Unbounded clique-width in
hereditary graph classes

Robert Brignall

Based on joint work with Dan Cocks

Birmingham-Open-Warwick Combinatorics Meeting, OU, 17th December 2024

The Open
University

Grid theorems

Grid minor theorem (Robertson & Seymour, 1986)

A minor-closed class of graphs has bounded tree-width if and only if it
excludes a planar graph.

Graph minor: delete vertices or edges, and contract edges.
Tree-width: measures how much a graph is like a tree.

Grid theorems

Grid minor theorem (Robertson & Seymour, 1986)

A minor-closed class of graphs has bounded tree-width if and only if it
excludes a planar graph.

Graph minor: delete vertices or edges, and contract edges.
Tree-width: measures how much a graph is like a tree.

Grid theorem for vertex minors (Geelen, Kwon, Mccarty, Wollan, 2023)

A vertex-minor-closed class of graphs has bounded rank-width if and only if
it excludes a circle graph.

Vertex-minor: delete vertices and take ‘local complements’.
Rank-width: a graph measure involving ranks of matrices in certain
decompositions of a graph.

Grid theorems — alternative statements

Grid minor theorem (Robertson & Seymour, 1986)

Graphs of large tree-width contain a large grid as a minor.

Grid theorem for vertex minors (Geelen, Kwon, Mccarty, Wollan, 2023)

Graphs of large rank-width contain a large comparability grid as a
vertex-minor.

Metatheorems

Theorem (Courcelle, 1990)

Any problem expressible in MSO; logic can be solved in linear time on every
class of graphs with bounded tree-width.

MSO, logic covers problems like existence of perfect matchings, or
Hamiltonian cycles.

Metatheorems

Theorem (Courcelle, 1990)

Any problem expressible in MSO; logic can be solved in linear time on every
class of graphs with bounded tree-width.

MSO, logic covers problems like existence of perfect matchings, or
Hamiltonian cycles.

Theorem (Courcelle, Makowsky, Rotics, 2000)

Any problem expressible in MSO; logic can be solved in linear time on every
class of graphs with bounded rank-width.

MSO logic: Weaker than MSO,, but includes finding a maximum
independent set, and deciding k-colourability.

In simple terms

If a collection of graphs has. ..

...some planar graph as a forbidden minor, lots of graph problems are easy to
solve.

In simple terms

If a collection of graphs has. ..

...some planar graph as a forbidden minor, lots of graph problems are easy to
solve.

...some circle graph as a forbidden vertex-minor, not-so-many-lots of graph
problems are easy to solve.

In simple terms

If a collection of graphs has. ..

...some planar graph as a forbidden minor, lots of graph problems are easy to
solve.

...some circle graph as a forbidden vertex-minor, not-so-many-lots of graph
problems are easy to solve.

Why use anything other than treewidth?

tw(K,) =n—1.

Classes with bounded tree-width can’t contain dense graphs.

Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Induced subgraphs

® Graph G = (V, E), undirected, simple (no loops, or multiple edges).

® Induced subgraph: H <jyq G if we can delete vertices (and incident
edges) from G to form a graph isomorphic to H.

Example (Graphs and induced subgraphs)

Induced subgraphs

® Graph G = (V, E), undirected, simple (no loops, or multiple edges).

® Induced subgraph: H <jyq G if we can delete vertices (and incident
edges) from G to form a graph isomorphic to H.

Example (Graphs and induced subgraphs)

gind

Hereditary classes

Set € of graphs is hereditary if

G € Cand H <jpg G implies H € C. ‘class’

‘Closed under induced subgraphs’.

Examples

Forests Bipartite graphs Planar graphs

Circle graphs Permutation graphs

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

Example

Target:

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

Example

le Target:

Create vertex with label 1

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

Example

le) Target:

Create vertex with label 2

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

Example

Target:

Join labels 1 and 2

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

Example

le o2 Target:

3¢ 2 %

Create vertices with labels 2 and 3 (or use disjoint union)

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

Example

Target:

Join labels 2 and 3, and relabel 3 — 1

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

Example

1 2 Target:
s %
=

Disjoint union with another copy of the same graph

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

Example
1 2 Target:
13 2 %
3 4
3 4

Join labels 2 and 3

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

Example
1 2 Target:
13 2 %
3 4
3 4

Graph built! I used 4 labels.

Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i # j).
4. Relabel every vertex labelled i with j.

® Clique-width, cw(G) = size of smallest label set needed to build G.
® If H <inq G, then cw(H) < cw(G).
¢ Clique-width of a class €

cw(C) = max cw(G)
Gece

if this exists.

What has big clique width?

Intuition: Unbounded clique width needs two dimensions.

For fixed k: cw(k x n grid) = O(k)

What has big clique width?

Intuition: Unbounded clique width needs two dimensions.

—_— N W
U N 93 ©

For fixed k: cw(k x n grid) = O(k)

What has big clique width?

Intuition: Unbounded clique width needs two dimensions.

For fixed k: cw(k x n grid) = O(k)

What has big clique width?

Intuition: Unbounded clique width needs two dimensions.

For fixed k: cw(k x n grid) = O(k)
cw(n x n grid) = n + 1 (Golumbic and Rotics, 1999)

Tree-width, rank-width, clique-width

Theorem (Corneil and Rotics, 2005)

For any graph G,
ew(G) < 3-2™(0),

Note: cw(K,,) =2, but tw(K,) =n— 1.

Theorem (Oum and Seymour, 2006)

For any graph G,
w(G) < ew(G) < 2O+ 1,

Thus:
¢ Clique-width unbounded implies tree-width unbounded (converse false)

¢ Rank-width unbounded iff clique-width unbounded

Usefulness of clique-width

Since rank-width and clique-width are related:

Theorem (Courcelle, Makowsky, Rotics, 2000)

Any problem expressible in MSO logic can be solved in linear time on every
class of graphs with bounded rank-width.

Usefulness of clique-width

Since rank-width and clique-width are related:

Theorem (Courcelle, Makowsky, Rotics, 2000)

Any problem expressible in MSO logic can be solved in linear time on every
class of graphs with bounded |iqueéwidth.

(In fact, rank-width was only introduced in 20006, so this is more like the
original result.)

Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Just use the vertex-minor grid theorem?

Hereditary classes are a richer (and arguably more natural) family:
every vertex-minor-closed class is hereditary.

The ‘circle graphs’ in the vertex-minor grid theorem contain lots of
interesting hereditary classes. Some have bounded clique-width, others don’t.

Clique-width: history to 2011

1993 Courcelle, Engelfriet & Rozenberg: (sort of) introduce clique-width.
1999 Makowsky & Rotics: split graphs have unbounded clique-width.

2000 Courcelle, Makowsky & Rotics: MSO; metatheorem.

Golumbic & Rotics: permutation graphs have unbounded clique-width.

2006 Oum & Seymour introduce rank-width as an approximation for
clique-width that can be computed efficiently.

2011 Lozin shows that bipartite permutation graphs and unit interval graphs
are minimal classes with unbounded clique-width.

Minimal hereditary classes of unbounded clique-width

Class € is minimal (of unbounded clique-width) if:
® (has unbounded clique-width, and

® any proper subclass D C € has bounded clique-width.

Bipartite permutation graphs (Lozin, 2011)

Class comprises all induced subgraphs of grids like the following:

AN 7
i /’I /’I /’I///I
i I//,///
/////1///////////////////////// /

i ‘/
ﬂﬂﬂlﬂV

Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Not if you want it to mention just one ‘grid’

Since bipartite permutation graphs and unit interval graphs are both minimal
of unbounded clique-width, there are at least two grids. ..

Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Not if you want it to mention just one ‘grid’

Since bipartite permutation graphs and unit interval graphs are both minimal
of unbounded clique-width, there are at least two grids. ..

... but perhaps we could list the minimal classes?

Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

2015 (published 2021) Atminas, B., Lozin & Stacho:
split permutation graphs and bichain graphs.

Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

2015 (published 2021) Atminas, B., Lozin & Stacho:
split permutation graphs and bichain graphs.

2018 Collins, Foniok, Korpelainen, Lozin & Zamaraev:
countably infinite collection of minimal classes

Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

2015 (published 2021) Atminas, B., Lozin & Stacho:
split permutation graphs and bichain graphs.

2018 Collins, Foniok, Korpelainen, Lozin & Zamaraev:
countably infinite collection of minimal classes

2022 B. & Cocks: uncountably infinite collection

Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

2015 (published 2021) Atminas, B., Lozin & Stacho:
split permutation graphs and bichain graphs.

2018 Collins, Foniok, Korpelainen, Lozin & Zamaraev:
countably infinite collection of minimal classes

2022 B. & Cocks: uncountably infinite collection

2023 B. & Cocks: General framework for all the above classes.

The framework

Infinite grid. Insert edges according to a triple of objects (¢, 3,v)...

The framework

o 01 21 0 3 3 2202400 - €1{0,1,2,3}

The framework

o 01 21 0 3 3 220200 - €1{0,1,2,3}

The framework

o 0O 1 21 03 3 2202400 - €1{0,1,2,3}

The framework

w,'l,

t\‘«w'lt
\\ W

1\ ‘\
M‘ M‘ ,

O
//n\\ “f//n\\
AT

e {O’ 1’ 27 3}*

The framework

N7 AN

W\

WA
AN A
W

‘("5 w\ ")‘S‘"}'{i‘ \ \

Ave

KIK]
/';"
4

ARA

%,
/
/i

S {0’ 13 27 3}*

The framework

N7 AN

XK
A h
't\“\‘ i

"4(:;\‘, N hy / \‘\\\\‘\\‘\\\\
{7/ o NS\ W
AN

e
O
ANTAE

;
p

The framework

®

MR

VK

@

X

v
A
NNTA

® . ..
J ® °

N__ .
1 0O 0 1 01 0

e {0, 1}*

The framework

® /§,\ ® & : @—:
\N i

w,‘ \\\W,‘\‘ y % .
’//K\\\\ '/n\\ AT
WANTA N

Y (1,3),(2,4),(5,9),(9,11), (10, 13),... CNxN

The framework

|
|

|
“
!

Y (1,3),(2,4),(5,9),(9,11), (10, 13),... CNxN

The framework

@) — —®
I N L
o 01 21 0 3 3 2202400 - €1{0,1,2,3}
A 1 0 0 1 01 1 001 1 O 1 0O - €{01}

Y (1,3),(2,4),(5,9),(9,11), (10, 13),... CNxN

From grids to classes

Each triple & = («, 3,7y) defines an infinite graph H°, and then

G® = (G finite : G <jna H®}.

From grids to classes

Each triple & = («, 3,7y) defines an infinite graph H°, and then

G® = (G finite : G <jna H®}.

Theorem (B. & Cocks, 2023)

There exists a parameter N° relying only on & such that cw(S®) is unbounded
if and only if N® is unbounded.

N? is unbounded, for example, if o contains infinitely many 2s or 3s.

Uncountably many minimal classes

Not all classes G° of unbounded clique width are minimal, but lots are. One
simple family is as follows:

Theorem (B. & Cocks, 2022)

Let 3 =00---, v = @ and let & be any infinite uniformly recurrent word
over the alphabet {0, 1,2, 3} other than 00 - - - .
Then G'%B-Y) is a minimal hereditary class of unbounded clique width.

Uniformly recurrent: every factor w of « is guaranteed to appear in o
infinitely often, and consecutive occurrences are ‘close’.

Uncountably many minimal classes

Not all classes G° of unbounded clique width are minimal, but lots are. One
simple family is as follows:

Theorem (B. & Cocks, 2022)

Let 3 =00---, v = @ and let & be any infinite uniformly recurrent word
over the alphabet {0, 1,2, 3} other than 00 - - - .
Then G'%B-Y) is a minimal hereditary class of unbounded clique width.

Uniformly recurrent: every factor w of « is guaranteed to appear in o
infinitely often, and consecutive occurrences are ‘close’.

Sturmian sequences are an uncountably large collection of uniformly
recurrent binary sequences = uncountably many minimal classes.

Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Well, you can’t list them all. ..

... but perhaps we are now close to a complete characterisation?

Dragons

‘Power graphs’ discovered by Lozin, Razgon & Zamaraev (2018),
proved minimal by Dawar & Sankaran (2023):

Y Y) Y
d

|
N

(o9 nnn/rnnnn)

\
(o[[s][el[e[[8][s][e][8]]é)

Not part of the previous framework. Also, this class is well-quasi-ordered (if
you know what that means).

Sparse dragons

Theorem (Gurski & Wanke, 2000)

If a hereditary class is sparse, then it has unbounded clique-width if and only
if it has unbounded tree-width.

Classifying bounded tree-width in sparse graphs is a major topic in itself.

Conjecture (Cocks, 2024)

Sparse hereditary graph classes of unbounded tree-width do not contain a
minimal class of unbounded tree-width.

Thanks!

Main references:

® B. & Cocks, Uncountably many minimal hereditary classes of graphs of
unbounded clique-width, Elec. J. Combin. 29 (2022)

® B. & Cocks, A framework for minimal hereditary classes of graphs of
unbounded clique-width, SIAM J. Disc. Math. 37 (2023)

