R.L.F. Brignall¹ joint work with Nik Ruškuc² and Vincent Vatter

¹Department of Mathematics University of Bristol

²School of Mathematics and Statistics University of St Andrews

Friday 7th December, 2007

Introduction

Concepts

- Relational Structures
- Intervals and Simplicity
- Simple Extensions

2 Binary Structures

- Approach
- Binary Simple Extensions

3 More Generality

- Digraphs
- Higher Arity

Concepts

Outline

Concepts

- Relational Structures
- Intervals and Simplicity
- Simple Extensions
- 2 Binary Structures
 - Approach
 - Binary Simple Extensions

3 More Generality

- Digraphs
- Higher Arity

Concepts

Relational Structures

• A relational structure: a set of points, and a set of relations on these points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Concepts

Relational Structures

Sets and Relations

• A relational structure: a set of points, and a set of relations on these points.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• The ground set, A.

Concepts

Relational Structures

Sets and Relations

 A relational structure: a set of points, and a set of relations on these points.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

- The ground set, A.
- A *k*-ary relation R a subset of A^k .

Concepts

Relational Structures

Sets and Relations

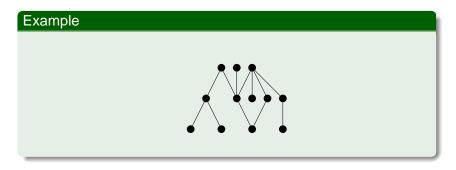
- A relational structure: a set of points, and a set of relations on these points.
- The ground set, A.
- A k-ary relation R a subset of A^k .
- Binary relations come in many different flavours linear, transitive, symmetric,...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Relational Structures

Posets

• Poset — a relational structure on a binary reflexive antisymmetric transitive relation.

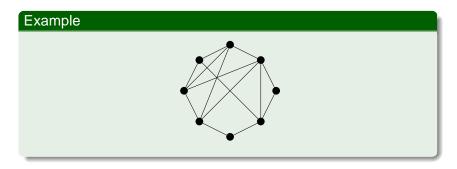


Concepts

Relational Structures

Graphs

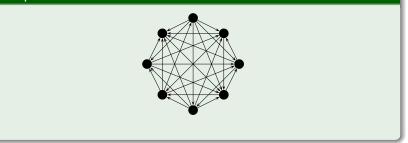
Graph — a relational structure on a single binary symmetric relation.



Concepts

Relational Structures

• Tournament — a complete oriented graph.

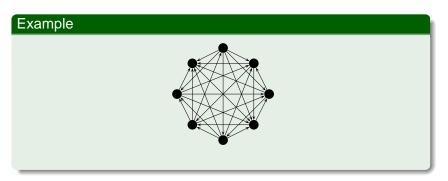


Concepts

Relational Structures

Tournaments

- Tournament a complete oriented graph.
- As a relational structure, it is a single trichotomous binary relation x → y, y → x or x = y.

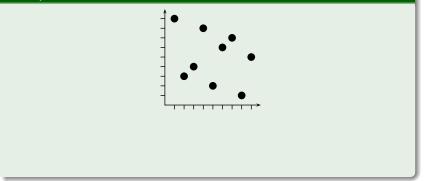


Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.



Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.

Example

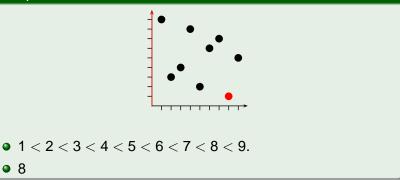
• 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.



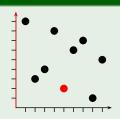
Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.

Example



• 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

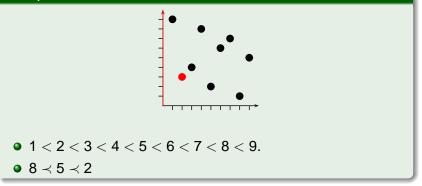
8 ≺ 5

Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.

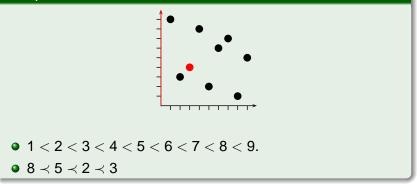


Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.



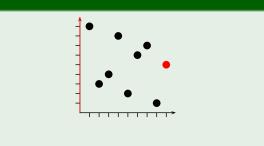
Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.

Example



• 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

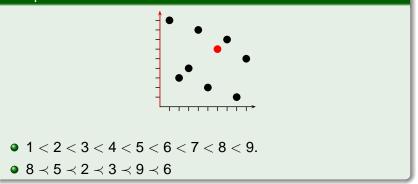
• $8 \prec 5 \prec 2 \prec 3 \prec 9$

Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.

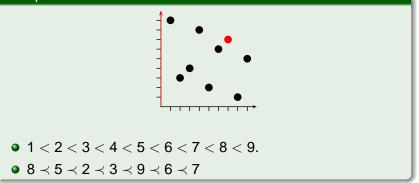


Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.

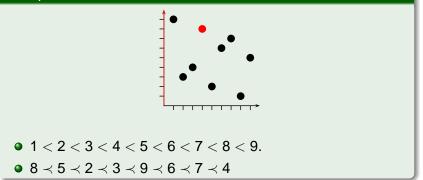


Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.

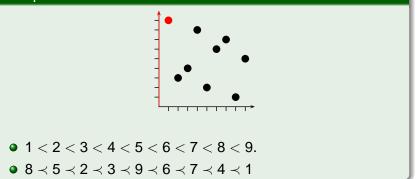


Concepts

Relational Structures

Permutations

Permutation of length n — a structure on two linear relations.



Concepts

Intervals and Simplicity

Intervals

• An interval: set of points which "look" at every other point in the same way.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Concepts

Intervals and Simplicity

Intervals

- An interval: set of points which "look" at every other point in the same way.
- Synonyms: Autonomous sets, blocks, bound sets, closed sets, clumps, convex sets, modules...

(日) (日) (日) (日) (日) (日) (日) (日)

Concepts

Intervals and Simplicity

Intervals

- An interval: set of points which "look" at every other point in the same way.
- Synonyms: Autonomous sets, blocks, bound sets, closed sets, clumps, convex sets, modules...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

• A structure is simple if there are no proper intervals.

Concepts

Intervals and Simplicity

Intervals

- An interval: set of points which "look" at every other point in the same way.
- Synonyms: Autonomous sets, blocks, bound sets, closed sets, clumps, convex sets, modules...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

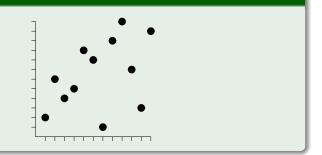
- A structure is simple if there are no proper intervals.
- Synonyms: Indecomposable, prime...

Concepts

Intervals and Simplicity

Permutations

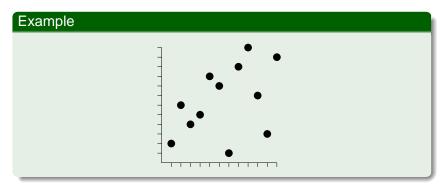
• Permutation π .



Concepts

Intervals and Simplicity

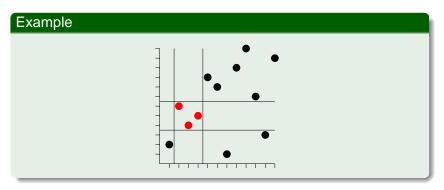
- Permutation π .
- An interval of π is a set of contiguous indices *I* = [*a*, *b*] such that π(*I*) = {π(*i*) : *i* ∈ *I*} is also contiguous.



Concepts

Intervals and Simplicity

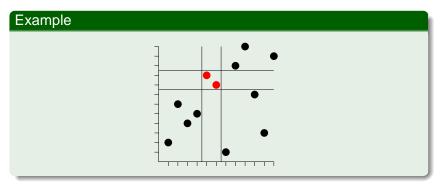
- Permutation π .
- An interval of π is a set of contiguous indices *I* = [*a*, *b*] such that π(*I*) = {π(*i*) : *i* ∈ *I*} is also contiguous.



Concepts

Intervals and Simplicity

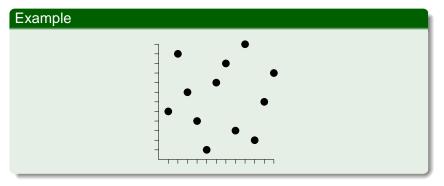
- Permutation π .
- An interval of π is a set of contiguous indices *I* = [*a*, *b*] such that π(*I*) = {π(*i*) : *i* ∈ *I*} is also contiguous.



Concepts

Intervals and Simplicity

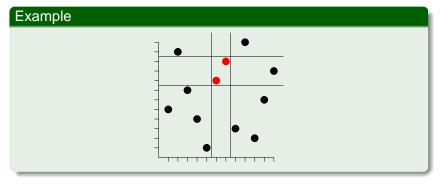
- Permutation π .
- Simple permutations only intervals are singletons and the whole thing.



Concepts

Intervals and Simplicity

- Permutation π .
- Simple permutations only intervals are singletons and the whole thing.



Concepts

Intervals and Simplicity

Simplicity in Graphs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Simple graph?

Concepts

Intervals and Simplicity

Simplicity in Graphs

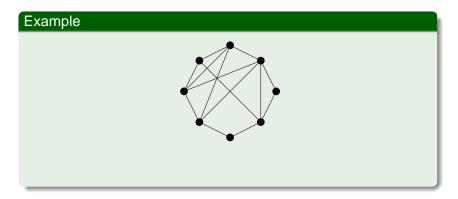
• Simple graph? Well, rather an indecomposable graph.

Concepts

Intervals and Simplicity

Simplicity in Graphs

• Simple graph? Well, rather an indecomposable graph.

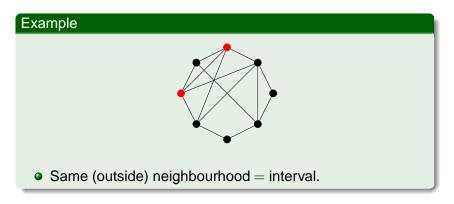


Concepts

Intervals and Simplicity

Simplicity in Graphs

• Simple graph? Well, rather an indecomposable graph.



Concepts

Simple Extensions

Question

How many additional points are needed to extend a given relational structure to a simple one?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Concepts

Simple Extensions

Question

How many additional points are needed to extend a given relational structure to a simple one?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

• Call this a simple extension.

Concepts

Simple Extensions

History: Tournament Extensions

Theorem (Erdős, Fried, Hajnal and Milner, 1972)

Every tournament has a simple extension with at most two additional vertices.

(日) (日) (日) (日) (日) (日) (日) (日)

Concepts

Simple Extensions

History: Tournament Extensions

Theorem (Erdős, Fried, Hajnal and Milner, 1972)

Every tournament has a simple extension with at most two additional vertices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

• N.B. this means arbitrary cardinality.

Concepts

Simple Extensions

History: Tournament Extensions

Theorem (Erdős, Fried, Hajnal and Milner, 1972)

Every tournament has a simple extension with at most two additional vertices.

• N.B. this means arbitrary cardinality.

Theorem (Erdős, Hajnal and Milner, 1972)

A tournament T has a one-point simple extension unless |T| = 3 or T has an odd number of vertices and is transitive.

(日) (日) (日) (日) (日) (日) (日) (日)

Concepts

Simple Extensions

• 2 extra points isn't always going to be enough (think of K_n)

Concepts

Simple Extensions

• 2 extra points isn't always going to be enough (think of K_n)

(ロ) (同) (三) (三) (三) (三) (○) (○)

• Have to consider different binary structures separately...

Concepts

Simple Extensions

• 2 extra points isn't always going to be enough (think of K_n)

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Have to consider different binary structures separately...
- ... but the approach is going to be similar.

Binary Structures

Outline

- Relational Structures
- Intervals and Simplicity
- Simple Extensions

2 Binary Structures

- Approach
- Binary Simple Extensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

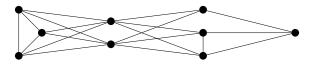
3 More Generality

- Digraphs
- Higher Arity

Binary Structures

Approach

Substitution Decomposition

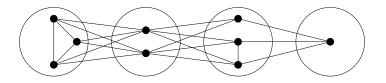


• Take any graph (more generally: relational structure).

Binary Structures

Approach

Substitution Decomposition



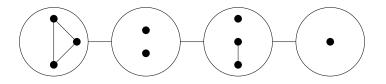
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Find the maximal proper intervals (N.B. they don't intersect).

Binary Structures

Approach

Substitution Decomposition



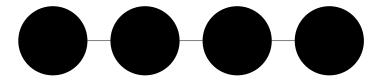
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Find the maximal proper intervals (N.B. they don't intersect).

Binary Structures

Approach

Substitution Decomposition

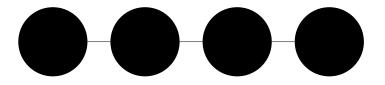


• Replace each interval with a single point.

Binary Structures

Approach

Substitution Decomposition



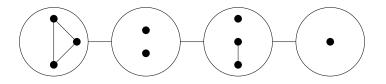
- Replace each interval with a single point.
- Have the skeleton $-P_4$ which is indecomposable.

(日) (日) (日) (日) (日) (日) (日) (日)

Binary Structures

Approach

Substitution Decomposition



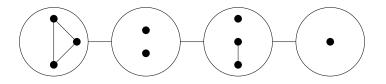
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

 This is the substitution decomposition (Also called modular decomposition, disjunctive decomposition, X-join).

Binary Structures

Approach

Substitution Decomposition



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

- This is the substitution decomposition (Also called modular decomposition, disjunctive decomposition, X-join).
- Unique unless skeleton is K_n or $\overline{K_n}$.

Binary Structures

Approach

The Approach (for Binary Structures)

• Induction using the substitution decomposition.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Binary Structures

Approach

The Approach (for Binary Structures)

• Induction using the substitution decomposition.

(日) (日) (日) (日) (日) (日) (日) (日)

• Non-unique cases handled separately.

Binary Structures

Approach

The Approach (for Binary Structures)

- Induction using the substitution decomposition.
- Non-unique cases handled separately.
- Bound obtained tends to be tight on the non-unique cases.

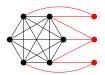
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Binary Structures

Binary Simple Extensions

Theorem (Sumner, 1971)

 K_n has a simple extension with $\lceil \log_2(n+1) \rceil$ additional vertices.



◆□▶ ◆□▶ ◆三≯ ◆三≯ ◆□▶

Binary Structures

Binary Simple Extensions

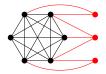
Graphs

Theorem (Sumner, 1971)

 K_n has a simple extension with $\lceil \log_2(n+1) \rceil$ additional vertices.

Theorem

A graph on *n* vertices has a simple extension requiring at most $\lceil \log_2(n+1) \rceil$ additional vertices.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

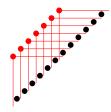
Binary Structures

Binary Simple Extensions

Permutations

Theorem

A permutation on n points has a simple extension requiring at most $\left\lceil \frac{n+1}{2} \right\rceil$ additional points.



◆□▶ ◆□▶ ◆三≯ ◆三≯ ◆□▶

Binary Structures

Binary Simple Extensions

Posets: A Graph-Permutation Mix

• Two (different) bad cases: antichains and linear orders.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Binary Structures

Binary Simple Extensions

Posets: A Graph-Permutation Mix

• Two (different) bad cases: antichains and linear orders.

(日) (日) (日) (日) (日) (日) (日) (日)

• Antichains behave like graphs.

Binary Structures

Binary Simple Extensions

Posets: A Graph-Permutation Mix

• Two (different) bad cases: antichains and linear orders.

(日) (日) (日) (日) (日) (日) (日) (日)

• Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.

Binary Structures

Binary Simple Extensions

Posets: A Graph-Permutation Mix

• Two (different) bad cases: antichains and linear orders.

(日) (日) (日) (日) (日) (日) (日) (日)

- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations.

Binary Structures

Binary Simple Extensions

Posets: A Graph-Permutation Mix

- Two (different) bad cases: antichains and linear orders.
- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations. Get $\lceil (n+1)/2 \rceil$.

(日) (日) (日) (日) (日) (日) (日) (日)

Binary Structures

Binary Simple Extensions

Posets: A Graph-Permutation Mix

- Two (different) bad cases: antichains and linear orders.
- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations. Get $\lceil (n+1)/2 \rceil$.

Theorem

A poset with n elements has a simple extension requiring at $most \left\lceil \frac{n+1}{2} \right\rceil$ additional elements.

More Generality

Outline

- Relational Structures
- Intervals and Simplicity
- Simple Extensions
- 2 Binary Structures
 - Approach
 - Binary Simple Extensions

3 More Generality

- Digraphs
- Higher Arity

More Generality

Digraphs

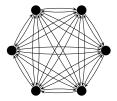
• Digraphs — the most general type of binary structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

More Generality

Digraphs

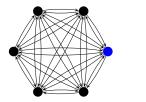
• Digraphs — the most general type of binary structure.



More Generality

Digraphs

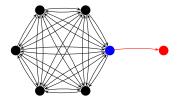
• Digraphs — the most general type of binary structure.



More Generality

Digraphs

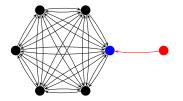
• Digraphs — the most general type of binary structure.



More Generality

Digraphs

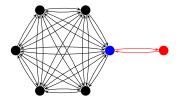
• Digraphs — the most general type of binary structure.



More Generality

Digraphs

• Digraphs — the most general type of binary structure.

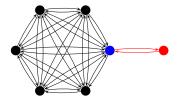


More Generality

Digraphs

• Digraphs — the most general type of binary structure.

• Complete or empty digraphs — get $\lceil \log_4(n+1) \rceil$.



More Generality

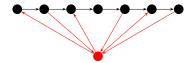
Digraphs

- Digraphs the most general type of binary structure.
- Complete or empty digraphs get $\lceil \log_4(n+1) \rceil$.
- Linear orders.

More Generality

Digraphs

- Digraphs the most general type of binary structure.
- Complete or empty digraphs get $\lceil \log_4(n+1) \rceil$.
- Linear orders one-point extension suffices.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

More Generality

Digraphs

- Digraphs the most general type of binary structure.
- Complete or empty digraphs get $\lceil \log_4(n+1) \rceil$.
- Linear orders one-point extension suffices.

Theorem

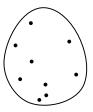
A digraph with n elements has a simple extension requiring at most $\lceil \log_4(n+1) \rceil$ additional elements.

(日) (日) (日) (日) (日) (日) (日) (日)

More Generality

Higher Arity

k-ary Relations



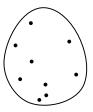
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Structure contains a *k*-ary relation, $k \ge 3$.

More Generality

Higher Arity

k-ary Relations



- Structure contains a *k*-ary relation, $k \ge 3$.
- e.g. terms of a 3-ary relation look like (_, _, _).

More Generality

Higher Arity

k-ary Relations



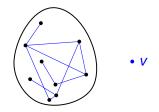
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

- Structure contains a *k*-ary relation, $k \ge 3$.
- e.g. terms of a 3-ary relation look like (_,_,_).
- Add one new point, v, say.

More Generality

Higher Arity

k-ary Relations

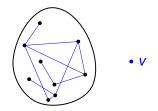


- Structure contains a *k*-ary relation, $k \ge 3$.
- e.g. terms of a 3-ary relation look like (_,_,_).
- Add one new point, v, say.
- Add relations (v, _, _) so last two coordinates form a simple structure.

More Generality

Higher Arity

k-ary Relations



Theorem

Every relational structure which has an arbitrary k-ary relation with $k \ge 3$ has a one-point simple extension.