Generating functions of permutation classes

Robert Brignall

3rd April 2025

Any sequence $\cdots b \cdots c \cdots a \cdots$ where a < b < c will fail.

Any sequence $\cdots b \cdots c \cdots a \cdots$ where a < b < c will fail.

A permutation that contains a copy of '231' can't be stack sorted.

§1 Containment 101 and 102

Permutation containment 101

- Permutations in one-line notation: $\pi = \pi(1) \cdots \pi(n)$
- Pattern containment: $\sigma \le \pi$ if there exists a subsequence of $\pi(1) \cdots \pi(n)$ with the same relative ordering as σ .
- Containment is a partial order.
- Conversely, π avoids σ if $\sigma \nleq \pi$.

Permutation containment 101

- Permutations in one-line notation: $\pi = \pi(1) \cdots \pi(n)$
- Pattern containment: $\sigma \le \pi$ if there exists a subsequence of $\pi(1) \cdots \pi(n)$ with the same relative ordering as σ .
- Containment is a partial order.
- Conversely, π avoids σ if $\sigma \nleq \pi$.

Permutation containment 102

Permutation class: a hereditary ('downwards closed') collection C, i.e.

$$\pi \in \mathcal{C}$$
 and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

Basis of the class: A unique minimal avoidance set that characterises the class precisely,

$$C = Av(\beta_1, ..., \beta_k) = \{ permutations \ \pi : \beta_i \nleq \pi \text{ for all } i \}.$$

N.B. The basis need not be finite. When it is, then the class is *finitely based*.

A permutation that contains a copy of 231 can't be stack sorted.

In fact: The stack-sortable permutations are precisely the class Av(231).

 $Av(12) = \{1, 21, 321, \dots\}$ has 1 permutation of each length.

 $Av(12) = \{1, 21, 321, ...\}$ has 1 permutation of each length.

Av(231) has 1,2,5,14,42,... of lengths n = 1,2,3,4,5,...

 $Av(12) = \{1,21,321,...\}$ has 1 permutation of each length.

Av(231) has 1,2,5,14,42,... of lengths n = 1,2,3,4,5,...

 $Av(12) = \{1,21,321,...\}$ has 1 permutation of each length.

Av(231) has 1,2,5,14,42,... of lengths n = 1,2,3,4,5,...

Av(321) has 1, 2, 5, 14, 42, ... of lengths n = 1, 2, 3, 4, 5, ...

of lengths n = 1, 2, 3, 4, 5, ...

Av(231, 321) has 2^{n-1} of length n.

Connections

Combinatorics/model theory Part of broader study of combinatorial structures (includes graphs)

Algebraic geometry A Schubert variety X_{π} is smooth \iff $\pi \in Av(3412, 4231)$ [Lakshmibai & Sandhya, 1990]

Statistical mechanics e.g. connections with *partially asymmetric simple exclusion processes* (PASEPs) [Corteel & Williams, 2007]

Computer science e.g. sorting algorithms and pattern matching Evolutionary biology e.g. distances between gene sequences

§2 Enumeration

Counting...

...precisely

Generating function for a class C is the formal power series

$$f_{\mathcal{C}}(z) = \sum_{\pi \in \mathcal{C}} z^{|\pi|} = \sum_{n=1}^{\infty} |\mathcal{C}_n| z^n,$$

where
$$C_n = \{\pi \in C : |\pi| = n\}.$$

Counting...

...precisely

Generating function for a class C is the formal power series

$$f_{\mathcal{C}}(z) = \sum_{\pi \in \mathcal{C}} z^{|\pi|} = \sum_{n=1}^{\infty} |\mathcal{C}_n| z^n,$$

where $C_n = \{ \pi \in \mathcal{C} : |\pi| = n \}.$

...vaguely

For a class C, the (upper) growth rate is

$$\overline{\operatorname{gr}}(\mathcal{C}) = \limsup_{n \to \infty} \sqrt[n]{|\mathcal{C}_n|}.$$

Must exist due to Marcus & Tardos (2004). Open question: Can lim sup always be replaced with lim?

Stack sortable permutations, C = Av(231)

Functional equation:
$$f_{\mathcal{C}}(z) = 1 + f_{\mathcal{C}}(z) \cdot z \cdot f_{\mathcal{C}}(z)$$
. Solving gives

$$f_{\mathcal{C}}(z) = \frac{1 - \sqrt{1 - 4z}}{2z} = 1 + z + 2z^2 + 5z^3 + 14z^4 + \cdots$$

the generating function for the Catalan numbers (1, 1, 2, 5, 14, 42, ...).

Stack sortable permutations, C = Av(231)

Functional equation: $f_{\mathcal{C}}(z) = 1 + f_{\mathcal{C}}(z) \cdot z \cdot f_{\mathcal{C}}(z)$. Solving gives

$$f_{\mathcal{C}}(z) = \frac{1 - \sqrt{1 - 4z}}{2z} = 1 + z + 2z^2 + 5z^3 + 14z^4 + \cdots$$

the generating function for the Catalan numbers (1, 1, 2, 5, 14, 42, ...).

From this, the growth rate is:

$$\operatorname{gr}(\mathcal{C}) = \frac{1}{\sup\{r \ge 0 : f_{\mathcal{C}}(z) \text{ is analytic in } |z| < r\}}$$

= 4.

Examples

$$f = \frac{1}{1 - 7}$$
; gr = 1.

$$f = \frac{1 - \sqrt{1 - 4z}}{2z}$$
; gr =

$$f = \frac{1 - \sqrt{1 - 4z}}{2z}$$
; gr = 4.

$$f = \frac{1-z}{1-2z}$$
; gr = 2

Diversion: Principal class growth rates

For a permutation β of length k:

• Stanley & Wilf (1980s): Conjecture there exists *c* such that

$$|\operatorname{Av}(\beta)_n| \leq c^n$$
.

• Arratia (1999): Stanley–Wilf equivalent to existence of gr(Av(β)). Conjectures $c \le (k-1)^2$.

Diversion: Principal class growth rates

For a permutation β of length k:

• Stanley & Wilf (1980s): Conjecture there exists *c* such that

$$|\operatorname{Av}(\beta)_n| \leq c^n$$
.

- Arratia (1999): Stanley–Wilf equivalent to existence of $gr(Av(\beta))$. Conjecture $(S = k 1)^2$.
- Marcus & Tardos (2004): $c \le 15^{2k^4 \binom{k^2}{k}}$ (\Rightarrow proves Stanley–Wilf).
- Albert, Elder, Rechnitzer, Westcott & Zabrocki (2006): $gr(Av(1324)) \ge 9.47$ (\Rightarrow disproves Arratia).

Diversion: Principal class growth rates

For a permutation β of length k:

• Stanley & Wilf (1980s): Conjecture there exists *c* such that

$$|\operatorname{Av}(\beta)_n| \leq c^n$$
.

- Arratia (1999): Stanley–Wilf equivalent to existence of $gr(Av(\beta))$.
- Marcus & Tardos (2004): $c \le 15^{2k^4 \binom{k^2}{k}}$ (\Rightarrow proves Stanley–Wilf).
- Albert, Elder, Rechnitzer, Westcott & Zabrocki (2006): $gr(Av(1324)) \ge 9.47$ (\Rightarrow disproves Arratia).
- Fox (2013+): $c \ge 2^{k^{\theta(1)}}$ for almost all β (\Rightarrow really disproves Arratia).

Diversion: Principal class enumeration

β	$f_{ ext{Av}(eta)}(z)$	$\operatorname{gr}(\operatorname{Av}(\beta))$
1	1	0
12	$\frac{1}{1-z}$	1
123	$1 - \sqrt{1 - 4z}$	4
132	${2z}$	T
1342	$1 + 20z - 8z^2 + \sqrt{(1 - 8z)^3}$	8
2413	${2(1+z)^3}$	O
1234		-
1243	$1+5z-\sqrt[4]{(1-9z)^3(1-z)} {}_2F_1\left(-\frac{1}{4},\frac{3}{4};1;\frac{64z}{(z-1)(1-9z)^3)}\right)$	9
1432	$-6z^2$	9
2143		
1324	?	$\in [10.27, 13.5]$

Up to symmetries, this covers all $Av(\beta)$ with $|\beta| \le 4$.

What properties guarantee a class $\mathcal C$ has a 'tame' enumeration?	

Two stacks in series is wild

Murphy (2003) Not finitely based

Albert, Atkinson & Linton (2010) $gr \in [8.156, 13.374]$.

Pierrot & Rossin (2017) Membership is polynomial time

Elvey Price & Guttman (2017) Exact enumeration to length 20 Estimate: Generating function $\sim A(1-\mu\cdot z)^{\gamma}$ gr \approx 12.5

§3A *D*-finite generating functions

Generating functions expressible as solutions to systems of linear homogeneous differential equations with polynomial coefficients.

[Barely tame: Should be kept behind big fences in zoos.]

Noonan-Zeilberger

Recall: C = Av(B) is *finitely based* if B is finite.

Conjecture (Noonan & Zeilberger, 1996)

Every finitely based class has a D-finite generating function.

Noonan-Zeilberger

Recall: C = Av(B) is *finitely based* if B is finite.

Conjecture (Noonan & Zeilberger, 1996)

Every finitely based class has a D-finite generating function.

Conjecture (Zeilberger, 2005)

Noonan–Zeilberger is false.

Noonan–Zeilberger

Recall: C = Av(B) is finitely based if B is finite.

Conjecture (Noonan & Zeilberger 1915) Every finitely based class has a D-futte generating function.

Conjecture (Zeilberger, 2005)

Noonan–Zeilberger is false.

Theorem (Garrabrant, Pak, 2015+)

Zeilberger is right: Noonan-Zeilberger is false.

More wild candidates

Conjecture (Albert, Homberger, Pantone, Shar, Vatter, 2018)

None of the classes Av(4123, 4231), Av(4123, 4312) or Av(4231, 4321) has a D-finite generating function.

Conjecture is based on analysis of the first 600+ terms of the enumeration sequences.

§3B Algebraic generating functions

Generating functions expressible as solutions to systems of algebraic equations with polynomial coefficients.

[Non-dangerous, but not suitable as pets.]

"...the standard intuition of what a family with an algebraic generat-

ing function looks like: the algebraicity suggests that it may (or

should...), be possible to give a recursive description of the objects

based on disjoint union of sets and concatentation of objects."

— Bousquet-Mélou, 2006

Canonical example of algebraicity

Theorem (Albert & Atkinson, 2005)

If a class C contains only finitely many 'simple' permutations, then it has an algebraic generating function and is finitely based.

Think of this as a generalisation of our enumeration of Av(231):

$$f(z) = \bullet + \underbrace{ \begin{cases} f(z) \\ f_{\cancel{\varnothing}}(z) \end{cases} }_{f_{\cancel{\varnothing}}(z)} + \underbrace{ \begin{cases} f(z) \\ f(z) \end{cases} }_{f_{\cancel{\varnothing}(z)}} + \underbrace{ \begin{cases} f(z) \\ f(z) \end{cases} }_{f_{\cancel{\varnothing$$

A permutation class is well-quasi-ordered (WQO) if it contains no infinite antichains.

Thought of as a strong indicator of 'tameness', so:

A permutation class is well-quasi-ordered (WQO) if it contains no infinite antichains.

Thought of as a strong indicator of 'tameness', so:

Conjecture (Vatter, 2015)

Every WQO permutation class has an algebraic generating function.

A permutation class is well-quasi-ordered (WQO) if it contains no infinite antichains.

Thought of as a strong indicator of 'tameness', so:

Conjecture (Vatter, 2015) Every WQO permutation class has an algebraic generating function.

Theorem (B. & Vatter, 2025+)

There are uncountably many WQO permutation classes with distinct enumerations.

Hence there exist WOO permutation classes that do not have algebraic (or even D-finite) generating functions.

§3C Rational generating functions

Generating functions of the form p(z)/q(z) *with* $p,q \in \mathbb{Z}[z]$.

[You can keep these as pets.]

Some pets are *very* dangerous

Theorem (Albert, B., Vatter, 2013)

Every proper permutation class C is contained in a permutation class with a rational generating function.

Pets are rare

Theorem (Bóna, 2020)

Most classes of the form $Av(\beta)$ do not have a rational generating function.

Small(ish) classes

Theorem (Albert, Ruškuc & Vatter, 2015)

Every permutation class with growth rate < 2.20557 has a rational generating function.

Small(ish) classes

Theorem (Albert, Ruškuc & Vatter, 2015)

Every permutation class with growth rate < 2.20557 has a rational generating function.

Theorem (Albert and Atkinson, 2005)

Every proper subclass of Av(231) is finitely based and has a rational generating function.

Small(ish) classes

Theorem (Albert, Ruškuc & Vatter, 2015)

Every permutation class with growth rate < 2.20557 has a rational generating function.

Theorem (Albert and Atkinson, 2005)

Every proper subclass of Av(231) is finitely based and has a rational generating function.

Theorem (Albert, B., Ruškuc & Vatter, 2019)

Every proper subclass of Av(321) that is finitely based has a rational generating function.

Recall: Both Av(231) and Av(321) have growth rate 4...

Conjecture (B.)

Every finitely based permutation class with growth rate < 4 has a rational generating function.

Conjecture (B.)

Every finitely based permutation class with growth rate <4 has a rational generating function.

- False if we drop 'finitely based' requirement. (Fails at gr = 2.20557.)
- B. & Opler (ongoing): True for growth rate < 2.61803

Functional equations for algebraic C = Av(231)

Functional equation:
$$f(z) = 1 + f(z) \cdot z \cdot f(z)$$
 has (nonrational) solution
$$f(z) = \frac{1 - \sqrt{1 - 4z}}{2z} = 1 + z + 2z^2 + 5z^3 + 14z^4 + \cdots$$

In classes with growth rate less than 4, we can't get functional equations involving $f^2(z)$ terms.

So, *if* we can get a functional equation for some class with gr < 4, then we likely get a rational generating function.

References 1

M. H. Albert and M. D. Atkinson. Simple permutations and pattern restricted permutations.

Discrete Math., 300(1-3):1-15, 2005

M. H. Albert, M. Atkinson, and S. Linton. Permutations generated by stacks and deques.

Ann. Comb., 14(1):3-16, 2010

M. Albert, R. Brignall, N. Ruškuc, and V. Vatter. Rationality for subclasses of 321-avoiding permutations.

European Journal of Combinatorics, 78:44-72, 2019

M. H. Albert, R. Brignall, and V. Vatter. Large infinite antichains of permutations. *Pure Math. Appl. (PU.M.A.)*, 24(2):47–57, 2013

M. H. Albert, M. Elder, A. Rechnitzer, P. Westcott, and M. Zabrocki. On the Wilf-Stanley limit of 4231-avoiding permutations and a conjecture of Arratia. *Adv. in Appl. Math.*, 36(2):95–105, 2006

M. H. Albert, C. Homberger, J. Pantone, N. Shar, and V. Vatter. Generating permutations with restricted containers.

J. Combin. Theory Ser. A, 157:205-232, 2018

References 2

M. H. Albert, N. Ruškuc, and V. Vatter. Inflations of geometric grid classes of permutations.

Israel J. Math., 205(1):73-108, 2015

R. Arratia. On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern.

Electron. J. Combin., 6:Note 1, 4 pp., 1999

M. Bóna. Supercritical sequences, and the nonrationality of most principal permutation classes.

European J. Combin., 83:103020, 8, 2020

R. Brignall and V. Vatter. Uncountably many enumerations of well-quasi-ordered permutation classes.

Arxiv:2211.12397, 2023

S. Corteel and L. K. Williams. Tableaux combinatorics for the asymmetric exclusion process.

Adv. in Appl. Math., 39(3):293-310, 2007

A. Elvey Price and A. J. Guttmann. Permutations sortable by two stacks in series. *Adv. in Appl. Math.*, 83:81–96, 2017

J. Fox. Stanley-wilf limits are typically exponential. ArXiv:1310.8378, 2013

References 3

S. Garrabrant and I. Pak. Pattern avoidance is not P-recursive.

ArXiv:1505.06508

V. Lakshmibai and B. Sandhya. Criterion for smoothness of Schubert varieties in SL(n)/B.

Proc. Indian Acad. Sci. Math. Sci., 100(1):45-52, 1990

A. Marcus and G. Tardos. Excluded permutation matrices and the Stanley-Wilf conjecture.

J. Combin. Theory Ser. A, 107(1):153-160, 2004

M. M. Murphy. *Restricted permutations, antichains, atomic classes, and stack sorting*. PhD thesis, Univ. of St Andrews, 2002

J. Noonan and D. Zeilberger. The enumeration of permutations with a prescribed number of "forbidden" patterns.

Adv. in Appl. Math., 17(4):381-407, 1996

A. Pierrot and D. Rossin. 2-stack sorting is polynomial. *Theory Comput. Syst.*, 60(3):552–579, 2017

V. Vatter. Permutation classes.

In *Handbook of enumerative combinatorics*, Discrete Math. Appl. (Boca Raton), pages 753–833. CRC Press, Boca Raton, FL, 2015