Antichains and the Structure of Permutation Classes

Robert Brignall

Department of Mathematics
University of Bristol

Tuesday 3rd November, 2009

Outline

- Introduction
 - Permutation classes
 - Enumeration
 - Partial well-order and antichains
- Simple permutations
 - Intervals
 - Substitution decomposition
 - Finitely many simples
- Grid classes
 - Introduction
 - Monotone classes and partial well-order
 - Far beyond monotone
 - Nearly monotone
- 4 Summary

Outline

- Introduction
 - Permutation classes
 - Enumeration
 - Partial well-order and antichains
- Simple permutations
 - Intervals
 - Substitution decomposition
 - Finitely many simples
- Grid classes
 - Introduction
 - Monotone classes and partial well-order
 - Far beyond monotone
 - Nearly monotone
- 4 Summary

Setting the Scene

- Permutation of length n: an ordering on the symbols $1, \ldots, n$.
- \bullet For example: $\pi=15482763$.

Setting the Scene

- Permutation of length n: an ordering on the symbols $1, \ldots, n$.
- For example: $\pi = 15482763$.
- Graphical viewpoint: plot the points $(i, \pi(i))$.

• Knuth (1969): what permutations can be sorted through a stack?

• 231 is not stack-sortable.

- 231 is not stack-sortable.
- In general: can't sort any permutation with a subsequence abc such that c < a < b. (abc forms a 231 "pattern".)

Containment

• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .

Containment

• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .

Example

Containment

• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .

Example

• Containment forms a partial order on the set of all permutations.

- Containment forms a partial order on the set of all permutations.
- Downwards-closed sets in this partial order form permutation classes. i.e. $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

- Containment forms a partial order on the set of all permutations.
- Downwards-closed sets in this partial order form permutation classes. i.e. $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.
- A permutation class $\mathcal C$ can be seen to avoid certain permutations. Write $\mathcal C = \operatorname{Av}(B) = \{\pi: \beta \not\leq \pi \text{ for all } \beta \in B\}.$

- Containment forms a partial order on the set of all permutations.
- Downwards-closed sets in this partial order form permutation classes. i.e. $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.
- A permutation class $\mathcal C$ can be seen to avoid certain permutations. Write $\mathcal C = \operatorname{Av}(B) = \{\pi: \beta \not\leq \pi \text{ for all } \beta \in B\}.$
- The minimal avoidance set is the basis. It is unique but need not be finite.
- ullet E.g. the stack-sortable permutations are Av(231).

- Containment forms a partial order on the set of all permutations.
- Downwards-closed sets in this partial order form permutation classes. i.e. $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.
- A permutation class $\mathcal C$ can be seen to avoid certain permutations. Write $\mathcal C = \operatorname{Av}(B) = \{\pi: \beta \not \leq \pi \text{ for all } \beta \in B\}.$
- The minimal avoidance set is the basis. It is unique but need not be finite.
- ullet E.g. the stack-sortable permutations are Av(231).
- Graph theoretic analogue: hereditary properties of graphs (e.g. triangle-free graphs, planar graphs, ...).

Easy Examples

- $Av(21) = \{1, 12, 123, 1234, ...\}$, the increasing permutations.
- $Av(12) = \{1, 21, 321, 4321, ...\}$, the decreasing permutations.

Typical Elements

Easy Examples

- $\oplus 21 = Av(321, 312, 231) = \{1, 12, 21, 123, 132, 213, \ldots\}.$
- $\bullet \ominus 12 = Av(123, 213, 132) = \{1, 12, 21, 231, 312, 321, \ldots\}.$

Typical Elements

Exact Enumeration

- C_n permutations in C of length n.
- $\sum |\mathcal{C}_n| x^n$ is the generating function.

Example

The generating function of $\mathcal{C}=Av(12)$ is:

$$1 + x + x^2 + x^3 + \cdots = \frac{1}{1 - x}$$

Asymptotic Enumeration

Theorem (Marcus and Tardos, 2004)

For every permutation class $\mathcal C$ other than the class of all permutations, there exists a constant K such that

$$|\mathcal{C}_n| \leq K^n$$

for all n.

• Upper growth rate of C is $\limsup_{n\to\infty} \sqrt[n]{|C_n|}$.

Asymptotic Enumeration

Theorem (Marcus and Tardos, 2004)

For every permutation class $\mathcal C$ other than the class of all permutations, there exists a constant K such that

$$|\mathcal{C}_n| \leq K^n$$

for all n.

- Upper growth rate of C is $\limsup_{n\to\infty} \sqrt[n]{|C_n|}$.
- Big open question: does the growth rate, $\lim_{n\to\infty} \sqrt[n]{|\mathcal{C}_n|}$, always exist?

Av(321) vs Av(231)

 Stack sortable permutations Av(231) enumerated by the Catalan numbers. Generating function:

$$f(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = 1 + x + 2x^2 + 5x^3 + 14x^4 + \dots$$

Av(321) vs Av(231)

 Stack sortable permutations Av(231) enumerated by the Catalan numbers. Generating function:

$$f(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = 1 + x + 2x^2 + 5x^3 + 14x^4 + \dots$$

• Using the Robinson-Schensted-Knuth correspondence with Young Tableaux, $|Av(321)|_n = |Av(231)|_n$.

Av(321) vs Av(231)

 Stack sortable permutations Av(231) enumerated by the Catalan numbers. Generating function:

$$f(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = 1 + x + 2x^2 + 5x^3 + 14x^4 + \dots$$

- Using the Robinson-Schensted-Knuth correspondence with Young Tableaux, $|Av(321)|_n = |Av(231)|_n$.
- Despite being equinumerous, these two classes are very different: Av(321) contains infinite antichains and hence has uncountably many subclasses, while Av(231) does not.

• (Infinite) set of pairwise incomparable permutations.

• (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

N.B. These permutations avoid 321.

• (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

Bottom copies of 4123 must match up: the anchor.

• (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

Each point is matched in turn.

• (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

Each point is matched in turn.

• (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

Each point is matched in turn.

• (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

• Last pair cannot be embedded.

When are there antichains?

No infinite antichains.

- Words over a finite alphabet [Higman].
- Graphs closed under minors [Robertson and Seymour].

Infinite antichains.

- Graphs closed under induced subgraphs (or merely subgraphs). e.g. C_3 , C_4 , C_5 , . . .
- Permutations closed under containment.
- Tournaments, digraphs, ...

Partial Well Order

• A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Partial Well Order

• A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a permutation class given by a finite basis is pwo?

- To prove pwo Higman's theorem is useful.
- To prove not pwo find an antichain.

Partial Well Order

• A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a hereditary property given by a finite basis is wqo?

- To prove pwo Higman's theorem is useful.
- To prove not pwo find an antichain.
- Other structures: well quasi-order, not pwo, but same idea.

Outline

- Introduction
 - Permutation classes
 - Enumeration
 - Partial well-order and antichains
- Simple permutations
 - Intervals
 - Substitution decomposition
 - Finitely many simples
- Grid classes
 - Introduction
 - Monotone classes and partial well-order
 - Far beyond monotone
 - Nearly monotone
- 4 Summary

- Pick any permutation π .
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.

- Pick any permutation π .
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.

- Pick any permutation π .
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.

- Pick any permutation π .
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.
- Intervals are important in biomathematics (genetic algorithms, matching gene sequences).

Some Basic Facts

• 1 is simple, as are 12 and 21.

Some Basic Facts

- 1 is simple, as are 12 and 21.
- There are no simple permutations of length three.
- Two of length four: 2413 and 3142.

Some Basic Facts

- 1 is simple, as are 12 and 21.
- There are no simple permutations of length three.
- Two of length four: 2413 and 3142.
- The sequence goes 1, 2, 0, 2, 6, 46, 338, 2926, 28146, . . .

Theorem (Albert, Atkinson and Klazar, 2003)

The number of simple permutations is asymptotically given by

$$\frac{n!}{e^2} \left(1 - \frac{4}{n} + \frac{2}{n(n-1)} + O(n^{-3}) \right).$$

The Substitution Decomposition

• The simple permutations form the "building blocks" of all permutations, by means of the substitution decomposition.

The Substitution Decomposition

- The simple permutations form the "building blocks" of all permutations, by means of the substitution decomposition.
- This is a term taken from the more general theory of relational structures.
- Origin: Fraïssé (1953) gave a talk on "a decomposition of relations..."
- First article: Gallai (1967) used them in studying the transitive orientations of graphs.

The Substitution Decomposition

- The simple permutations form the "building blocks" of all permutations, by means of the substitution decomposition.
- This is a term taken from the more general theory of relational structures.
- Origin: Fraïssé (1953) gave a talk on "a decomposition of relations..."
- First article: Gallai (1967) used them in studying the transitive orientations of graphs.
- Frequently rediscovered in different settings under various names: modular decomposition, disjunctive decomposition, X-join...
- Möhring (1985), and Möhring and Radermacher (1984) discuss applications in combinatorial optimisation and game theory.

Break permutation into maximal proper intervals.

Break permutation into maximal proper intervals.

- Break permutation into maximal proper intervals.
- Gives a unique simple permutation, the skeleton.

• If simple has > 2 points then the blocks are unique.

- If simple has > 2 points then the blocks are unique.
- This decomposition is the substitution decomposition.

Non-uniqueness

• Simple permutation of length 2: block decomposition is not unique.

Non-uniqueness

• Simple permutation of length 2: block decomposition is not unique.

Non-uniqueness

• Simple permutation of length 2: block decomposition is not unique.

Non-uniqueness

• Underlying structure is an increasing permutation.

Using the substitution decomposition, we can say a lot about permutation classes that contain only finitely many simples [Albert and Atkinson, 2005]:

Using the substitution decomposition, we can say a lot about permutation classes that contain only finitely many simples [Albert and Atkinson, 2005]:

They have a finite basis.

Using the substitution decomposition, we can say a lot about permutation classes that contain only finitely many simples [Albert and Atkinson, 2005]:

- They have a finite basis.
- They are enumerated by readily-computed algebraic generating functions (once you know what the simple permutations are).

Using the substitution decomposition, we can say a lot about permutation classes that contain only finitely many simples [Albert and Atkinson, 2005]:

- They have a finite basis.
- They are enumerated by readily-computed algebraic generating functions (once you know what the simple permutations are).
- They are partially well-ordered.

Using the substitution decomposition, we can say a lot about permutation classes that contain only finitely many simples [Albert and Atkinson, 2005]:

- They have a finite basis.
- They are enumerated by readily-computed algebraic generating functions (once you know what the simple permutations are).
- They are partially well-ordered.

Theorem (B., Ruškuc and Vatter, 2008)

It is possible to decide whether a permutation class given by a finite basis contains infinitely many simple permutations.

Finitely Many Simples ⇒ Partially Well-Ordered

- ullet Take a class ${\cal C}$ containing a finite set ${\cal S}$ of simple permutations.
- ullet Every permutation in ${\mathcal C}$ has a skeleton from S.

Finitely Many Simples ⇒ Partially Well-Ordered

- ullet Take a class ${\mathcal C}$ containing a finite set S of simple permutations.
- ullet Every permutation in ${\mathcal C}$ has a skeleton from ${\mathcal S}$.
- Think of each $\sigma \in S$ of length n as an n-ary operation.
- ullet Starting with the permutation 1, we build every permutation in the class ${\cal C}$ by recursively using this finite set of operations.

Finitely Many Simples ⇒ Partially Well-Ordered

- ullet Take a class ${\mathcal C}$ containing a finite set S of simple permutations.
- ullet Every permutation in ${\mathcal C}$ has a skeleton from ${\mathcal S}$.
- Think of each $\sigma \in S$ of length n as an n-ary operation.
- Starting with the permutation 1, we build every permutation in the class $\mathcal C$ by recursively using this finite set of operations.
- Now use Higman's Theorem.

So what about stack sortable permutations?

 \bullet Av(231) contains only the simples 12 and 21, and so it is partially well-ordered.

So what about stack sortable permutations?

- Av(231) contains only the simples 12 and 21, and so it is partially well-ordered.
- Little is known about two-stack-sortable permutations: they are not finitely based.

Outline

- Introduction
 - Permutation classes
 - Enumeration
 - Partial well-order and antichains
- Simple permutations
 - Intervals
 - Substitution decomposition
 - Finitely many simples
- Grid classes
 - Introduction
 - Monotone classes and partial well-order
 - Far beyond monotone
 - Nearly monotone
- 4 Summary

Grid Classes

- ullet Matrix ${\mathcal M}$ whose entries are permutation classes.
- $\operatorname{Grid}(\mathcal{M})$ the grid class of \mathcal{M} : all permutations which can be "gridded" so each cell satisfies constraints of \mathcal{M} .

Example

 $\bullet \ \mathsf{Let} \ \mathcal{M} = \left(\begin{array}{ccc} \mathrm{Av}(21) & \mathrm{Av}(231) & \varnothing \\ \mathrm{Av}(123) & \varnothing & \mathrm{Av}(12) \end{array} \right).$

Grid classes are useful

• Recall: Growth rate of C is $\lim_{n\to\infty} \sqrt[n]{|C_n|}$ (if it exists).

Grid classes are useful

- Recall: Growth rate of C is $\lim_{n\to\infty} \sqrt[n]{|C_n|}$ (if it exists).
- Using grid classes: Below $\kappa \approx$ 2.20557, growth rates exist and can be characterised [Vatter]:

 \bullet κ is the lowest growth rate where we encounter infinite antichains, and hence uncountably many permutation classes.

Grid classes are useful

- Recall: Growth rate of C is $\lim_{n\to\infty} \sqrt[n]{|C_n|}$ (if it exists).
- Using grid classes: Below $\kappa \approx$ 2.20557, growth rates exist and can be characterised [Vatter]:

- \bullet κ is the lowest growth rate where we encounter infinite antichains, and hence uncountably many permutation classes.
- Cf "canonical properties" of graphs [Balogh, Bollobás and Weinreich].

Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

Example

$$\mathcal{M} = \left(egin{array}{ccc} 1 & 1 & 0 \ -1 & 0 & 1 \ 0 & 1 & -1 \end{array}
ight)$$

Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

Example

$$\mathcal{M} = \left(egin{array}{ccc} 1 & 1 & 0 \ -1 & 0 & 1 \ 0 & 1 & -1 \end{array}
ight)$$

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

Example

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

Example

Theorem (Murphy and Vatter, 2003)

The monotone grid class $Grid(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\operatorname{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

 (\Leftarrow) New shorter proof in Waton's Thesis (2007).

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\operatorname{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

 (\Leftarrow) Partial multiplication table.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $Grid(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

 $(\Leftarrow) \pm 1$ correspond to directions.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\operatorname{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

 (\Leftarrow) Form one order per arrow.

- 1 < 9 < 8 < 4.
- 5 < 10 < 6 < 7.
- **●** 2 < 3.
- 1 < 2 < 3 < 4.
 </p>
- 5 < 6.
- 10 < 9 < 8 < 7.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\operatorname{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

 (\Leftarrow) No cycles, so this gives a poset.

- 1 < 9 < 8 < 4.
- 5 < 10 < 6 < 7.
- 2 < 3.
- 1 < 2 < 3 < 4.
- 5 < 6.
- 10 < 9 < 8 < 7.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\operatorname{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

 (\Leftarrow) Linear extension: 5 < 10 < 1 < 9 < 2 < 6 < 8 < 3 < 7 < 4

Theorem (Murphy and Vatter, 2003)

The monotone grid class $Grid(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

 (\Leftarrow) Linear extension: 5 < 10 < 1 < 9 < 2 < 6 < 8 < 3 < 7 < 4

Encode by region: 3412532541.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $Grid(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

 (\Leftarrow) Linear extension: 5 < 10 < 1 < 9 < 2 < 6 < 8 < 3 < 7 < 4

- Encode by region: 3412532541.
- Higman's Theorem: {1, 2, 3, 4, 5}*
 is pwo under the subword order.
- ullet Encoding is reversible, hence $\operatorname{Grid}(\mathcal{M})$ is pwo.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\operatorname{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

 (\Rightarrow) Construct fundamental antichains that "walk" around a cycle.

When does that apply?

Question

When is a class ${\cal C}$ (a subset of) a monotone grid class?

When does that apply?

Question

When is a class C (a subset of) a monotone grid class?

Answer [Vatter]

A class ${\cal C}$ is monotone griddable if and only if it contains neither the classes

Non-monotone cells

• If a class is not monotone griddable, then perhaps it can be gridded by a matrix which is mostly monotone:

Example

Non-monotone cells

• If a class is not monotone griddable, then perhaps it can be gridded by a matrix which is mostly monotone:

• Graph must still be a forest, but now we're interested in how many non-monotone-griddable cells lie in each component.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

Proof.

Antichain element.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

Proof.

Antichain element.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.
- Permute columns and rows.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.
- Permute columns and rows.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.
- Permute columns and rows.

Theorem

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

- Antichain element.
- Two cells containing $\oplus 21$.
- Graph is a path.
- Flip columns and rows.
- Permute columns and rows.

Just one non-monotone

• Suppose the bad cell contains only finitely many simple permutations.

<u>Just one no</u>n-monotone

- Suppose the bad cell contains only finitely many simple permutations.
- Build permutations component-wise: use the substitution decomposition on the red cell, and view each component as a tree rooted on this cell.

Just one non-monotone

- Suppose the bad cell contains only finitely many simple permutations.
- Build permutations component-wise: use the substitution decomposition on the red cell, and view each component as a tree rooted on this cell.
- This defines a construction for all permutations in the grid class, which is amenable to Higman's Theorem.

Just one non-monotone

Theorem

Let $\mathcal M$ be a gridding matrix for which each component is a forest and contains at most one non-monotone cell. If every non-monotone cell contains only finitely many simple permutations, then $\operatorname{Grid}(\mathcal M)$ is pwo.

But sometimes one is too much...

 One cell containing arbitrarily long increasing oscillations next to a monotone cell is bad...

Outline

- Introduction
 - Permutation classes
 - Enumeration
 - Partial well-order and antichains
- Simple permutations
 - Intervals
 - Substitution decomposition
 - Finitely many simples
- Grid classes
 - Introduction
 - Monotone classes and partial well-order
 - Far beyond monotone
 - Nearly monotone
- 4 Summary

Summary

- Two non-monotone per component: class not pwo.
- One non-monotone but finitely many simples: class is pwo.

Summary

- Two non-monotone per component: class not pwo.
- One non-monotone but finitely many simples: class is pwo.
- To-do: one non-monotone but infinitely many simples (some antichains known).

Summary

- Two non-monotone per component: class not pwo.
- One non-monotone but finitely many simples: class is pwo.
- To-do: one non-monotone but infinitely many simples (some antichains known).

Question

Can we decide whether a permutation class given by a finite basis is pwo?

• We're closer to answering this, but still some way off.

Thanks!