Infinite Antichains and Partial Well-Order in Permutation Classes

Robert Brignall

Department of Mathematics University of Bristo

Tuesday 7th July, 2009

- Graphs: containment as an induced subgraph gives a quasi-order.
- Hereditary properties: downsets in this order. e.g. K₄-free graphs.

- Graphs: containment as an induced subgraph gives a quasi-order.
- Hereditary properties: downsets in this order. e.g. K₄-free graphs.
- Permutations: pattern containment ordering is a partial order.
- Permutation classes: downsets in this order. e.g. 231-avoiding permutations.

Pattern Containment

• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .

Pattern Containment

• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .

Pattern Containment

• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .

• Containment forms a partial order on the set of all permutations.

- Containment forms a partial order on the set of all permutations.
- Downsets of permutations in this partial order form permutation classes.
 - i.e. $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

- Containment forms a partial order on the set of all permutations.
- Downsets of permutations in this partial order form permutation classes.
 - i.e. $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.
- Typical description: basis is the set of minimal excluded elements. $C = Av(B) = \{\pi : \beta \leq \pi \text{ for all } \beta \in B\}.$

Av(21) = {1, 12, 123, 1234, ...}, the increasing permutations.
Av(12) = {1, 21, 321, 4321, ...}, the decreasing permutations.

•
$$\oplus 21 = \operatorname{Av}(321, 312, 231) = \{1, 12, 21, 123, 132, 213, \ldots\}.$$

• $\ominus 12 = Av(123, 213, 132) = \{1, 12, 21, 231, 312, 321, \ldots\}.$

No infinite antichains.

- Words over a finite alphabet [Higman].
- Graphs closed under minors [Robertson and Seymour].

Infinite antichains.

- Graphs closed under induced subgraphs (or merely subgraphs). e.g. C₃, C₄, C₅,...
- Permutations closed under containment.
- Tournaments, digraphs, ...

• A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

• A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a permutation class given by a finite basis is pwo?

- To prove pwo Higman's theorem is useful.
- To prove not pwo find an antichain.

• A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a hereditary property given by a finite basis is wqo?

- To prove pwo Higman's theorem is useful.
- To prove not pwo find an antichain.
- Other structures: well quasi-order, not pwo, but same idea.

Grid Classes

- Matrix ${\mathcal M}$ whose entries are permutation classes.
- Grid(\mathcal{M}) the grid class of \mathcal{M} : all permutations which can be "gridded" so each cell satisfies constraints of \mathcal{M} .

- $C_n = \text{permutations in the class } C$ of length n.
- Growth rate of C is $\lim_{n\to\infty} \sqrt[n]{|C_n|}$.

• $C_n = \text{permutations in the class } C$ of length n.

• Growth rate of
$$\mathcal{C}$$
 is $\lim_{n\to\infty} \sqrt[n]{|\mathcal{C}_n|}$.

• Grid classes give a complete answer to permitted growth rates below $\kappa \approx 2.20557$ [Vatter]:

• $C_n = permutations in the class C of length n.$

• Growth rate of
$$\mathcal{C}$$
 is $\lim_{n\to\infty} \sqrt[n]{|\mathcal{C}_n|}$.

• Grid classes give a complete answer to permitted growth rates below $\kappa \approx 2.20557$ [Vatter]:

• Cf "canonical properties" of graphs [Balogh, Bollobás and Weinreich].

Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

Robert Brignall (Bristol)

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

Robert Brignall (Bristol)

Theorem (Murphy and Vatter, 2003)

The monotone grid class $Grid(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Question

When is a class C (a subset of) a monotone grid class?

Question

When is a class \mathcal{C} (a subset of) a monotone grid class?

Answer [Vatter]

A class ${\cal C}$ is monotone griddable if and only if it contains neither the classes $\oplus 21$ nor $\oplus 12.$

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

Proof.

Antichain element.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

Proof.

Antichain element.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.
- Permute columns and rows.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.
- Permute columns and rows.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.
- Permute columns and rows.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.
- Permute columns and rows.

• Bad cell contains only finitely many "simple permutations".

- Bad cell contains only finitely many "simple permutations".
- Form a rooted tree on the red cell, and use Higman's Theorem.

- Two non-monotone per component: class not pwo.
- One non-monotone but finitely many simples: class is pwo.

- Two non-monotone per component: class not pwo.
- One non-monotone but finitely many simples: class is pwo.
- To-do: one non-monotone but infinitely many simples (some antichains known).

- Two non-monotone per component: class not pwo.
- One non-monotone but finitely many simples: class is pwo.
- To-do: one non-monotone but infinitely many simples (some antichains known).

Question

Can we decide whether a permutation class given by a finite basis is pwo?

- We're closer to answering this, but still some way off.
- Try doing this for your favourite combinatorial structure.

Thanks!