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Given a class C, what properties guarantee a ‘tame” enumeration?



Finitely many simple permutations

Theorem (Albert and Atkinson 2005)

If a class C contains only finitely many simple permutations, then it has an
algebraic generating function and is finitely based.
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Geometrically griddable classes

Theorem (Albert, Atkinson, Bouvel, Ruskuc and Vatter 2013)

If a class C is geometrically griddable, then it has a rational generating
function and is finitely based.
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Non-example: two stacks in series

Pierrot & Rossin (2017) Membership is polynomial time

Elvey Price & Guttman (2017) Exact enumeration to length 20
Generating function ~ A(1 — p - z)Y

Murphy (2003) Not finitely based



Finitely based classes

All classes that have finitely many simples, or that are geometrically
griddable are finitely based. Two-stacks are not.

Conjecture (Noonan, Zeilberger, 1996)
Every finitely based class has a D-finite generating function.
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All classes that have finitely many simples, or that are geometrically
griddable are finitely based. Two-stacks are not.

Conjecture (Noonan, Zeilberger, 1996)
Every finitely based class has a D-finite generating function.

Conjecture (Zeilberger, 2005)

Noonan-Zeilberger is false.

Theorem (Garrabrant, Pak, 2015)
Zeilberger is right: Noonan-Zeilberger is false.
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Conjecture

Every finitely based class with growth rate < 4 has a rational generating
function.
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Subclasses of Av(231), Av(321)
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Subclasses of Av(231), Av(321)

C C Av(231)

D C Av(321)

Growth rate

Generating function
Basis

Infinite antichains?

Countably many
possibilities

Rational (Albert,
Atkinson, 2005)

Finite

No

Includes [2.36, 2.48]
(Bevan, 2018)

Could be anything
Finite or infinite

Yes: -« .-<. o



A permutation class is well-quasi-ordered (WQO) if it contains no
infinite antichains.
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A permutation class is well-quasi-ordered (WQO) if it contains no
infinite antichains.

A strong indicator of ‘tameness’, for example, even though Av(321) is
not WQO:

Theorem (Albert, B., Ruskuc, Vatter, 2019)

Every WQO or finitely based subclass of Av(321) has a rational generating
function.

Conjecture (Vatter, 2015)

Every WQO permututi(FclﬂAial\m ngebmic generating function.
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Prouhet-Thue-Morse

011010011001 01101001 011001101001 1001 011001101001 01101001 - - -

P = {permutations 7t contained in 71, for some i}

— Sub ::.. .

Prouhet-Thue-Morse is uniformly recurrent = P is WQO.
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Prouhet-Thue-Morse “(1,1,1, ...

w1 = 01
wy =0110
ws = 01101001

Wy = Wp—1Wn—1

Generates the sequence

011010011001011010010110 - - -

Sequence “(2,1,1,1,...)

01 = 01
v, =01011010
v3 = 0101101010100101

Uy = 01010101
Un =Up-10p—1 (n>2)

Generates the sequence
010110101010010110100101 - - -



Prouhet-Thue-Morse ‘(1,1,1,...)" | Sequence ‘(2,1,1,1,...)
011010011001011010010110- - - 010110101010010110100101 - - -

P = Sub | i Q = Sub




Prouhet-Thue-Morse ‘(1,1,1,...)" | Sequence ‘(2,1,1,1,...)’
011010011001011010010110- - - 010110101010010110100101 - - -

P = Sub | i Q = Sub

fp(z) =1+ 24222 + 62° + 227* folz) =1+ z+22% + 62° + 227
+ 802° + 2762° + 94877 + 802° + 2762° + 94877
+ 327628 + - - - + 326428 + - -
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Theorem

There are uncountably many WQO permutation classes with distinct
enumerations.

Corollary

There exist WQO permutation classes that do not have algebraic (or even
D-finite) generating functions.
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Concluding remarks

About these classes:

® Are the growth rates distinct?

Growth rate < 4 conjecture:
® Not true if we replace ‘finitely based” with “"WQO".

In search of “tame’” enumeration:
® Is labelled WQO enough to guarantee algebraic g.f.s?
* (Note: LWQO = WQO + finitely based.)



Merci!



