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Setting the Scene

@ Permutation of length n: an ordering on the symbols 1,..., n.
@ For example: 7T = 15482763.
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Setting the Scene

@ Permutation of length n: an ordering on the symbols 1,..., n.
@ For example: 7T = 15482763.
@ Graphical viewpoint: plot the points (i, 77(/)).
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

123
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

1234
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

231
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

@ 231 is not stack-sortable.
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

@ 231 is not stack-sortable.

@ In general: can’t sort any permutation with a subsequence abc such
that ¢ < a < b. (abc forms a 231 “pattern”.)

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 5/ 35



@ A permutation T = 7(1) - - - (k) is contained in the permutation
o =0(1)c(2)---c(n) if there exists a subsequence
o(i)o(ip) -+ - o(ix) order isomorphic to T.
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Containment

@ A permutation T = 7(1) - - - (k) is contained in the permutation
o =0(1)c(2)---c(n) if there exists a subsequence
o(i)o(ip) -+ - o(ix) order isomorphic to T.

13524 42163857
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Containment

@ A permutation T = 7(1) - - - (k) is contained in the permutation
o =0(1)c(2)---c(n) if there exists a subsequence
o(i)o(ip) -+ - o(ix) order isomorphic to T.

13524 < 42163857
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Permutation Classes

@ Containment forms a partial order on the set of all permutations.
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@ Downwards-closed sets in this partial order form permutation classes.
i.e. 1€ Cand o < 7rimplies o € C.
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Permutation Classes

@ Containment forms a partial order on the set of all permutations.

@ Downwards-closed sets in this partial order form permutation classes.
i.e. 1€ Cand o < 7rimplies o € C.

@ A permutation class C can be seen to avoid certain permutations.
Write C = Av(B) = {rt: p £ mforall B € B}.
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Permutation Classes

@ Containment forms a partial order on the set of all permutations.

@ Downwards-closed sets in this partial order form permutation classes.
i.e. 1€ Cand o < 7rimplies o € C.

@ A permutation class C can be seen to avoid certain permutations.
Write C = Av(B) = {rt: p £ mforall B € B}.

@ The minimal avoidance set is the basis. It is unique but need not be
finite.

o E.g. the stack-sortable permutations are Av(231).
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Permutation Classes

@ Containment forms a partial order on the set of all permutations.

@ Downwards-closed sets in this partial order form permutation classes.
i.e. 1€ Cand o < 7rimplies o € C.

@ A permutation class C can be seen to avoid certain permutations.
Write C = Av(B) = {rt: p £ mforall B € B}.

@ The minimal avoidance set is the basis. It is unique but need not be
finite.

o E.g. the stack-sortable permutations are Av(231).

@ Graph theoretic analogue: hereditary properties of graphs (e.g.
triangle-free graphs, planar graphs, ...).
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Easy Examples

o Av(21) = {1,12,123,1234, ...}, the increasing permutations.
o Av(12) = {1,21,321,4321,...}, the decreasing permutations.

Typical Elements
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Easy Examples

o @21 = Av(321,312,231) = {1,12,21,123,132,213,...}.
o 512 = Av(123,213,132) = {1,12,21,231,312,321,...}.

Typical Elements
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Exact Enumeration

o C, — permutations in C of length n.
@ ) "|Cy|x" is the generating function.

The generating function of C = Av(12) is:

l+x+x2+x3+- =
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Asymptotic Enumeration

Theorem (Marcus and Tardos, 2004)

For every permutation class C other than the class of all permutations,
there exists a constant K such that

@ Upper growth rate of C is limsup {/|Cp|.

n—oo
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Asymptotic Enumeration

Theorem (Marcus and Tardos, 2004)

For every permutation class C other than the class of all permutations,
there exists a constant K such that

@ Upper growth rate of C is limsup {/|Cp|.

n—oo

@ Big open question: does the growth rate, lim {/|C,|, always exist?
n—oo
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Av(321) vs Av(231)

@ Stack sortable permutations Av(231) enumerated by the Catalan
numbers. Generating function:

1-1—4
f(x) zzile—l—x+2x2+5x3—|—l4x4+...
x
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Av(321) vs Av(231)

@ Stack sortable permutations Av(231) enumerated by the Catalan
numbers. Generating function:

1-1—4
f(x) zzile—l—x+2x2+5x3—|—l4x4+...
x

@ Using the Robinson-Schensted-Knuth correspondence with Young
Tableaux, |Av(321)], = |Av(231)],.
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Av(321) vs Av(231)

@ Stack sortable permutations Av(231) enumerated by the Catalan
numbers. Generating function:
1-V1i—4
f(x) = 27)( =14 x+ 22 +5x3 4 14x* + ...
X
@ Using the Robinson-Schensted-Knuth correspondence with Young
Tableaux, |Av(321)|, = |Av(231)],.
@ Despite being equinumerous, these two classes are very different:
Av(321) contains infinite antichains and hence has uncountably many
subclasses, while Av(231) does not.
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

I
o

I
o

I
[ ]

@ N.B. These permutations avoid 321.

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 12 / 35



Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

I
o

I
o

I
[ ]

@ Bottom copies of 4123 must match up: the anchor.
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

I
o

I
o

I
[ ]

@ Each point is matched in turn.
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

I
o

I
([ ]

I
[ ]

@ Each point is matched in turn.
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

I
o

I
([ ]

I
[ ]

@ Last pair cannot be embedded.
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When are there antichains?

No infinite antichains.

@ Words over a finite alphabet [Higman].

@ Graphs closed under minors [Robertson and Seymour].

Infinite antichains.

@ Graphs closed under induced subgraphs (or merely subgraphs). e.g.
G, G, G, ...

@ Permutations closed under containment.

@ Tournaments, digraphs, ...
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Partial Well Order

@ A permutation class is partially well-ordered (pwo) if it contains no
infinite antichains.

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 14 / 35



Partial Well Order

@ A permutation class is partially well-ordered (pwo) if it contains no
infinite antichains.

Can we decide whether a permutation class given by a finite basis is pwo?

@ To prove pwo — Higman's theorem is useful.

@ To prove not pwo — find an antichain.

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 14 / 35



Partial Well Order

@ A permutation class is partially well-ordered (pwo) if it contains no
infinite antichains.

Can we decide whether a hereditary property given by a finite basis is wqo?

@ To prove pwo — Higman's theorem is useful.
@ To prove not pwo — find an antichain.

@ Other structures: well quasi-order, not pwo, but same idea.
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Outline

© Simple permutations

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 15 / 35



Intervals

@ Pick any permutation 7.

@ An interval of 77 is a set of contiguous indices | = [a, b] such that
nt(l) = {m(i): i € I} is also contiguous.
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Intervals

@ Pick any permutation 7.

@ An interval of 77 is a set of contiguous indices | = [a, b] such that
nt(l) = {m(i): i € I} is also contiguous.

@ Intervals are important in biomathematics (genetic algorithms,
matching gene sequences).
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Simple Permutations

@ A simple permutation: The only intervals are singletons and the whole
thing.
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Simple Permutations

@ A simple permutation: The only intervals are singletons and the whole

thing.

Example
. °
1 e
1 °
1 °
1 °
1 e
1 °
e
1 °
1 °
1 °
1 °

T T T T T T T T 1T T T v

o 1 is simple, as are 12 and 21.
@ There are no simple permutations of length three.
@ Two of length four: 2413 and 3142.
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Decomposing Permutations

@ Simple permutations are the “building blocks” of all permutations.
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Decomposing Permutations

@ Simple permutations are the “building blocks” of all permutations.

o Break permutation into maximal proper intervals.

8 O]
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Decomposing Permutations

@ Simple permutations are the “building blocks” of all permutations.

@ Gives a unique simple permutation, the skeleton.
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Decomposing Permutations

@ Simple permutations are the “building blocks” of all permutations.

@ If simple has > 2 points then the blocks are unique.

8 O]
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Decomposing Permutations

@ Simple permutations are the “building blocks” of all permutations.
@ If simple has > 2 points then the blocks are unique.

@ This decomposition is the substitution decomposition.

8 O]
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Non-uniqueness

@ Simple permutation of length 2: block decomposition is not unique.
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Non-uniqueness

@ Simple permutation of length 2: block decomposition is not unique.
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Non-uniqueness

@ Underlying structure is an increasing permutation.
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Finitely Many Simples

Using the substitution decomposition, we can say a lot about permutation
classes that contain only finitely many simples [Albert and Atkinson, 2005]:
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Finitely Many Simples

Using the substitution decomposition, we can say a lot about permutation
classes that contain only finitely many simples [Albert and Atkinson, 2005]:

@ They have a finite basis.
@ They are enumerated by algebraic generating functions.

@ They are partially well-ordered.
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Finitely Many Simples

Using the substitution decomposition, we can say a lot about permutation
classes that contain only finitely many simples [Albert and Atkinson, 2005]:

@ They have a finite basis.
@ They are enumerated by algebraic generating functions.

@ They are partially well-ordered.

Theorem (B., Ruskuc and Vatter, 2008)

It is possible to decide whether a permutation class given by a finite basis
contains infinitely many simple permutations.
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Finitely Many Simples

Using the substitution decomposition, we can say a lot about permutation
classes that contain only finitely many simples [Albert and Atkinson, 2005]:

@ They have a finite basis.
@ They are enumerated by algebraic generating functions.

@ They are partially well-ordered.

Theorem (B., Ruskuc and Vatter, 2008)

It is possible to decide whether a permutation class given by a finite basis
contains infinitely many simple permutations.

@ There should be a graph-theoretic analogue of this result!
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Finitely Many Simples = Partially Well-Ordered

@ Take a class C containing a finite set S of simple permutations.

@ Every permutation in C has a skeleton from S.
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Finitely Many Simples = Partially Well-Ordered

@ Take a class C containing a finite set S of simple permutations.
@ Every permutation in C has a skeleton from S.
@ Think of each o € S of length n as an n-ary operation.

@ Starting with the permutation 1, we build every permutation in the
class C by recursively using this finite set of operations.
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Finitely Many Simples = Partially Well-Ordered

@ Take a class C containing a finite set S of simple permutations.
@ Every permutation in C has a skeleton from S.
@ Think of each o € S of length n as an n-ary operation.

@ Starting with the permutation 1, we build every permutation in the
class C by recursively using this finite set of operations.

@ Now use Higman’'s Theorem.
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Outline

© Grid classes
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Grid Classes

@ Matrix M whose entries are permutation classes.

@ Grid(M) the grid class of M: all permutations which can be
“gridded” so each cell satisfies constraints of M.

Av(21) Av(231) @

Lo ( AV((123)) (@ ) Av(12) >
;.-. € Grid(M)
o 1

v
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Grid classes are useful

@ Recall: Growth rate of C is lim {/|Cp| (if it exists).
n—odo
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Grid classes are useful

@ Recall: Growth rate of C is lim {/|Cp| (if it exists).
n—odo

@ Using grid classes: Below x ~ 2.20557, growth rates exist and can be
characterised [Vatter]:

@ « is the lowest growth rate where we encounter infinite antichains, and
hence uncountably many permutation classes.
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Grid classes are useful

@ Recall: Growth rate of C is lim {/|Cp| (if it exists).
n—odo

@ Using grid classes: Below x ~ 2.20557, growth rates exist and can be
characterised [Vatter]:

@ « is the lowest growth rate where we encounter infinite antichains, and
hence uncountably many permutation classes.

o Cf “canonical properties” of graphs [Balogh, Bollobas and Weinreich].
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Monotone Grid Classes

@ Special case: all cells of M are Av(21) or Av(12).

@ Rewrite M as a matrix with entries in {0,1, —1}.

1 1 0 .
0 1 —1 T

I
|
—
o
=
Y
L]
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Monotone Grid Classes

@ Special case: all cells of M are Av(21) or Av(12).

@ Rewrite M as a matrix with entries in {0,1, —1}.

110\ 1 I .
° | .

0 1 -1 el
,,,,, L

I
|
—
o
=
Sy
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The Graph of a Matrix

@ Graph of a matrix, G(M), formed by connecting together all non-zero
entries that share a row or column and are not “separated” by any
other nonzero entry.

C 0 0 D

0 0 0 D

v
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The Graph of a Matrix

@ Graph of a matrix, G(M), formed by connecting together all non-zero
entries that share a row or column and are not “separated” by any
other nonzero entry.

C D
&

D i C

D

v
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The Graph of a Matrix

@ Graph of a matrix, G(M), formed by connecting together all non-zero
entries that share a row or column and are not “separated” by any
other nonzero entry.

C D
&

D i C

D

v
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Monotone Grids and Partial Well-Order

Theorem (Murphy and Vatter, 2003)

The monotone grid class Grid(M) is pwo if and only if G(M) is a forest,
i.e. G(M) contains no cycles.

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 27 / 35



Monotone Grids and Partial Well-Order

Theorem (Murphy and Vatter, 2003)

The monotone grid class Grid(M) is pwo if and only if G(M) is a forest,
i.e. G(M) contains no cycles.

(=) Construct infinite antichains that “walk” around a cycle.

O

v
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When does that apply?

When is a class C (a subset of) a monotone grid class?
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When does that apply?

When is a class C (a subset of) a monotone grid class?

Answer [Vatter]

A class C is monotone griddable if and only if it contains neither the classes
@21 nor S12.
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Non-monotone cells

@ If a class is not monotone griddable, then perhaps it can be gridded by
a matrix which is mostly monotone:

Av(21)

0

0

Av(21)
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Non-monotone cells

@ If a class is not monotone griddable, then perhaps it can be gridded by
a matrix which is mostly monotone:

Av(21) Av(21)

©12

G221 —— Av(12)

®21

@ To be pwo, graph must still be a forest, but now the number of
non-monotone-griddable cells in each component matters.
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A grid class whose graph has a component containing two or more
non-monotone-griddable classes is not pwo.

Eo

@ WLOG graph is a path connecting two
bad cells.

O

v
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A grid class whose graph has a component containing two or more
non-monotone-griddable classes is not pwo.

@ WLOG graph is a path connecting two
) U bad cells.

(B D @ Permute rows and columns.

O

v

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 30 /35



A grid class whose graph has a component containing two or more
non-monotone-griddable classes is not pwo.

@ WLOG graph is a path connecting two
B bad cells.

@ Permute rows and columns.

O

v

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 30 /35



A grid class whose graph has a component containing two or more
non-monotone-griddable classes is not pwo.

@ WLOG graph is a path connecting two
B bad cells.

@ Permute rows and columns.

O

v

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 30 /35



A grid class whose graph has a component containing two or more
non-monotone-griddable classes is not pwo.

(j @ WLOG graph is a path connecting two
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O

v
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A grid class whose graph has a component containing two or more
non-monotone-griddable classes is not pwo.

Proof.

B D @ WLOG graph is a path connecting two
D bad cells.

@ Permute rows and columns.

@ Flip rows and columns.
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Two is too many

A grid class whose graph has a component containing two or more
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A grid class whose graph has a component containing two or more
non-monotone-griddable classes is not pwo.

? @ WLOG graph is a path connecting two

[ ]

o——* bad cells.
Ef;J_E =T @ Permute rows and columns.
o @ Flip rows and columns.
1 l ;[_ @ Build antichain with grid pin sequences.
L
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A grid class whose graph has a component containing two or more
non-monotone-griddable classes is not pwo.

Proof.

@ WLOG graph is a path connecting two
@ bad cells.
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©

Permute rows and columns.
Flip rows and columns.

Build antichain with grid pin sequences.
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A grid class whose graph has a component containing two or more
non-monotone-griddable classes is not pwo.

) ).
@ @ Flip rows and columns.
@ Build antichain with grid pin sequences.
°
°

1
3
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WLOG graph is a path connecting two
bad cells.

Permute rows and columns.

Flip and permute back.

Still have an antichain.
O
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Just one non-monotone

@ Suppose the bad cell contains only finitely many simple permutations.
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Just one non-monotone

@ Suppose the bad cell contains only finitely many simple permutations.

@ Build permutations component-wise: use the substitution
decomposition on the red cell, and view each component as a tree
rooted on this cell.

@ This defines a construction for all permutations in the grid class,
which is amenable to Higman's Theorem.
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Just one non-monotone

Let M be a gridding matrix for which each component is a forest and
contains at most one non-monotone cell. If every non-monotone cell
contains only finitely many simple permutations, then Grid(M) is pwo.

e
el
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But sometimes one is too much...

@ One cell containing arbitrarily long increasing oscillations next to a
monotone cell is bad...

I
®

|
|
.
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Outline

©Q Summary
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Summary

@ Two non-monotone per component: class not pwo.

@ One non-monotone but finitely many simples: class is pwo.
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Summary

@ Two non-monotone per component: class not pwo.
@ One non-monotone but finitely many simples: class is pwo.

@ To-do: one non-monotone but infinitely many simples
(some antichains known).

Can we decide whether a permutation class given by a finite basis is pwo?

@ There are still a lot of obstacles, but maybe we're a bit closer.

Robert Brignall (Bristol) Structure of Permutation Classes 8th February 2010 34 /35



Thanks!
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