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Embedding graphs

Question (easy)

Can I delete vertices (and incident edges) from to produce ?

Yes!

Question (still easy)

Can I delete vertices (and incident edges) from to produce ?

No!

Question (slightly harder)
Is any graph in the following (infinite) list an induced subgraph of another?

· · ·

No!
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Labelled embeddings

Question
Does any graph in the following (infinite) list embed as an induced subgraph
of another so that the vertex colours match up?

· · ·

No!

A similar phenomenon in permutations

3 1 5 2 6 4 3 1 5 2 7 4 6 3 1 5 2 7 4 8 6 3 1 5 2 7 4 9 6 8

To embed one of these as a pattern in another, we must embed a red
point in a black one.
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§1 Combinatorial structures
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Induced substructures

Graph G = (V, E)
• Vertices V
• Relationship between pairs of vertices: Edges u ∼ v for u, v ∈ V.

Induced subgraph ordering: Remove vertices (and any incident edges)
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4 1 2 6 3 8 5 744 11 33≤6≤≤1 3 5 2 44 2 1 5 31 3 5 2 4

Permutation π = π(1)π(2) · · ·π(n)
• ‘Vertices’: V = {1, 2, . . . , n}
• Relationship between pairs of ‘vertices’: given by two linear

orders, < and ≺
1 < 2 < · · · < n

π(1) ≺ π(2) ≺ · · · ≺ π(n)

(≺ is the ‘reading order’ of the permutation)

Induced substructure preserved: σ ≤ π implies Gσ ≤ind Gπ
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4 1 2 6 3 8 5 744 11 33≤6≤≤1 3 5 2 44 2 1 5 31 3 5 2 4

• Induced subpermutation ordering: containment

• ‘Delete entries, and rescale’
• Formally: σ ≤ τ if τ has a subsequence with the same relative

ordering as σ.
• If σ 6≤ τ, then τ avoids σ.

Induced substructure preserved: σ ≤ π implies Gσ ≤ind Gπ
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4 1 2 6 3 8 5 744 11 33≤6≤≤1 3 5 2 44 2 1 5 31 3 5 2 4

Inversion graph Gπ of π = π(1) · · ·π(n):
• Vertices = {1, 2, . . . , n}
• Edges: a ∼ b if a < b and b ≺ a (edges = inversions)

Induced substructure preserved: σ ≤ π implies Gσ ≤ind Gπ
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Permutations to graphs is many-to-one

σ ≤ π implies Gσ ≤ind Gπ but:

2 4 1 3 3 1 4 2

G2413
∼= G3142

∼= even though 2413 6= 3142.

In general, there exist arbitrarily large sets of permutations with the
same inversion graph.
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§2 Hereditary classes and WQO
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Hereditary classes

Set C of graphs/permutations is hereditary if
A ∈ C and B is an induced substructure of A, then B ∈ C. (‘class’)

Every hereditary class has a unique set of minimal forbidden elements:
the smallest things that are ‘not in the class’. (‘basis’)

Some graph classes

Class C = Free(B) Basis B

Empty graphs (no edges) { }
Forests { , , , . . . }
Split (clique + independent) { , , }
Inversion graphs Free(Cn+4 , T2 , X2 , X3 , X30 , X31 , X32 , X33 , X34 , X36 , XF2n+3

1 ,

XFn+1
2 , XFn

3 , XFn
4 , XF2n+3

5 , XF2n+2
6 ,+complements)

(Gallai 1967)
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Hereditary classes

Set C of graphs/permutations is hereditary if
A ∈ C and B is an induced substructure of A, then B ∈ C. (‘class’)

Every hereditary class has a unique set of minimal forbidden elements:
the smallest things that are ‘not in the class’. (‘basis’)

Some permutation classes

Class C = Av(B) Basis B

{1, 12, 123, . . . } {21}
Union of increase & decrease (‘X’) {3412, 2143}
‘Stack sortable’ {231}
‘2-stack-sortable’ Infinite (Murphy 2003)
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Note that. . .

. . . no one basis element embeds in another.
They are antichains.

. . . forests, inversion graphs and 2-stack sortable permutations have an
infinite basis.

They are infinite antichains.

10 / 24



Note that. . .

. . . no one basis element embeds in another.
They are antichains.

. . . forests, inversion graphs and 2-stack sortable permutations have an
infinite basis.

They are infinite antichains.

10 / 24



Infinite antichains in two places

The basis is an antichain
A class can be finitely or infinitely based.

Antichains inside the class
If a class doesn’t contain an infinite antichain, it is well-quasi-ordered
(WQO).
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Motivation: tame vs wild

Finitely based classes
Structures in the class tend to be ‘nice’
Can use ‘basis’ as input for algorithms.

WQO classes
Structures in the class tend to be ‘nice’
Only countably many subclasses

Finitely based WQO classes
All of the above, plus:
Every subclass is finitely based

Diversion: Graph Minor Theorem
Robertson and Seymour’s Graph Minor Theorem says there are no
infinite antichains in the graph minor ordering.
Thus, every minor-closed class is ‘finitely based’ and WQO.
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Graph classes

WQO Not WQO
Finitely based Cographs Split graphs

Free( ) Free( , , )
Infinitely based Linear forests Forests

Free( , , , . . . ) Free( , , . . . )

Permutation classes
WQO Not WQO

Finitely based Separables Increase ∪ decrease
Av(2413, 3142) Av(2143, 3412)

Infinitely based Av(321, 3412, 2341, Av(Osc)
251364,Osc)

Where Osc is:

5 1 2 3 4 4 1 2 7 3 5 6 4 1 2 6 3 9 5 7 8 4 1 2 6 3 8 5 11 7 9 10 4 1 2 6 3 8 5 10 7 13 9 11 12
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§3 Labelled WQO
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A regular infinite antichain (of permutations and/or graphs):

A labelled infinite antichain:

Labels can be (partially) ordered: the above is an antichain if
and are incomparable, or if ≺ .

Not an antichain if � .
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Labelled WQO

A class is labelled well-quasi-ordered (LWQO) if we cannot construct a
labelled infinite antichain, no matter the set of labels.†

† Includes infinite sets of labels, but they must be WQO.

LWQO Not LWQO
Finitely based Separables Increase ∪ decrease

Av(2413, 3142) Av(2143, 3412)
Infinitely based None Av(321, 3412, 2341,

251364,Osc)
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No labelled antichain⇒ finite basis

Proposition (After Pouzet, 1972)
An LWQO (permutation) class C is finitely based.

Proof.
Write C = Av(B). For each β ∈ B:

β

7→ 7→

β− ∈ C

B− = {β− : β ∈ B} is a labelled antichain in C: must be finite.
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LWQO vs (WQO + finite basis)

LWQO is strictly stronger than WQO + finite basis for permutations. . .

Proposition

The class C = Av(321, 2341, 3412, 4123) is WQO but not LWQO.

Proposition (B., Engen, Vatter, 2018)

D = Av(2143, 2413, 3412, 314562, 412563, 415632, 431562, 512364,
512643, 516432, 541263, 541632, 543162) is WQO but not LWQO.

. . .

Corollary

The class GD = Free( , , , net, co-net, rising sun, co-rising sun, H, H,
cross, co-cross, X168, X168, X160), is WQO but not LWQO.
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One-point extensions

C+1 = {π : some entry of π can be removed to form π− ∈ C}.

Proposition (B., Vatter)

C is LWQO if and only if C+1 is LWQO.

Sketch proof of C LWQO⇒ C+1 WQO.

Any antichain in C+1 corresponds to a 4-labeled antichain in C:

π ∈ C+1

7→ 7→

π− ∈ C

Note: C WQO does not imply C+1 WQO. 19 / 24
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§4 Permutations & inversion graphs
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Does WQO translate?

Recall: σ ≤ π⇒ Gσ ≤ind Gπ. Thus C (L)WQO⇒ GC (L)WQO.

Question
If C is a permutation class such that GC is WQO, must C be WQO?

This question seems to be very difficult. Here is a permutation
antichain which turns into a chain of graphs:

Note that G231
∼= G312

∼=
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Theorem (B., Vatter)
Let C be a permutation class. C is LWQO if and only if GC is LWQO.

The proof needs several ingredients:
• The substitution decomposition (a.k.a. modular decomposition)
• Nash-Williams’ 1963 minimal bad sequence argument
• Gallai’s 1967 characterization of the ‘preimages’ of Gπ,

Σπ = {permutations σ : Gσ
∼= Gπ}.

We restrict to simple permutations, in which case |Σπ| ≤ 4.
• A 2019 result of Klavík and Zeman concerning automorphism

groups of prime inversion graphs.
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Some open questions and conjectures

Conjecture

If the permutation class C+1 is WQO, then C (and thus also C+1) is LWQO.

n-WQO: WQO when using a set of n incomparable labels.

Conjecture (Pouzet 1972)
A class of graphs is 2-WQO if and only if it is n-WQO for every n ≥ 2.

Question
Is every 2-WQO permutation class also LWQO?
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Thanks!
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