
Anti
hains and the Stru
ture of Permutation ClassesRobert BrignallUniversity of Bristol, UKMonday 8th February, 2010
Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 1 / 35



Outline1 Introdu
tionPermutation 
lassesEnumerationPartial well-order and anti
hains2 Simple permutationsIntervalsSubstitution de
ompositionFinitely many simples3 Grid 
lassesIntrodu
tionMonotone 
lasses and partial well-orderFar beyond monotoneNearly monotone4 SummaryRobert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 2 / 35



Outline1 Introdu
tionPermutation 
lassesEnumerationPartial well-order and anti
hains2 Simple permutationsIntervalsSubstitution de
ompositionFinitely many simples3 Grid 
lassesIntrodu
tionMonotone 
lasses and partial well-orderFar beyond monotoneNearly monotone4 SummaryRobert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 3 / 35



Setting the S
enePermutation of length n: an ordering on the symbols 1, . . . , n.For example: π = 15482763.
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Setting the S
enePermutation of length n: an ordering on the symbols 1, . . . , n.For example: π = 15482763.Graphi
al viewpoint: plot the points (i , π(i)).Example
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Sta
k SortingKnuth (1969): what permutations 
an be sorted through a sta
k?Example
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k SortingKnuth (1969): what permutations 
an be sorted through a sta
k?Example 231
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Sta
k SortingKnuth (1969): what permutations 
an be sorted through a sta
k?Example 1 23231 is not sta
k-sortable.
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Sta
k SortingKnuth (1969): what permutations 
an be sorted through a sta
k?Example
· · · a · · · b · · · 
 · · ·

231 is not sta
k-sortable.In general: 
an't sort any permutation with a subsequen
e ab
 su
hthat 
 < a < b. (ab
 forms a 231 �pattern�.)Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 5 / 35



ContainmentA permutation τ = τ(1) · · · τ(k) is 
ontained in the permutation
σ = σ(1)σ(2) · · · σ(n) if there exists a subsequen
e
σ(i1)σ(i2) · · · σ(ik ) order isomorphi
 to τ.
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ontained in the permutation
σ = σ(1)σ(2) · · · σ(n) if there exists a subsequen
e
σ(i1)σ(i2) · · · σ(ik ) order isomorphi
 to τ.Example
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Permutation ClassesContainment forms a partial order on the set of all permutations.
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Permutation ClassesContainment forms a partial order on the set of all permutations.Downwards-
losed sets in this partial order form permutation 
lasses.i.e. π ∈ C and σ ≤ π implies σ ∈ C.A permutation 
lass C 
an be seen to avoid 
ertain permutations.Write C = Av(B) = {π : β 6≤ π for all β ∈ B}.The minimal avoidan
e set is the basis. It is unique but need not be�nite.E.g. the sta
k-sortable permutations are Av(231).Graph theoreti
 analogue: hereditary properties of graphs (e.g.triangle-free graphs, planar graphs, . . .).Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 7 / 35



Easy ExamplesAv(21) = {1, 12, 123, 1234, . . .}, the in
reasing permutations.Av(12) = {1, 21, 321, 4321, . . .}, the de
reasing permutations.Typi
al Elements
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Easy Examples
⊕21 = Av(321, 312, 231) = {1, 12, 21, 123, 132, 213, . . .}.
⊖12 = Av(123, 213, 132) = {1, 12, 21, 231, 312, 321, . . .}.Typi
al Elements
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Exa
t Enumeration
Cn � permutations in C of length n.
∑ |Cn|xn is the generating fun
tion.ExampleThe generating fun
tion of C = Av(12) is:1+ x + x2 + x3 + · · · =

11− x
Robert Brignall (Bristol) Stru
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Asymptoti
 EnumerationTheorem (Mar
us and Tardos, 2004)For every permutation 
lass C other than the 
lass of all permutations,there exists a 
onstant K su
h thatlim supn→∞

n√|Cn | ≤ K .Upper growth rate of C is lim supn→∞

n√|Cn |.
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Asymptoti
 EnumerationTheorem (Mar
us and Tardos, 2004)For every permutation 
lass C other than the 
lass of all permutations,there exists a 
onstant K su
h thatlim supn→∞

n√|Cn | ≤ K .Upper growth rate of C is lim supn→∞

n√|Cn |.Big open question: does the growth rate, limn→∞

n√|Cn|, always exist?
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Av(321) vs Av(231)Sta
k sortable permutations Av(231) enumerated by the Catalannumbers. Generating fun
tion:f (x) =
1−√1− 4x2x = 1+ x + 2x2 + 5x3 + 14x4 + . . .
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Av(321) vs Av(231)Sta
k sortable permutations Av(231) enumerated by the Catalannumbers. Generating fun
tion:f (x) =
1−√1− 4x2x = 1+ x + 2x2 + 5x3 + 14x4 + . . .Using the Robinson-S
hensted-Knuth 
orresponden
e with YoungTableaux, |Av(321)|n = |Av(231)|n.Despite being equinumerous, these two 
lasses are very di�erent:Av(321) 
ontains in�nite anti
hains and hen
e has un
ountably manysub
lasses, while Av(231) does not.
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In�nite Anti
hains(In�nite) set of pairwise in
omparable permutations.
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In�nite Anti
hains(In�nite) set of pairwise in
omparable permutations.Example (In
reasing Os
illating Anti
hain)
N.B. These permutations avoid 321.Robert Brignall (Bristol) Stru
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In�nite Anti
hains(In�nite) set of pairwise in
omparable permutations.Example (In
reasing Os
illating Anti
hain)
Bottom 
opies of 4123 must mat
h up: the an
hor.Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 12 / 35
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In�nite Anti
hains(In�nite) set of pairwise in
omparable permutations.Example (In
reasing Os
illating Anti
hain)
Last pair 
annot be embedded.Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 12 / 35



When are there anti
hains?No in�nite anti
hains.Words over a �nite alphabet [Higman℄.Graphs 
losed under minors [Robertson and Seymour℄.In�nite anti
hains.Graphs 
losed under indu
ed subgraphs (or merely subgraphs). e.g.C3,C4,C5, . . .Permutations 
losed under 
ontainment.Tournaments, digraphs, . . .
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Partial Well Order
A permutation 
lass is partially well-ordered (pwo) if it 
ontains noin�nite anti
hains.
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Partial Well Order
A permutation 
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Partial Well Order
A permutation 
lass is partially well-ordered (pwo) if it 
ontains noin�nite anti
hains.QuestionCan we de
ide whether a hereditary property given by a �nite basis is wqo?To prove pwo � Higman's theorem is useful.To prove not pwo � �nd an anti
hain.Other stru
tures: well quasi-order, not pwo, but same idea.
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IntervalsPi
k any permutation π.An interval of π is a set of 
ontiguous indi
es I = [a, b] su
h that
π(I ) = {π(i) : i ∈ I} is also 
ontiguous.Example
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IntervalsPi
k any permutation π.An interval of π is a set of 
ontiguous indi
es I = [a, b] su
h that
π(I ) = {π(i) : i ∈ I} is also 
ontiguous.Intervals are important in biomathemati
s (geneti
 algorithms,mat
hing gene sequen
es).Example
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Simple PermutationsA simple permutation: The only intervals are singletons and the wholething.
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Simple PermutationsA simple permutation: The only intervals are singletons and the wholething.Example
1 is simple, as are 12 and 21.There are no simple permutations of length three.Two of length four: 2413 and 3142.Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 17 / 35



De
omposing PermutationsSimple permutations are the �building blo
ks� of all permutations.Example
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De
omposing PermutationsSimple permutations are the �building blo
ks� of all permutations.Break permutation into maximal proper intervals.Example
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De
omposing PermutationsSimple permutations are the �building blo
ks� of all permutations.Gives a unique simple permutation, the skeleton.Example
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De
omposing PermutationsSimple permutations are the �building blo
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De
omposing PermutationsSimple permutations are the �building blo
ks� of all permutations.If simple has > 2 points then the blo
ks are unique.This de
omposition is the substitution de
omposition.Example
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Non-uniquenessSimple permutation of length 2: blo
k de
omposition is not unique.Example

Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 19 / 35



Non-uniquenessSimple permutation of length 2: blo
k de
omposition is not unique.Example

Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 19 / 35



Non-uniquenessSimple permutation of length 2: blo
k de
omposition is not unique.Example
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Non-uniquenessUnderlying stru
ture is an in
reasing permutation.Example
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Finitely Many SimplesUsing the substitution de
omposition, we 
an say a lot about permutation
lasses that 
ontain only �nitely many simples [Albert and Atkinson, 2005℄:
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Finitely Many SimplesUsing the substitution de
omposition, we 
an say a lot about permutation
lasses that 
ontain only �nitely many simples [Albert and Atkinson, 2005℄:They have a �nite basis.They are enumerated by algebrai
 generating fun
tions.They are partially well-ordered.Theorem (B., Ru²ku
 and Vatter, 2008)It is possible to de
ide whether a permutation 
lass given by a �nite basis
ontains in�nitely many simple permutations.There should be a graph-theoreti
 analogue of this result!Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 20 / 35



Finitely Many Simples ⇒ Partially Well-Ordered
Take a 
lass C 
ontaining a �nite set S of simple permutations.Every permutation in C has a skeleton from S .
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Finitely Many Simples ⇒ Partially Well-Ordered
Take a 
lass C 
ontaining a �nite set S of simple permutations.Every permutation in C has a skeleton from S .Think of ea
h σ ∈ S of length n as an n-ary operation.Starting with the permutation 1, we build every permutation in the
lass C by re
ursively using this �nite set of operations.Now use Higman's Theorem.Robert Brignall (Bristol) Stru
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Grid ClassesMatrix M whose entries are permutation 
lasses.
Grid(M) the grid 
lass of M: all permutations whi
h 
an be�gridded� so ea
h 
ell satis�es 
onstraints of M.ExampleLet M =

( Av(21) Av(231) ∅Av(123) ∅ Av(12) ).
∈ Grid(M)
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Grid 
lasses are useful
Re
all: Growth rate of C is limn→∞

n√|Cn| (if it exists).
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Grid 
lasses are useful
Re
all: Growth rate of C is limn→∞

n√|Cn| (if it exists).Using grid 
lasses: Below κ ≈ 2.20557, growth rates exist and 
an be
hara
terised [Vatter℄:0 1 φ 2 κ

κ is the lowest growth rate where we en
ounter in�nite anti
hains, andhen
e un
ountably many permutation 
lasses.
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Grid 
lasses are useful
Re
all: Growth rate of C is limn→∞

n√|Cn| (if it exists).Using grid 
lasses: Below κ ≈ 2.20557, growth rates exist and 
an be
hara
terised [Vatter℄:0 1 φ 2 κ

κ is the lowest growth rate where we en
ounter in�nite anti
hains, andhen
e un
ountably many permutation 
lasses.Cf �
anoni
al properties� of graphs [Balogh, Bollobás and Weinrei
h℄.
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Monotone Grid ClassesSpe
ial 
ase: all 
ells of M are Av(21) or Av(12).Rewrite M as a matrix with entries in {0, 1,−1}.Example
M =





1 1 0
−1 0 10 1 −1 


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The Graph of a MatrixGraph of a matrix, G (M), formed by 
onne
ting together all non-zeroentries that share a row or 
olumn and are not �separated� by anyother nonzero entry.Example
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Monotone Grids and Partial Well-OrderTheorem (Murphy and Vatter, 2003)The monotone grid 
lass Grid(M) is pwo if and only if G (M) is a forest,i.e. G (M) 
ontains no 
y
les.
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Monotone Grids and Partial Well-OrderTheorem (Murphy and Vatter, 2003)The monotone grid 
lass Grid(M) is pwo if and only if G (M) is a forest,i.e. G (M) 
ontains no 
y
les.Proof.(⇒) Constru
t in�nite anti
hains that �walk� around a 
y
le.
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When does that apply?QuestionWhen is a 
lass C (a subset of) a monotone grid 
lass?
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When does that apply?QuestionWhen is a 
lass C (a subset of) a monotone grid 
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lass C is monotone griddable if and only if it 
ontains neither the 
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Non-monotone 
ellsIf a 
lass is not monotone griddable, then perhaps it 
an be gridded bya matrix whi
h is mostly monotone:Example
























Av(21) 0 0 Av(21)0 ⊖12 0 0
⊕21 0 Av(12) 00 0 0 ⊕21
























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h is mostly monotone:Example
























Av(21) Av(21)
⊖12

⊕21 Av(12)
⊕21























To be pwo, graph must still be a forest, but now the number ofnon-monotone-griddable 
ells in ea
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Two is too manyTheoremA grid 
lass whose graph has a 
omponent 
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lasses is not pwo.Proof. WLOG graph is a path 
onne
ting twobad 
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Two is too manyTheoremA grid 
lass whose graph has a 
omponent 
ontaining two or morenon-monotone-griddable 
lasses is not pwo.Proof. WLOG graph is a path 
onne
ting twobad 
ells.Permute rows and 
olumns.Flip rows and 
olumns.Build anti
hain with grid pin sequen
es.Flip and permute ba
k.Still have an anti
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Just one non-monotoneSuppose the bad 
ell 
ontains only �nitely many simple permutations.
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Just one non-monotoneSuppose the bad 
ell 
ontains only �nitely many simple permutations.Build permutations 
omponent-wise: use the substitutionde
omposition on the red 
ell, and view ea
h 
omponent as a treerooted on this 
ell.This de�nes a 
onstru
tion for all permutations in the grid 
lass,whi
h is amenable to Higman's Theorem.
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Just one non-monotoneTheoremLet M be a gridding matrix for whi
h ea
h 
omponent is a forest and
ontains at most one non-monotone 
ell. If every non-monotone 
ell
ontains only �nitely many simple permutations, then Grid(M) is pwo.

Robert Brignall (Bristol) Stru
ture of Permutation Classes 8th February 2010 31 / 35



But sometimes one is too mu
h...One 
ell 
ontaining arbitrarily long in
reasing os
illations next to amonotone 
ell is bad...
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Summary
Two non-monotone per 
omponent: 
lass not pwo.One non-monotone but �nitely many simples: 
lass is pwo.
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Summary
Two non-monotone per 
omponent: 
lass not pwo.One non-monotone but �nitely many simples: 
lass is pwo.To-do: one non-monotone but in�nitely many simples(some anti
hains known).QuestionCan we de
ide whether a permutation 
lass given by a �nite basis is pwo?There are still a lot of obsta
les, but maybe we're a bit 
loser.
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Thanks!
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