

Labelled well-quasi-order for permutation classes

Robert Brignall

Joint work with Vince Vatter (U. Florida)

25th Ontario Combinatorics Workshop, Queen's University, 5 June 2021

Can I delete vertices (and incident edges) from \square to produce \square ?

Can I delete vertices (and incident edges) from 🔀 to produce 🛆 ? Yes!

Can I delete vertices (and incident edges) from \square to produce \triangle ? Yes!

Question (still easy)

Can I delete vertices (and incident edges) from \square to produce \land ?

Can I delete vertices (and incident edges) from \square to produce \triangle ? Yes!

Question (still easy) Can I delete vertices (and incident edges) from to produce ? No!

Can I delete vertices (and incident edges) from \square to produce \square ? Yes!

Question (still easy)

Can I delete vertices (and incident edges) from \square to produce \triangle ? No!

Question (slightly harder)

Is any graph in the following (infinite) list an induced subgraph of another?

Can I delete vertices (and incident edges) from \square to produce \triangle ? Yes!

Question (still easy)

Can I delete vertices (and incident edges) from T to produce A? No!

Question (slightly harder)

Is any graph in the following (infinite) list an induced subgraph of another?

. .

Question

Does any graph in the following (infinite) list embed as an induced subgraph of another so that the vertex colours match up?

•• ••• •••• ••••• •••••

Question

Does any graph in the following (infinite) list embed as an induced subgraph of another so that the vertex colours match up?

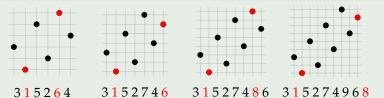
No!

Question

Does any graph in the following (infinite) list embed as an induced subgraph of another so that the vertex colours match up?

No!

A similar phenomenon in permutations



To embed one of these as a pattern in another, we must embed a red point in a black one.

§1 Combinatorial structures

Graph G = (V, E)

- Vertices V
- Relationship between pairs of vertices: Edges $u \sim v$ for $u, v \in V$.

Graph G = (V, E)

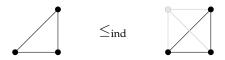
- Vertices V
- Relationship between pairs of vertices: Edges $u \sim v$ for $u, v \in V$.

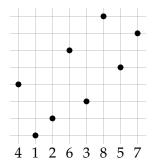
Induced subgraph ordering: Remove vertices (and any incident edges)

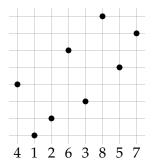
Graph G = (V, E)

- Vertices V
- Relationship between pairs of vertices: Edges $u \sim v$ for $u, v \in V$.

Induced subgraph ordering: Remove vertices (and any incident edges)







Permutation $\pi = \pi(1)\pi(2)\cdots\pi(n)$

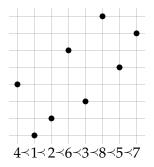
• 'Vertices':
$$V = \{1, 2, ..., n\}$$

 Relationship between pairs of 'vertices': given by two linear orders, < and ≺

$$1 < 2 < \dots < n$$

$$\pi(1) \prec \pi(2) \prec \dots \prec \pi(n)$$

(\prec is the 'reading order' of the permutation)



Permutation $\pi = \pi(1)\pi(2)\cdots\pi(n)$

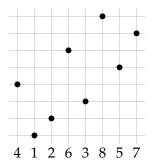
• 'Vertices':
$$V = \{1, 2, ..., n\}$$

 Relationship between pairs of 'vertices': given by two linear orders, < and ≺

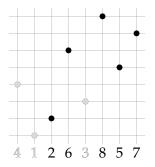
$$1 < 2 < \dots < n$$

$$\pi(1) \prec \pi(2) \prec \dots \prec \pi(n)$$

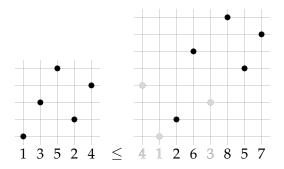
(\prec is the 'reading order' of the permutation)



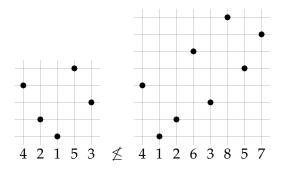
• Induced subpermutation ordering: containment



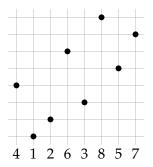
- Induced subpermutation ordering: containment
- 'Delete entries, and rescale'



- Induced subpermutation ordering: containment
- 'Delete entries, and rescale'
- Formally: *σ* ≤ *τ* if *τ* has a subsequence with the same relative ordering as *σ*.



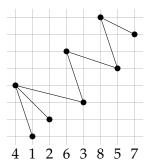
- Induced subpermutation ordering: containment
- 'Delete entries, and rescale'
- Formally: *σ* ≤ *τ* if *τ* has a subsequence with the same relative ordering as *σ*.
- If $\sigma \leq \tau$, then τ avoids σ .



Inversion graph G_{π} of $\pi = \pi(1) \cdots \pi(n)$:

- Vertices $= \{1, 2, ..., n\}$
- Edges: $a \sim b$ if a < b and $b \prec a$

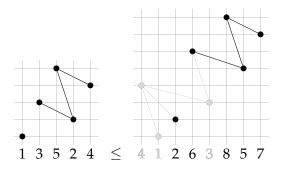
(edges = inversions)



Inversion graph G_{π} of $\pi = \pi(1) \cdots \pi(n)$:

- Vertices $= \{1, 2, ..., n\}$
- Edges: $a \sim b$ if a < b and $b \prec a$

(edges = inversions)

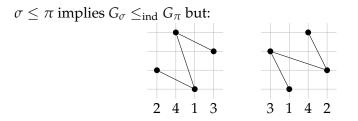


Inversion graph G_{π} of $\pi = \pi(1) \cdots \pi(n)$:

- Vertices $= \{1, 2, ..., n\}$
- Edges: $a \sim b$ if a < b and $b \prec a$

(edges = inversions)

Induced substructure preserved: $\sigma \leq \pi$ implies $G_{\sigma} \leq_{ind} G_{\pi}$



 $G_{2413} \cong G_{3142} \cong \bullet \bullet \bullet \bullet$ even though 2413 \neq 3142.

In general, there exist arbitrarily large sets of permutations with the same inversion graph.

§2 Hereditary classes and WQO

Hereditary classes

Set C of graphs/permutations is hereditary if $A \in C$ and B is an induced substructure of A, then $B \in C$. ('class')

Every hereditary class has a unique set of minimal forbidden elements: the smallest things that are 'not in the class'. ('basis')

Some graph classes	
Class $C = Free(\mathfrak{B})$	Basis B
Empty graphs (no edges)	{ ••• }
Forests	$\{\Delta, \Box, \dot{\Omega}, \dots\}$
Split (clique + independent)	{I I, II, \$\bar{1}\$, \$\bar{1}\$}
Inversion graphs	$\operatorname{Free}(C_{n+4}, T_2, X_2, X_3, X_{30}, X_{31}, X_{32}, X_{33}, X_{34}, X_{36}, XF_1^{2n+3},$
	$XF_2^{n+1}, XF_3^n, XF_4^n, XF_5^{2n+3}, XF_6^{2n+2}, +$ complements)
	(Gallai 1967)

Hereditary classes

Set C of graphs/permutations is hereditary if $A \in C$ and B is an induced substructure of A, then $B \in C$. ('class')

Every hereditary class has a unique set of minimal forbidden elements: the smallest things that are 'not in the class'. ('basis')

Some permutation classes			
Class $C = Av(\mathfrak{B})$	Basis B		
$\{1, 12, 123, \dots\}$	{21}		
Union of increase & decrease ('X')	{3412,2143}		
'Stack sortable'	{231}		
'2-stack-sortable'	Infinite (Murphy 2003)		

... no one basis element embeds in another.

They are antichains.

... no one basis element embeds in another.

They are antichains.

... forests, inversion graphs and 2-stack sortable permutations have an infinite basis.

They are infinite antichains.

The basis is an antichain A class can be finitely or infinitely based.

Antichains inside the class

If a class doesn't *contain* an infinite antichain, it is well-quasi-ordered (WQO).

Finitely based classes

Structures in the class tend to be 'nice' Can use 'basis' as input for algorithms.

WQO classes

Structures in the class tend to be 'nice' Only countably many subclasses

Finitely based WQO classes All of the above, plus: Every subclass is finitely based

Diversion: Graph Minor Theorem

Robertson and Seymour's Graph Minor Theorem says there are no infinite antichains in the graph minor ordering. Thus, every minor-closed class is 'finitely based' and WQO.

Graph classes

	WQO	Not WQO
Finitely based	Cographs	Split graphs
	Free(••••)	$Free(\textcircled{I}, \Box, \dot{\Box})$
Infinitely based	Linear forests	Forests
	Free(, , , , , ,)	Free(\triangle , \square ,)

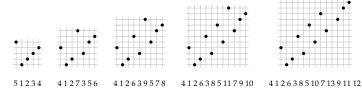
Graph classes

	WQO	Not WQO
Finitely based	Cographs	Split graphs
	Free(••••)	Free $(\mathbf{I}, \mathbf{I}, \mathbf{\Omega})$
Infinitely based	Linear forests	Forests
	Free(, , , , , ,)	Free (Δ, \Box, \dots)

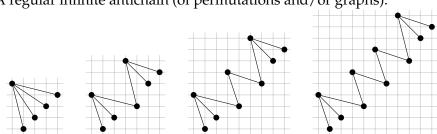
Permutation classes

	WQO	Not WQO
Finitely based	Separables	Increase \cup decrease
	Av(2413, 3142)	Av(2143,3412)
Infinitely based	Av(321,3412,2341,	$\operatorname{Av}(\mathfrak{Osc})$
	251364, Osc)	
TATI 5 .	201004, 2090)	

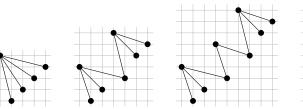
Where \mathfrak{Osc} is:

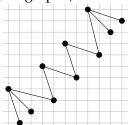


§3 Labelled WQO

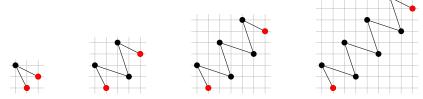


A regular infinite antichain (of permutations and/or graphs):





A labelled infinite antichain:



Labels can be (partially) ordered: the above is an antichain if \bullet and \bullet are incomparable, or if $\bullet \prec \bullet$. Not an antichain if $\bullet \preceq \bullet$.

A class is labelled well-quasi-ordered (LWQO) if we cannot construct a labelled infinite antichain, no matter the set of labels.[†]

⁺ Includes infinite sets of labels, but they must be WQO.

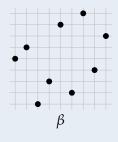
	LWQO	Not LWQO
Finitely based	Separables	Increase \cup decrease
	Av(2413, 3142)	Av(2143,3412)
Infinitely based	None	Av(321, 3412, 2341,
		251364, Dsc)

Proposition (After Pouzet, 1972)

An LWQO (permutation) class C is finitely based.

Proof.

Write $C = Av(\mathfrak{B})$. For each $\beta \in \mathfrak{B}$:

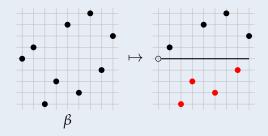


Proposition (After Pouzet, 1972)

An LWQO (permutation) class C is finitely based.

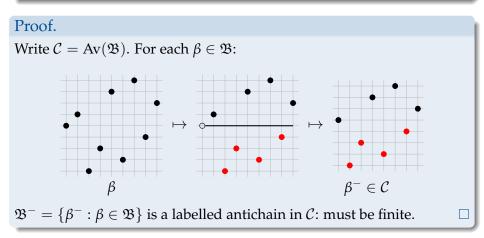
Proof.

Write $C = Av(\mathfrak{B})$. For each $\beta \in \mathfrak{B}$:



Proposition (After Pouzet, 1972)

An LWQO (permutation) class C is finitely based.



LWQO vs (WQO + finite basis)

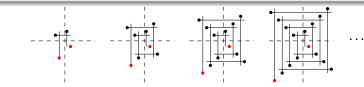
LWQO is strictly stronger than WQO + finite basis for permutations...

Proposition

The class C = Av(321, 2341, 3412, 4123) *is* WQO *but not* LWQO.

Proposition (B., Engen, Vatter, 2018)

 $\mathcal{D} = Av(2143, 2413, 3412, 314562, 412563, 415632, 431562, 512364, 512643, 516432, 541263, 541632, 543162) \ is \ WQO \ but \ not \ LWQO.$



LWQO is strictly stronger than WQO + finite basis for permutations...

Proposition

The class C = Av(321, 2341, 3412, 4123) *is* WQO *but not* LWQO.

Proposition (B., Engen, Vatter, 2018)

 $\mathcal{D} = Av(2143, 2413, 3412, 314562, 412563, 415632, 431562, 512364, 512643, 516432, 541263, 541632, 543162) \ is \ WQO \ but \ not \ LWQO.$

...and for graphs...

Corollary

The class $G_{\mathcal{D}} = Free(\underbrace{1}, \underbrace{1}, \underbrace{1}, \underbrace{1}, \underbrace{1}, co-net, rising sun, co-rising sun, H, \overline{H}, cross, co-cross, X_{168}, \overline{X_{168}}, X_{160}), is WQO but not LWQO.$

One-point extensions

 $\mathcal{C}^{+1} = \{\pi : \text{some entry of } \pi \text{ can be removed to form } \pi^- \in \mathcal{C} \}.$

Proposition (B., Vatter)

C is LWQO if and only if C^{+1} is LWQO.

Note: C WQO does not imply C^{+1} WQO.

One-point extensions

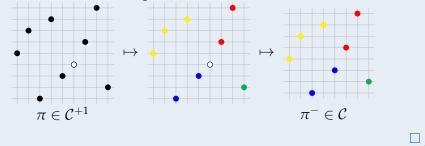
 $\mathcal{C}^{+1} = \{\pi : \text{some entry of } \pi \text{ can be removed to form } \pi^- \in \mathcal{C} \}.$

Proposition (B., Vatter)

 ${\mathcal C}$ is LWQO if and only if ${\mathcal C}^{+1}$ is LWQO.

Sketch proof of C LWQO $\Rightarrow C^{+1}$ WQO.

Any antichain in C^{+1} corresponds to a 4-labeled antichain in C:



Note: C WQO does not imply C^{+1} WQO.

§4 Permutations & inversion graphs

Recall: $\sigma \leq \pi \Rightarrow G_{\sigma} \leq_{\text{ind}} G_{\pi}$.

Thus \mathcal{C} (L)WQO \Rightarrow $G_{\mathcal{C}}$ (L)WQO.

Question

If C is a permutation class such that G_C is WQO, must C be WQO?

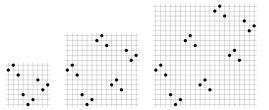
Recall: $\sigma \leq \pi \Rightarrow G_{\sigma} \leq_{\text{ind}} G_{\pi}$.

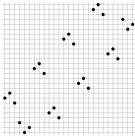
Thus \mathcal{C} (L)WQO \Rightarrow $G_{\mathcal{C}}$ (L)WQO.

Question

If C is a permutation class such that G_C is WQO, must C be WQO?

This question seems to be very difficult. Here is a permutation antichain which turns into a chain of graphs:





Note that $G_{231} \cong G_{312} \cong 4$

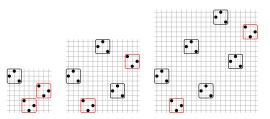
Recall: $\sigma \leq \pi \Rightarrow G_{\sigma} \leq_{\text{ind}} G_{\pi}$.

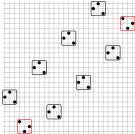
Thus \mathcal{C} (L)WQO \Rightarrow $G_{\mathcal{C}}$ (L)WQO.

Question

If C is a permutation class such that G_C is WQO, must C be WQO?

This question seems to be very difficult. Here is a permutation antichain which turns into a chain of graphs:





Note that $G_{231} \cong G_{312} \cong 4$

Theorem (B., Vatter)

Let C be a permutation class. C is LWQO if and only if G_C is LWQO.

Theorem (B., Vatter)

Let C be a permutation class. C is LWQO if and only if G_C is LWQO.

The proof needs several ingredients:

- The substitution decomposition (a.k.a. modular decomposition)
- Nash-Williams' 1963 minimal bad sequence argument
- Gallai's 1967 characterization of the 'preimages' of G_{π} ,

$$\Sigma_{\pi} = \{ \text{permutations } \sigma : G_{\sigma} \cong G_{\pi} \}.$$

We restrict to simple permutations, in which case $|\Sigma_{\pi}| \leq 4$.

• A 2019 result of Klavík and Zeman concerning automorphism groups of prime inversion graphs.

Conjecture

If the permutation class C^{+1} *is WQO, then* C *(and thus also* C^{+1} *) is LWQO.*

n-WQO: WQO when using a set of *n* incomparable labels.

Conjecture (Pouzet 1972)

A class of graphs is 2-WQO if and only if it is n-WQO for every $n \ge 2$.

Question

Is every 2-WQO permutation class also LWQO?

Thanks!