Permutations and permutation graphs

Robert Brignall

Schloss Dagstuhl, 8 November 2018

The Open
University



versity

The Open

Permutations and permutation graphs g

Uni

)
41263857

® Permutation 7t = 7t(1) - - - 7t(n)
* Inversion graph G: fori < j, ij € E(Gr) iff 7t(i) > 7(j).
® Note: n---21 becomes K.

® Permutation graph = can be made from a permutation
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‘Classical’ pattern containment: ¢ < 7.
® Translates to induced subgraphs: Gy <ing Gr.
Permutation class: a downset:

e Cand o < rimplieso € C.

Avoidance: minimal forbidden permutation characterisation:

C=Av(B) ={m:B £ mforall B € B}.
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® Induced subgraph: H <j,q G: ‘delete vertices’ (& incident edges).

® Hereditary class: C, a downset:
GelCandH <;;,gG=— H €.

(Example: all planar graphs.)
* Forbidden induced subgraph characterisation, Free(Gy, . .., G).
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Containment 7 < o
Class C

Induced subgraph G, <ing Go
Class G¢ = {Gr: m € C}.
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Dictionary :
Permutations Graphs
Permutation 7t Permutation graph G,

Containment 7 < o
Class C

Av(231,312)

(
(
(
(
Av(2413,3142)(separables)

(

Av(3412,2143) (skew-merged)

Induced subgraph G, <ing Go
Class G¢ = {G, : T € C}.
Bipartite permutation graph
Free(Cy, Py)

4

Free(*%)
Cographs: Free(Py)

Split permutation graphs:
Free(2Kj, Cy4, Cs, S3, rising sun,
net, rising sun)
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Graphclasses.org tells me that:

Perm. graphs = Free(Cy+4, T2, X2, X5, X30, X31, X32, X33, X34, Xz6,
XF%H-H‘}, XP;-Fl, XF”, XFZ, XP%I’H-S’ XF%’H_Z,

+ complements)

N.B. (e.g.) Cy14 are all the cycles of length > 5, so this is an infinite list.
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1. Clique width
2. Labelled well-quasi-ordering
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§1 Clique width
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Set of labels .. You have 4 operations to build a labelled graph:
1. Create a new vertex with a label i € Z.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j, where i,j € X, i # j.
4. Relabel every vertex labelled i with ;.

S

Example (Binary trees need at most 3 labels)
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* Clique-width, cw(G) = size of smallest ¥ needed to build G.
* If H <jnq G, then cw(H) < cw(G).
* Clique-width of a class C

cw(C) = max cw(G)

if this exists.
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Theorem (Courcelle, Makowsky and Rotics (2000))

If cw(C) < oo, then any property expressible in monadic second-order
(MSO1) logic can be determined in polynomial time for C.

® MSO; includes many NP-hard algorithms: e.g. k-colouring
(k > 3), graph connectivity, maximum independent set,...

® Generalises treewidth, critical to the proof of the Graph Minor
Theorem (see next slide)

® Unlike treewidth, clique-width can cope with dense graphs
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* tw(G) measures ‘how like a tree’ G is (tw(G) = 1iff G is a tree).
® Bounded treewidth = all problems in MSO, in polynomial time.

Theorem (Robertson and Seymour, 1986)

For a minor-closed family of graphs C, tw(C) bounded if and only if C does
not contain all planar graphs.

® Planar graphs are the unique “minimal” family for treewidth.

Question
Can we get a similar theorem for clique width?
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® Vertex-minor = induced subgraph + local complements

Theorem (Geelen, Kwon, McCarty, Wollan (announced 2018))

A vertex-minor-closed downset of graphs has unbounded clique-width if and
only if it contains every circle graph as a vertex-minor.

Circle graph = intersection graph of chords
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Clique width on graph classes

Bounded clique-width

® Cographs, C = Free(Py4): cw(C) = 2.

* F = {forests}: cw(F) = 3.
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Unbounded clique-width
* Circle graphs
® Split permutation graphs
* Bipartite permutation graphs

® Any class with superfactorial speed
(~ more than n“" labelled graphs of order n, for any c)
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Unbounded clique-width
* Circle graphs
® Split permutation graphs  <— minimal!
* Bipartite permutation graphs = <— minimal!

® Any class with superfactorial speed
(~ more than n“" labelled graphs of order n, for any c)

Question
What are the minimal classes of graphs with unbounded clique-width?
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Permutations as circles

Circle graphs are minimal with respect to vertex minor, but not for
induced subgraphs.

Permutation graphs C Circle graphs
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Av(321) vs Bipartite permutation graphs g

Theorem (Lozin, 2011)

Bipartite permutation graphs are a minimal class with unbounded
clique-width.

Permutations Graphs
=321 G, =
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Bipartite permutation graphs are a minimal class with unbounded
clique-width.

Permutations Graphs
7 =321 Gy =&

Class: Av(321) Bipartite permutation

Structure:

15 /25



versity

The Open

Av(321) vs Bipartite permutation graphs g

Uni

Theorem (Lozin, 2011)

Bipartite permutation graphs are a minimal class with unbounded
clique-width.

Permutations Graphs
7T = 321 Gy =&
Class: Av(321) Bipartite permutation

“ﬂ“ﬂ“\
‘\\\\\ \ \

Structure:

\ \\ \\;‘1
\&&&&&
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Theorem (Atminas, B., Lozin, Stacho, 2018+)

Split permutation graphs are a minimal class with unbounded clique-width.

o’

Permutations Graphs

Mergeof1...k,j...1 Indep set + clique
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Split permutation graphs

Theorem (Atminas, B., Lozin, Stacho, 2018+)

Split permutation graphs are a minimal class with unbounded clique-width.
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Structure:

Permutations

Mergeof1...k,j...1

Av(2143,3412)

Graphs

Indep set + clique
Split permutation
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® Permutation class structure is a long “path”:

E? :

=l

| mm—

® Could find minimal classes of permutation graphs.
* Carry out local complementation to make other
(non-permutation) graph classes.

Corollary (to Geelen, Kwon, McCarty, Wollan)

Every minimal class of unbounded clique width is a subclass of circle
graphs.

Question (possibly naive)

Are all these classes related to each other by local complementation?




§2 Labelled well-quasi-ordering



Infinite labelled antichains 0

® Antichain: set of pairwise incomparable graphs/permutations

The set of cycles forms an infinite antichain

A0
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No labelled antichains

* well-quasi-order (WQO): no infinite antichain.
® Labelled well-quasi-order (LWQO): no infinite labelled antichain.

Theorem (Pouzet, 1972)
Every LWQO class (of graphs, permutations, anything) is finitely based.

Conjecture (Korpelainen, Lozin & Razgon, 2013;
Atminas & Lozin, 2015)

Every finitely based WQO graph class must also be LWQO.

20/25
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Conjecture (KLR, 2013; AL, 2015)

Every finitely based WQO graph class must also be LWQO.
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OO0 OCe0eO0O Oee6e060O 06060

...sois not LWQO.
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Conjecture (KLR, 2013; AL, 2015)

Every finitely based WQO graph class must also be LWQO.
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If a graph contains long paths, then it contains

OO0 OeeO0O Oeee060O 00060

...sois not LWQO.

But then, you can’t avoid

A<

... unless they are all in the basis.
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‘Obviously’” wrong for permutations g

Increasing oscillations again

Proposition

The smallest class containing the increasing oscillations is
Av(321,2341,3412,4123) and is WQO (but not LWQO,).
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Increasing oscillations again

Proposition

The smallest class containing the increasing oscillations is
Av(321,2341,3412,4123) and is WQO (but not LWQO,).

But. ..

As a graph class, C,, is a basis element for n > 5.
= not a counterexample.
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Another permutation example

Proposition (B., Engen, Vatter, 2018+)

Av(2143,2413,3412,314562,412563,415632, 431562, 512364, 512643,
516432,541263,541632,543162) is another WQO-but-not-LWQO class.

The Open
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Here’s the labelled antichain
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Proposition (B., Engen, Vatter, 2018+)

Av(2143,2413,3412,314562,412563,415632, 431562, 512364, 512643,
516432,541263,541632,543162) is another WQO-but-not-LWQO class.

Here’s the labelled antichain

Corollary

The class Free(2Ky, Cy, Cs, net, co-net, rising sun, co-rising sun, H, H, cross,
co-cross, X168, X168, X160), is WQO but not LWQO.
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Closing thoughts: WQO and clique-width g

Conjecture (Daligault, Rao, Thomassé, 2010)
If C is labelled well-quasi-ordered, then C has bounded clique-width.

N.B.
WOQO does not imply bounded clique width (Lozin, Razgon,
Zamaraev, 2018).




Thanks!
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