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Embedding graphs

Question (easy)

Can I delete vertices (and incident edges) from to produce ?

Yes!

Question (still easy)

Can I delete vertices (and incident edges) from to produce ?

No!

Question (slightly harder)
Is any graph in the following (infinite) list an induced subgraph of another?

· · ·

No!
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Labeled embeddings

Question
Does any graph in the following (infinite) list embed as an induced subgraph
of another where the vertex colours match up?

· · ·

No!

A similar phenomenon in permutations

3 1 5 2 6 4 3 1 5 2 7 4 6 3 1 5 2 7 4 8 6 3 1 5 2 7 4 9 6 8
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§1 Combinatorial structures
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Relational structures

A relational structure comprises
• A ground set
• One or more relations

Graph G = (V, E)
• Ground set: vertices V
• Relation: ∼, binary symmetric (the edges E)

Induced substructure ordering: Remove elements of the ground set.
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Relational structures

A relational structure comprises
• A ground set
• One or more relations

Graph G = (V, E)
• Ground set: vertices V
• Relation: ∼, binary symmetric (the edges E)

Induced substructure ordering: Remove elements of the ground set.

≤ind
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4 1 2 6 3 8 5 7≤6≤≤1 3 5 2 44 2 1 5 31 3 5 2 4

Permutation π = π(1)π(2) · · ·π(n)
• Ground set: entries {1, 2, . . . , n} (or any set of size n)
• Relations: two linear orders, < and ≺:

1 < 2 < · · · < n
π(1) ≺ π(2) ≺ · · · ≺ π(n)

(≺ is the ‘reading order’ of the permutation)

Induced substructure preserved: σ ≤ π implies Gσ ≤ind Gπ
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4 1 2 6 3 8 5 7≤6≤≤1 3 5 2 44 2 1 5 31 3 5 2 4

• Induced subpermutation ordering: containment

• ‘Delete entries, and rescale’
• Formally: σ ≤ τ if τ has a subsequence with the same relative

ordering as σ.
• If σ 6≤ τ, then τ avoids σ.

Induced substructure preserved: σ ≤ π implies Gσ ≤ind Gπ
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4 1 2 6 3 8 5 7≤6≤≤1 3 5 2 44 2 1 5 31 3 5 2 4

Inversion graph Gπ of π = π(1) · · ·π(n):
• Vertices = {1, 2, . . . , n} (the same groundset)
• Edges: a ∼ b if a < b and b ≺ a (edges = inversions)

Induced substructure preserved: σ ≤ π implies Gσ ≤ind Gπ
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Inversion graph Gπ of π = π(1) · · ·π(n):
• Vertices = {1, 2, . . . , n} (the same groundset)
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Permutations to graphs is many-to-one

σ ≤ π implies Gσ ≤ind Gπ but:

2 4 1 3 3 1 4 2

G2413
∼= G3142

∼= even though 2413 6= 3142.

Define Σπ = {permutations σ : Gσ
∼= Gπ}. (‘preimage of Gπ’)

Lemma
If σ satisfies Gσ ≤ind Gπ then τ ≤ π for some τ ∈ Σσ.

Gallai (1967): characterizes what’s in Σπ.
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§2 Hereditary classes and WQO
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Hereditary classes

Set S of relational structures is a hereditary class if
A ∈ S and B is a substructure of A, then B ∈ S . (‘class’)

Every hereditary class has a unique set of minimal forbidden
structures: the smallest things that are ‘not in the class’. (‘basis’)
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Set S of relational structures is a hereditary class if
A ∈ S and B is a substructure of A, then B ∈ S . (‘class’)

Every hereditary class has a unique set of minimal forbidden
structures: the smallest things that are ‘not in the class’. (‘basis’)

Some graph classes

Class C = Free(B) Basis B

Empty graphs (no edges) { }
Forests { , , , . . . }
Bipartite graphs { , , , . . . }
Split (clique + independent) { , , }
Inversion graphs Free(Cn+4 , T2 , X2 , X3 , X30 , X31 , X32 , X33 , X34 , X36 , XF2n+3

1 ,

XFn+1
2 , XFn

3 , XFn
4 , XF2n+3

5 , XF2n+2
6 ,+complements)

(Gallai 1967)
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Hereditary classes

Set S of relational structures is a hereditary class if
A ∈ S and B is a substructure of A, then B ∈ S . (‘class’)

Every hereditary class has a unique set of minimal forbidden
structures: the smallest things that are ‘not in the class’. (‘basis’)

Some permutation classes

Class C = Av(B) Basis B

{1, 12, 123, . . . } {21}
Union of 2 increases {321}
Union of increase & decrease {3412, 2143}
‘Stack sortable’ {231}
‘2-stack-sortable’ Infinite (Murphy 2003)
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Did you notice. . .

. . . that elements in the bases are pairwise incomparable?
They are antichains.

. . . that forests, bipartite graphs, inversion graphs and 2-stack sortable
permutations have an infinite basis?

They are infinite antichains.
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Infinite antichains in two places

The basis is an antichain
A class can be finitely or infinitely based.

Antichains inside the class
If a class doesn’t contain an infinite antichain, it is well-quasi-ordered
(WQO).
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Motivation: tame vs wild

Finitely based classes
Structures in the class tend to be ‘nice’
Can use ‘basis’ as input for algorithms.

WQO classes
Structures in the class tend to be ‘nice’
Only countably many subclasses

Finitely based WQO classes
Every subclass is finitely based
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Graph classes

WQO Not WQO
Finitely based Cographs Split graphs

Free( ) Free( , , )
Infinitely based Linear forests Forests

Free( , , , . . . ) Free( , , . . . )

Permutation classes
WQO Not WQO

Finitely based Separables Increase ∪ decrease
Av(2413, 3142) Av(2143, 3412)

Infinitely based Av(321, 3412, 2341, Av(Osc)
251364,Osc)

Where Osc is:

5 1 2 3 4 4 1 2 7 3 5 6 4 1 2 6 3 9 5 7 8 4 1 2 6 3 8 5 11 7 9 10 4 1 2 6 3 8 5 10 7 13 9 11 12

13 / 24



Graph classes

WQO Not WQO
Finitely based Cographs Split graphs

Free( ) Free( , , )
Infinitely based Linear forests Forests

Free( , , , . . . ) Free( , , . . . )

Permutation classes
WQO Not WQO

Finitely based Separables Increase ∪ decrease
Av(2413, 3142) Av(2143, 3412)

Infinitely based Av(321, 3412, 2341, Av(Osc)
251364,Osc)

Where Osc is:

5 1 2 3 4 4 1 2 7 3 5 6 4 1 2 6 3 9 5 7 8 4 1 2 6 3 8 5 11 7 9 10 4 1 2 6 3 8 5 10 7 13 9 11 12
13 / 24



Graph classes

WQO Not WQO
Finitely based Cographs Split graphs

Free( ) Free( , , )
Infinitely based Linear forests Forests

Free( , , , . . . ) Free( , , . . . )

Permutation classes
WQO Not WQO

Finitely based Separables Increase ∪ decrease
Av(2413, 3142) Av(2143, 3412)

Infinitely based Av(321, 3412, 2341, Av(Osc)
251364,Osc)

Where Osc is:

5 1 2 3 4 4 1 2 7 3 5 6 4 1 2 6 3 9 5 7 8 4 1 2 6 3 8 5 11 7 9 10 4 1 2 6 3 8 5 10 7 13 9 11 12
13 / 24



§3 Labeled WQO
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A regular infinite antichain:

A labeled infinite antichain:

Labels can be (partially) ordered (e.g. � ): embedding must respect
the label ordering.
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Labeled WQO

A class is labeled well-quasi-ordered (LWQO) if we cannot construct a
labeled infinite antichain, no matter the set of labels.†

† Includes infinite sets of labels, but they must be WQO.

LWQO Not LWQO
Finitely based Separables Union of 2 increases

Av(2413, 3142) Av(321)
Infinitely based None Av(321, 3412, 2341,

251364,Osc)
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No labelled antichain⇒ finite basis

Proposition (After Pouzet, 1972)
An LWQO (permutation) class C is finitely based.

Proof.
Write C = Av(B). For each β ∈ B:

β

7→ 7→

β− ∈ C

B− = {β− : β ∈ B} is a labelled antichain in C: must be finite.
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Is LWQO just WQO + finite basis?

Conjecture (Korpelainen, Lozin & Razgon, 2013)
Every finitely based WQO graph class is LWQO.

Not true for permutations:

Proposition

The class C = Av(321, 2341, 3412, 4123) is WQO but not LWQO.

But GC = Free( , , , , , . . . ) is not finitely based, so this is not
a counterexample to the conjecture.
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Is LWQO just WQO + finite basis?

Conjecture (Korpelainen, Lozin & Razgon, 2013)
Every finitely based WQO graph class is LWQO.

Proposition (B., Engen, Vatter, 2018)

D = Av(2143, 2413, 3412, 314562, 412563, 415632, 431562, 512364,
512643, 516432, 541263, 541632, 543162) is WQO but not LWQO.

Here’s the labelled antichain

. . .

Corollary

The class GD = Free( , , , net, co-net, rising sun, co-rising sun, H, H,
cross, co-cross, X168, X168, X160), is WQO but not LWQO.
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Conjecture (Korpelainen, Lozin & Razgon, 2013)
Every finitely based WQO graph class is LWQO.

Proposition (B., Engen, Vatter, 2018)

D = Av(2143, 2413, 3412, 314562, 412563, 415632, 431562, 512364,
512643, 516432, 541263, 541632, 543162) is WQO but not LWQO.

Corollary

The class GD = Free( , , , net, co-net, rising sun, co-rising sun, H, H,
cross, co-cross, X168, X168, X160), is WQO but not LWQO.

. . . so the conjecture is false. LWQO is strictly stronger than WQO +
finitely based.
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One-point extensions

C+1 = {π : some entry of π can be removed to form π− ∈ C}.

If C = Av(B), then B ⊆ C+1.
Thus: If C+1 WQO, then C is finitely based (and WQO).

But: C WQO does not imply C+1 WQO.

Lemma (Atkinson and Beals, 1999)

If C is finitely based, then C+1 is finitely based.

Proposition (B., Vatter)

C is LWQO if and only if C+1 is LWQO.
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Main proof idea, showing C LWQO⇒ C+1 WQO.

For π ∈ C+1, can use 4 labels on π− to encode extra point:

π ∈ C+1

7→ 7→

π− ∈ C

Any antichain in C+1 corresponds to a labeled antichain in C.
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§4 Permutations & inversion graphs
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Does WQO translate?

Recall: σ ≤ π⇒ Gσ ≤ind Gπ. Thus C (L)WQO⇒ GC (L)WQO.

Question
If C is a permutation class such that GC is WQO, must C be WQO?

This question seems to be very difficult. Here is a permutation
antichain which turns into a chain of graphs:

Note that G231
∼= G312

∼=
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Theorem (B., Vatter)
Let C be a permutation class. C is LWQO if and only if GC is LWQO.

The proof needs several ingredients:
• The substitution decomposition (a.k.a. modular decomposition)
• Nash-Williams’ 1963 minimal bad sequence argument (needs

Axiom of Dependent Choice)
• Gallai’s 1967 characterization of

Σπ = {permutations σ : Gσ
∼= Gπ}.

We restrict to simple permutations where |Σπ| ≤ 4.
• A 2019 result of Klavík and Zeman concerning automorphism

groups of prime inversion graphs.
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Some open questions and conjectures

Conjecture

If the permutation class C+1 is WQO, then C (and thus also C+1) is LWQO.

n-WQO: WQO when using a set of n incomparable labels.

Conjecture (Pouzet 1972)
A class of graphs is 2-WQO if and only if it is n-WQO for every n ≥ 2.

Question
Is every 2-WQO permutation class also LWQO?

23 / 24



Thanks!
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