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

• Avoidance: minimal forbidden permutation characterisation:

$$\mathcal{C} = \operatorname{Av}(B) = \{ \pi : \beta \leq \pi \text{ for all } \beta \in B \}.$$

Ordering graphs: induced subgraphs



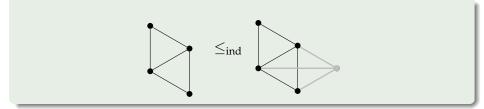
- Induced subgraph: $H \leq_{ind} G$: 'delete vertices' (& incident edges).
- Hereditary class: *C*, a downset:

$$G \in \mathcal{C}$$
 and $H \leq_{\text{ind}} G \Longrightarrow H \in \mathcal{C}$.

(Example: all planar graphs.)

• Forbidden induced subgraph characterisation, $Free(G_1, \ldots, G_k)$.

Ordering graphs: induced subgraphs



- Induced subgraph: $H \leq_{ind} G$: 'delete vertices' (& incident edges).
- Hereditary class: *C*, a downset:

$$G \in \mathcal{C}$$
 and $H \leq_{\text{ind}} G \Longrightarrow H \in \mathcal{C}$.

(Example: all planar graphs.)

• Forbidden induced subgraph characterisation, $Free(G_1, \ldots, G_k)$.

Permutations
Permutation π
Containment $\pi < \sigma$

 $\text{Class}\,\mathcal{C}$

Graphs

Permutation graph G_{π}

Induced subgraph $G_{\pi} <_{\text{ind}} G_{\sigma}$

Class $G_{\mathcal{C}} = \{G_{\pi} : \pi \in \mathcal{C}\}.$

Permutations
Permutation π
Containment $\pi < \sigma$
Class \mathcal{C}
Av(321)
Av(231)
Av(312)

Graphs

Permutation graph G_{π}

Induced subgraph $G_{\pi} <_{\text{ind}} G_{\sigma}$

Class
$$G_{\mathcal{C}} = \{G_{\pi} : \pi \in \mathcal{C}\}.$$

Bipartite permutation graph

$$\operatorname{Free}(C_4, P_4)$$

Permutations
Permutation π
Containment $\pi < \sigma$
Class C
Av(321)
Av(231)
Av(312)
Av(231, 312)

GraphsPermutation graph G_{π} Induced subgraph $G_{\pi} <_{ind} G_{\sigma}$ Class $G_{\mathcal{C}} = \{G_{\pi} : \pi \in \mathcal{C}\}.$ Bipartite permutation graph

$$\operatorname{Free}(C_4, P_4)$$

Permutations	Graphs
Permutation π	Permutation graph G_{π}
Containment $\pi < \sigma$	Induced subgraph $G_{\pi} <_{\text{ind}} G_{\sigma}$
Class \mathcal{C}	Class $G_{\mathcal{C}} = \{G_{\pi} : \pi \in \mathcal{C}\}.$
Av(321)	Bipartite permutation graph
Av(231)	$Free(C_4, P_4)$
Av(312)	
Av(231, 312)	Free(�\$)
Av(2413,3142)(separables)	Cographs: $Free(P_4)$
Av(3412, 2143) (skew-merged)	Split permutation graphs: Free $(2K_2, C_4, C_5, S_3, \overline{\text{rising sun}}, $

net, rising sun)

Graphclasses.org tells me that:

Perm. graphs = Free(
$$C_{n+4}, T_2, X_2, X_3, X_{30}, X_{31}, X_{32}, X_{33}, X_{34}, X_{36}, XF_1^{2n+3}, XF_2^{n+1}, XF_3^n, XF_4^n, XF_5^{2n+3}, XF_6^{2n+2}, + \text{complements})$$

N.B. (e.g.) C_{n+4} are all the cycles of length \geq 5, so this is an infinite list.

Two interactions between permutations and graphs

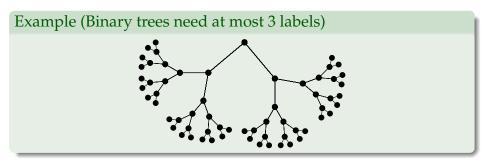
- 1. Clique width
- 2. Labelled well-quasi-ordering

§1 Clique width

Build-a-graph

Set of labels Σ . You have 4 operations to build a labelled graph:

- 1. Create a new vertex with a label $i \in \Sigma$.
- 2. Disjoint union of two previously-constructed graphs.
- 3. Join all vertices labelled *i* to all labelled *j*, where $i, j \in \Sigma, i \neq j$.
- 4. Relabel every vertex labelled *i* with *j*.



Build-a-graph

Set of labels Σ . You have 4 operations to build a labelled graph:

- 1. Create a new vertex with a label $i \in \Sigma$.
- 2. Disjoint union of two previously-constructed graphs.
- 3. Join all vertices labelled *i* to all labelled *j*, where $i, j \in \Sigma$, $i \neq j$.
- 4. Relabel every vertex labelled *i* with *j*.

- Clique-width, cw(G) = size of smallest Σ needed to build G.
- If $H \leq_{ind} G$, then $cw(H) \leq cw(G)$.
- Clique-width of a class $\mathcal C$

$$cw(\mathcal{C}) = \max_{G \in \mathcal{C}} cw(G)$$

if this exists.

Theorem (Courcelle, Makowsky and Rotics (2000))

If $cw(C) < \infty$, then any property expressible in monadic second-order (MSO₁) logic can be determined in polynomial time for C.

- MSO₁ includes many NP-hard algorithms: e.g. *k*-colouring (*k* ≥ 3), graph connectivity, maximum independent set,...
- Generalises treewidth, critical to the proof of the Graph Minor Theorem (see next slide)
- Unlike treewidth, clique-width can cope with dense graphs

- tw(G) measures 'how like a tree' *G* is (tw(G) = 1 iff *G* is a tree).
- Bounded treewidth \implies all problems in MSO₂ in polynomial time.

Theorem (Robertson and Seymour, 1986)

For a minor-closed family of graphs C, tw(C) bounded if and only if C does not contain all planar graphs.

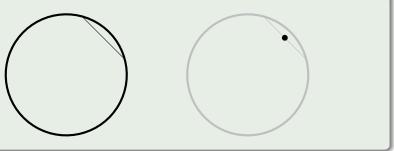
• Planar graphs are the unique "minimal" family for treewidth.

Question

Can we get a similar theorem for clique width?

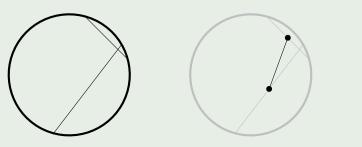
Theorem (Geelen, Kwon, McCarty, Wollan (announced 2018))

A vertex-minor-closed downset of graphs has unbounded clique-width if and only if it contains every circle graph as a vertex-minor.



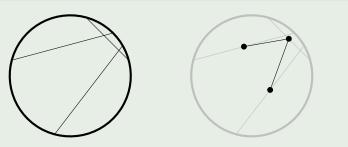
Theorem (Geelen, Kwon, McCarty, Wollan (announced 2018))

A vertex-minor-closed downset of graphs has unbounded clique-width if and only if it contains every circle graph as a vertex-minor.



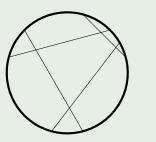
Theorem (Geelen, Kwon, McCarty, Wollan (announced 2018))

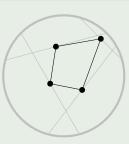
A vertex-minor-closed downset of graphs has unbounded clique-width if and only if it contains every circle graph as a vertex-minor.



Theorem (Geelen, Kwon, McCarty, Wollan (announced 2018))

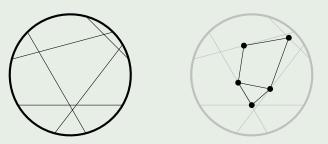
A vertex-minor-closed downset of graphs has unbounded clique-width if and only if it contains every circle graph as a vertex-minor.





Theorem (Geelen, Kwon, McCarty, Wollan (announced 2018))

A vertex-minor-closed downset of graphs has unbounded clique-width if and only if it contains every circle graph as a vertex-minor.



- Cographs, $C = \operatorname{Free}(P_4)$: cw(C) = 2.
- $\mathcal{F} = \{\text{forests}\}: cw(\mathcal{F}) = 3.$

- Cographs, $C = \operatorname{Free}(P_4)$: cw(C) = 2.
- $\mathcal{F} = \{ \text{forests} \}: cw(\mathcal{F}) = 3.$

Unbounded clique-width

- Circle graphs
- Split permutation graphs
- Bipartite permutation graphs
- Any class with superfactorial speed

 (~ more than n^{cn} labelled graphs of order n, for any c)

- Cographs, $C = \operatorname{Free}(P_4)$: cw(C) = 2.
- $\mathcal{F} = \{ \text{forests} \}: cw(\mathcal{F}) = 3.$

Unbounded clique-width

- Circle graphs
- Split permutation graphs
- Bipartite permutation graphs
- Any class with superfactorial speed

 (~ more than n^{cn} labelled graphs of order n, for any c)

Question

What are the minimal classes of graphs with unbounded clique-width?

- Cographs, $C = \operatorname{Free}(P_4)$: cw(C) = 2.
- $\mathcal{F} = \{ \text{forests} \}: cw(\mathcal{F}) = 3.$

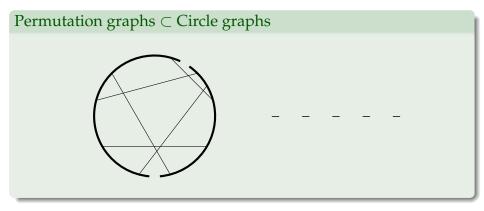
Unbounded clique-width

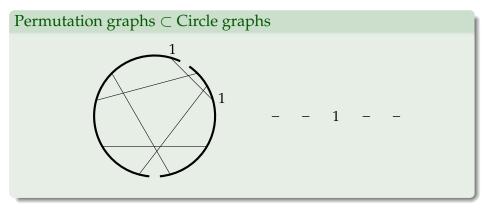
- Circle graphs

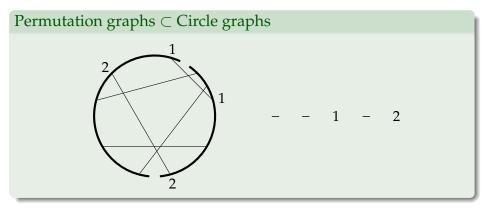
- Any class with superfactorial speed
 (~ more than n^{cn} labelled graphs of order n, for any c)

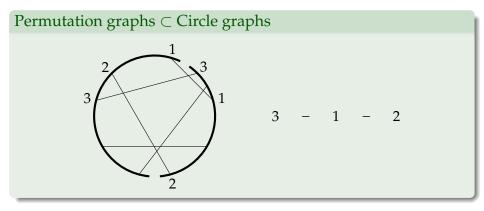
Question

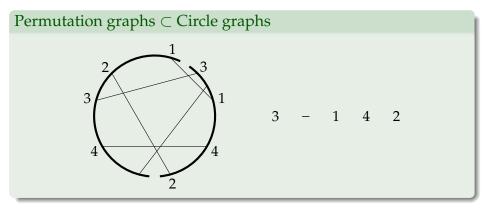
What are the minimal classes of graphs with unbounded clique-width?

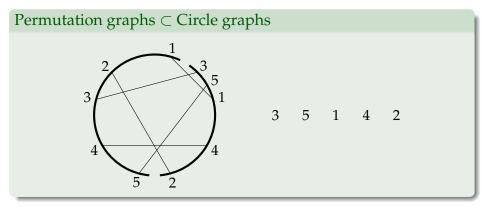








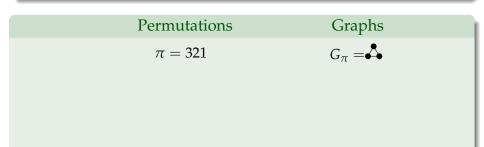




Av(321) vs Bipartite permutation graphs

Theorem (Lozin, 2011)

Bipartite permutation graphs are a minimal class with unbounded clique-width.



Av(321) vs Bipartite permutation graphs

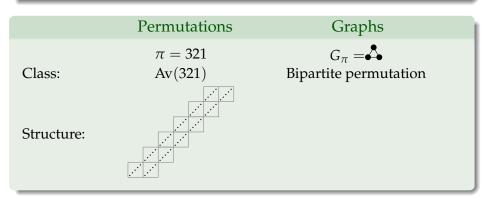
Theorem (Lozin, 2011)

Bipartite permutation graphs are a minimal class with unbounded clique-width.

	Permutations	Graphs
Class:	$\pi = 321$ Av(321)	$G_{\pi} = \overset{\bullet}{\overset{\bullet}}$ Bipartite permutation

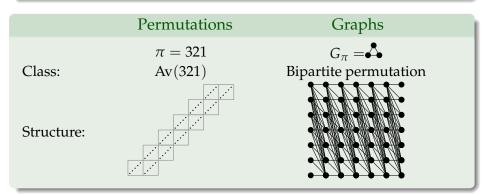
Av(321) vs Bipartite permutation graphs

Theorem (Lozin, 2011)



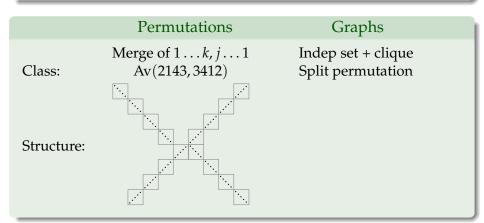
Av(321) vs Bipartite permutation graphs

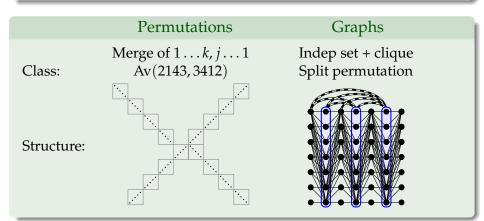
Theorem (Lozin, 2011)



Permutations	Graphs
Merge of $1 \dots k, j \dots 1$	Indep set + clique

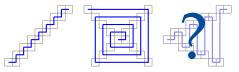
	Permutations	Graphs	
Class:	Merge of $1 k, j 1$ Av(2143, 3412)	Indep set + clique Split permutation	





More minimal classes?

• Permutation class structure is a long 'path':



- Could find minimal classes of permutation graphs.
- Carry out local complementation to make other (non-permutation) graph classes.

Corollary (to Geelen, Kwon, McCarty, Wollan)

Every minimal class of unbounded clique width is a subclass of circle graphs.

Question (possibly naive)

Are all these classes related to each other by local complementation?

§2 Labelled well-quasi-ordering

• Antichain: set of pairwise incomparable graphs/permutations

.

The set of cycles forms an infinite antichain

$$\bigtriangleup \square \diamondsuit \bigcirc .$$

• Antichain: set of pairwise incomparable graphs/permutations

. .

The set of cycles forms an infinite antichain

$$\triangle \square \diamondsuit \bigcirc$$
.

Paths form a *labelled* infinite antichain

• Antichain: set of pairwise incomparable graphs/permutations

. .

The set of cycles forms an infinite antichain

$$\triangle \square \diamondsuit \bigcirc$$

Paths form a *labelled* infinite antichain

Increasing oscillations/Gollan permutations too...

• Antichain: set of pairwise incomparable graphs/permutations

. .

The set of cycles forms an infinite antichain

$$\triangle \square \diamondsuit \bigcirc$$

Paths form a *labelled* infinite antichain

Increasing oscillations/Gollan permutations too...

- well-quasi-order (WQO): no infinite antichain.
- Labelled well-quasi-order (LWQO): no infinite labelled antichain.

Theorem (Pouzet, 1972)

Every LWQO class (of graphs, permutations, anything) is finitely based.

Conjecture (Korpelainen, Lozin & Razgon, 2013; Atminas & Lozin, 2015)

Every finitely based WQO graph class must also be LWQO.

Conjecture (KLR, 2013; AL, 2015)

Every finitely based WQO graph class must also be LWQO.

If a graph contains long paths, then it contains

... so is not LWQO.

Conjecture (KLR, 2013; AL, 2015)

Every finitely based WQO graph class must also be LWQO.

If a graph contains long paths, then it contains

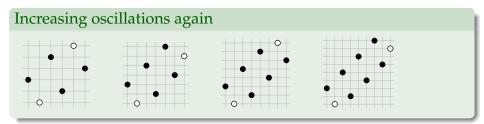
... so is not LWQO.

But then, you can't avoid

$$\triangle \Box \diamondsuit \bigcirc ..$$

... unless they are all in the basis.

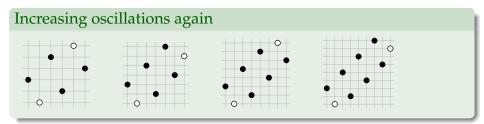
'Obviously' wrong for permutations



Proposition

The smallest class containing the increasing oscillations is Av(321, 2341, 3412, 4123) and is WQO (but not LWQO).

'Obviously' wrong for permutations



Proposition

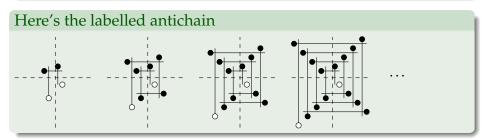
The smallest class containing the increasing oscillations is Av(321, 2341, 3412, 4123) and is WQO (but not LWQO).

But...

As a graph class, C_n is a basis element for $n \ge 5$. \Rightarrow not a counterexample.

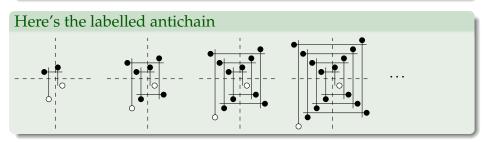
Proposition (B., Engen, Vatter, 2018+)

Av(2143, 2413, 3412, 314562, 412563, 415632, 431562, 512364, 512643, 516432, 541263, 541632, 543162) *is another WQO-but-not-LWQO class.*



Proposition (B., Engen, Vatter, 2018+)

Av(2143, 2413, 3412, 314562, 412563, 415632, 431562, 512364, 512643, 516432, 541263, 541632, 543162) *is another WQO-but-not-LWQO class.*



Corollary

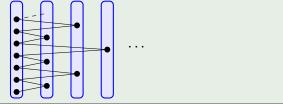
The class $Free(2K_2, C_4, C_5, net, co-net, rising sun, co-rising sun, H, \overline{H}, cross, co-cross, X_{168}, \overline{X_{168}}, X_{160})$, is WQO but not LWQO.

Conjecture (Daligault, Rao, Thomassé, 2010)

If C is labelled well-quasi-ordered, then C has bounded clique-width.

N.B.

WQO does *not* imply bounded clique width (Lozin, Razgon, Zamaraev, 2018).



Thanks!