

Characterising structure in classes with unbounded clique-width

Robert Brignall

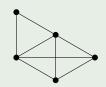
Based on joint works with subsets of Albert, Atminas, Korpelainen, Lozin, Ruškuc, Stacho & Vatter

Bristol, 27th October 2015

Setup

- Graph G = (V, E), undirected, simple (no loops, or multiple edges).
- Induced subgraph: $H \leq_{\text{ind}} G$.

Example (Graphs and induced subgraphs)



• Class: C, a hereditary collection of graphs:

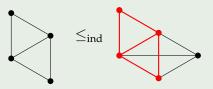
$$G \in \mathcal{C}$$
 and $H \leq_{\text{ind}} G \Longrightarrow H \in \mathcal{C}$.

(Example: set of all planar graphs.)

Setup

- Graph G = (V, E), undirected, simple (no loops, or multiple edges).
- Induced subgraph: $H \leq_{\text{ind}} G$.

Example (Graphs and induced subgraphs)



• Class: C, a hereditary collection of graphs:

$$G \in \mathcal{C}$$
 and $H \leq_{\text{ind}} G \Longrightarrow H \in \mathcal{C}$.

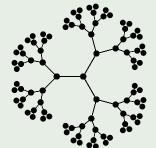
(Example: set of all planar graphs.)

Build-a-graph

Set of labels Σ . You have 4 operations to build a labelled graph:

- 1. Create a new vertex with a label $i \in \Sigma$.
- 2. Disjoint union of two previously-constructed graphs.
- 3. Join all vertices labelled *i* to all labelled *j*, where $i, j \in \Sigma$, $i \neq j$.
- 4. Relabel every vertex labelled *i* with *j*.

Example (Binary trees need at most 3 labels)



Build-a-graph

Set of labels Σ . You have 4 operations to build a labelled graph:

- 1. Create a new vertex with a label $i \in \Sigma$.
- 2. Disjoint union of two previously-constructed graphs.
- 3. Join all vertices labelled *i* to all labelled *j*, where $i, j \in \Sigma$, $i \neq j$.
- 4. Relabel every vertex labelled *i* with *j*.

- Clique-width, $cw(G) = \text{size of smallest } \Sigma$ needed to build G.
- If $H \leq_{\text{ind}} G$, then $cw(H) \leq cw(G)$.
- Clique-width of a class C

$$cw(C) = \max_{G \in C} cw(G)$$

if this exists.

Theorem (Courcelle, Makowsky and Rotics (2000))

If $cw(C) < \infty$, then any property expressible in monadic second-order (MSO₁) logic can be determined in polynomial time for C.

- MSO₁ includes many NP-hard algorithms: e.g. k-colouring ($k \ge 3$), graph connectivity, maximum independent set,...
- Generalises treewidth, critical to the proof of the Graph Minor Theorem (see next slide)
- Unlike treewidth, clique-width can cope with dense graphs

Diversion: treewidth, tw(G)

- tw(G) measures 'how like a tree' G is (tw(G) = 1) iff G is a tree).
- $\bullet \ \, \text{Bounded treewidth} \Longrightarrow \text{all problems in MSO}_2 \text{ in polynomial time}.$

Theorem (Robertson and Seymour, 1986)

For a minor-closed family of graphs C, tw(C) bounded if and only if C does not contain all planar graphs.

Planar graphs are the unique "minimal" family for treewidth.

Bounding clique-width

Question

Given a class C, is cw(C) bounded?

• $cw(G) \le 3 \cdot 2^{tw(G)-1}$ (Corneil and Rotics, 2005).

Example (Classes of bounded clique-width)

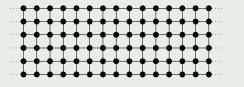
- \mathcal{F} = the class of all forests. $cw(\mathcal{F}) = 3$.
- C = all cographs = {G : G built from • by disjoint union and join} cw(C) = 2.

Plan for the rest of today

- See some classes of unbounded clique-width
- Look at minimal classes with unbounded clique-width
- See how permutations can help here
- Compare clique-width with linear clique-width
- Look at connections with well-quasi-ordering

What has unbounded clique-width?

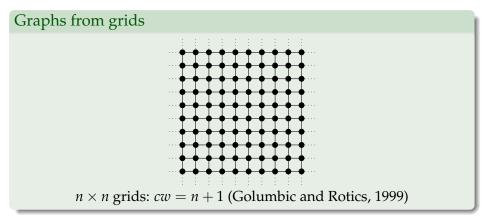
Graphs from grids



 $k \times n$ grids, fixed k: cw = O(k)

 Intuition: Unbounded clique width needs two dimensions of complexity.

What has unbounded clique-width?



 Intuition: Unbounded clique width needs two dimensions of complexity.

Classes of unbounded clique-width

Plenty of examples:

- Unit interval graphs (intersection graph of unit-length intervals)
- Split graphs (partition into clique and independent set)
- Bipartite permutation graphs (see later)
- Any class with superfactorial speed (\sim more than n^{cn} labelled graphs of order n, for any c)
- Modifications to the $n \times n$ grid gives many more...

Question

Which classes of graphs are minimal with unbounded clique-width?

Minimal classes of unbounded clique-width

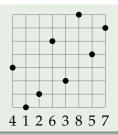
These are rarer (there's more to prove). Four known:

- Unit interval graphs [Lozin, 2011]
- Bipartite permutation graphs [Lozin, 2011]
- Split permutation graphs [Atminas, B., Lozin, Stacho, 2015+]
- Bichain graphs [Atminas, B., Lozin, Stacho, 2015+]

General method to prove minimality of ${\cal C}$

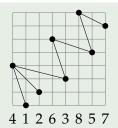
- 1. Get a structural characterisation of C
- 2. Find universal graphs U_n : contain all graphs in C on n vertices
- 3. Show $cw(U_n) = f(n)$, for some suitably-growing f.
- 4. Technical lemma: forbidding some $U_n \in \mathcal{C}$ bounds cw.

Permutations and permutation graphs



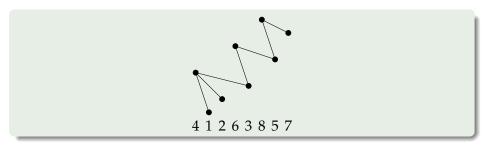
- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Make a graph G_{π} : for i < j, $ij \in E(G_{\pi})$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .

Permutations and permutation graphs



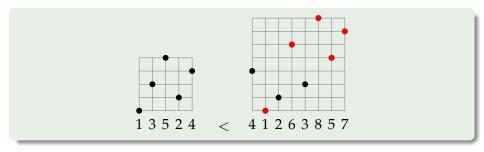
- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Make a graph G_{π} : for i < j, $ij \in E(G_{\pi})$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .

Permutations and permutation graphs



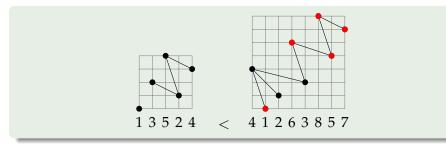
- Permutation graph = can be made from a permutation
 = comparability ∩ co-comparibility
 - = comparability graphs of dimension 2 posets

Ordering permutations: containment



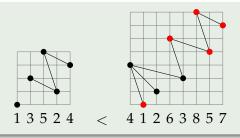
• Pattern containment: a partial order, $\sigma \leq \pi$.

Ordering permutations: containment



- Pattern containment: a partial order, $\sigma \leq \pi$.
- Draw the graphs: $G_{\sigma} \leq_{\text{ind}} G_{\pi}$.

Ordering permutations: containment



- Pattern containment: a partial order, $\sigma \leq \pi$.
- Draw the graphs: $G_{\sigma} \leq_{\text{ind}} G_{\pi}$.
- Permutation class: hereditary collection

$$\pi \in \mathcal{C}$$
 and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

Avoidance: minimal forbidden permutation characterisation:

$$C = Av(B) = \{\pi : \beta \le \pi \text{ for all } \beta \in B\}.$$

Theorem (Lozin, 2011)

Permutations	Graphs
$\pi = 321$	$G_{\pi} = $

Theorem (Lozin, 2011)

	Permutations	Graphs
Class:	$\pi = 321$ $Av(321)$	$G_{\pi} = \stackrel{\bullet}{\clubsuit}$ Bipartite permutation

Theorem (Lozin, 2011)

	Permutations	Graphs
Class: Structure:	$\pi = 321$ $Av(321)$	$G_{\pi} = \clubsuit$ Bipartite permutation

Theorem (Lozin, 2011)

	Permutations	Graphs
Class: Structure:	$\pi = 321$ $Av(321)$	$G_{\pi} = \bullet$ Bipartite permutation

Theorem (Atminas, B., Lozin, Stacho, 2015+)

D - - - - - (- (! - - - -

Split permutation graphs are a minimal class with unbounded clique-width.

Split graph = partition vertices into clique and independent set.

remittations	Graphs
Merge of $1 \dots k, j \dots 1$	Indep set + clique

C 1. .

Theorem (Atminas, B., Lozin, Stacho, 2015+)

Split permutation graphs are a minimal class with unbounded clique-width.

Split graph = partition vertices into clique and independent set.

	Permutations	Graphs
Class:	Merge of $1 k, j 1$ Av(2143, 3412)	Indep set + clique Split permutation

Theorem (Atminas, B., Lozin, Stacho, 2015+)

Split permutation graphs are a minimal class with unbounded clique-width.

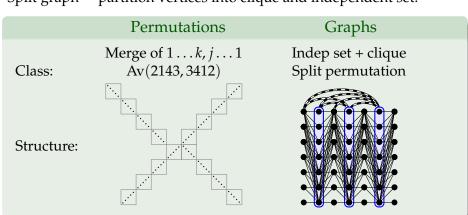
Split graph = partition vertices into clique and independent set.

Spin graph – partition vertices into enque and independent set.		
	Permutations	Graphs
Class:	Merge of $1 \dots k, j \dots 1$ Av(2143, 3412)	Indep set + clique Split permutation
Structure:		

Theorem (Atminas, B., Lozin, Stacho, 2015+)

Split permutation graphs are a minimal class with unbounded clique-width.

Split graph = partition vertices into clique and independent set.



Bichain graphs

Theorem (Atminas, B., Lozin, Stacho, 2015+)

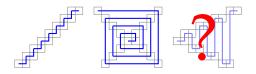
Bichain graphs are a minimal class with unbounded clique-width.

Bichain graph = union of two chains (whatever that means).

Flip edges from split permutation graphs

Split permutation → bichain

• Permutation class structure is a long 'path':



- Could find minimal classes of permutation graphs.
- Carry out edge flipping to make other graph classes.

Linear clique-width

Set of labels Σ . You have 3 operations to build a labelled graph:

- 1. Create a new vertex with a label $i \in \Sigma$.
- 2. Disjoint union of two previously-constructed graphs.
- 3. Join all vertices labelled *i* to all labelled *j*, where $i, j \in \Sigma$, $i \neq j$.
- 4. Relabel every vertex labelled *i* with *j*.

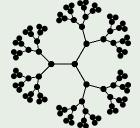
- Can only add vertices one at a time.
- Linear clique-width, $lcw(G) = \text{size of smallest } \Sigma$ to build G.

Linear clique-width

Set of labels Σ . You have 3 operations to build a labelled graph:

- 1. Create a new vertex with a label $i \in \Sigma$.
- 2. Disjoint union of two previously-constructed graphs.
- 3. Join all vertices labelled *i* to all labelled *j*, where $i, j \in \Sigma$, $i \neq j$.
- 4. Relabel every vertex labelled *i* with *j*.

Example (Binary trees need lots of labels)



Minimal linear clique-width

- Clear: unbounded cw \Longrightarrow unbounded lcw.
- Recent results about Av(321) proves the following:

Corollary (of Albert, B., Ruškuc, Vatter, 201?)

The class of bipartite permutation graphs is a minimal class with unbounded linear clique-width.

 Likely that the three other minimal unbounded cw classes have the same property.

Question

Do there exist classes that are minimal of unbounded clique-width, but not minimal of unbounded linear clique-width?

Question

When does a class have unbounded lcw, but bounded cw?

Two examples:

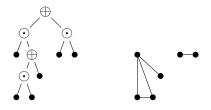
- Binary trees (cw < 3)
- Cographs (cw = 2): lcw is unbounded (Gurski and Wanke, 2005)

Heuristic connection

Classes which admit a tree structure of arbitrary height and width have unbounded linear clique-width.

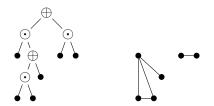
It's all about the trees

- Cographs: build from by disjoint union and join
- Construct using binary trees (\oplus = union, \odot = join):



It's all about the trees

- Cographs: build from by disjoint union and join
- Construct using binary trees (\oplus = union, \odot = join):



 Quasi-threshold graphs: build from • by disjoint union and joining 1 new vertex: trees still high and wide

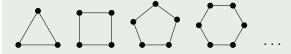
Theorem (B., Korpelainen, Vatter, 2015+)

A subclass of cographs has unbounded lcw if and only if it contains all quasi-threshold graphs, or the complement of this class.

Diversion: Infinite antichains

Antichain: set of pairwise incomparable graphs

The set of cycles forms an antichain



Paths form a labelled antichain

A class is:

- well-quasi-ordered: contains no infinite antichain.
- labelled well-quasi-ordered: contains no labelled infinite antichain.

Well-quasi-order and clique-width

Conjecture (Daligault, Rao, Thomassé, 2010)

If C is labelled well-quasi-ordered, then C has bounded clique-width.

They also asked...

Question

If C is well-quasi-ordered, must it have bounded clique-width?

Well-quasi-order and clique-width

Conjecture (Daligault, Rao, Thomassé, 2010)

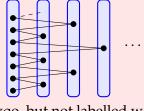
If C is labelled well-quasi-ordered, then C has bounded clique-width.

They also asked...

Question

If C is well-quasi-ordered, must it have bounded clique-width?

Answer is no (Lozin, Razgon, Zamaraev, 2015)



wqo, but not labelled wqo

Minimal unbounded cw and wqo

• The four known minimal unbounded clique-width classes satisfy:

Property

 $\mathcal C$ contains a *canonical* labelled infinite antichain $\mathfrak A$: If $\mathcal D\subset\mathcal C$ is a subclass with $|\mathcal D\cap\mathfrak A|<\infty$, then $\mathcal D$ is labelled well-quasi-ordered.

Minimal unbounded cw and wqo

• The four known minimal unbounded clique-width classes satisfy:

Property

 $\mathcal C$ contains a *canonical* labelled infinite antichain $\mathfrak A$: If $\mathcal D\subset\mathcal C$ is a subclass with $|\mathcal D\cap\mathfrak A|<\infty$, then $\mathcal D$ is labelled well-quasi-ordered.

• In each case, at most two labels are needed, so we propose:

Conjecture

Every minimal class of graphs of unbounded clique-width contains a canonical infinite antichain that uses at most two labels.

Thanks!

Main references:

- Atminas, B., Lozin & Stacho, Minimal classes of graphs of unbounded clique-width and well-quasi-ordering, arXiv 1503:01628
- B., Korpelainen & Vatter, Linear clique-width for classes of cographs, arXiv 1305:0636
- Albert, B., Ruškuc & Vatter, Rationality for subclasses of Catalan families, in preparation