

From permutations to graphs well-quasi-ordering and infinite antichains

Robert Brignall Joint work with Atminas, Korpelainen, Lozin and Vatter

9th December 2014

Orderings on Structures

• Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, . . .

Orderings on Structures

- Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, . . .
- Give your family an ordering.
 E.g. graph minor, induced subgraph, permutation containment,
 ...

Orderings on Structures

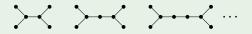
- Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, ...
- Give your family an ordering.
 E.g. graph minor, induced subgraph, permutation containment,
 ...
- Does your ordering contain infinite antichains?
 i.e. an infinite set of pairwise incomparable elements.

Example ((Induced) subgraph antichains)

Cycles:

$$\triangle$$
 \square \triangle \bigcirc ...

"Split end" graphs:



When are there antichains?

No infinite antichains = well-quasi-ordered.

- Words over a finite alphabet with subword ordering [Higman, 1952].
- Trees ordered by topological minors [Kruskal 1960; Nash-Williams, 1963]
- Graphs closed under minors [Robertson and Seymour, 1983—2004].

Infinite antichains.

- Graphs closed under induced subgraphs (or merely subgraphs).
- Permutations closed under containment.
- Tournaments, digraphs, posets, ... with their natural induced substructure ordering.

Algorithms inside well-quasi-ordered sets

- Polynomial-time recognition: is one graph a minor of another?
- Fixed-parameter tractability: e.g. graphs with vertex cover at most *k* can be recognised in polynomial time.

Miscellany

- Well-quasi-order = nice structure. Useful for other problems (e.g. enumeration)
- Connections with logic: Kruskal's Tree Theorem is unproveable in Peano arithmetic [Friedman, 2002]
- Antichains are pretty! (See later)
- It is fun [Kříž and Thomas, 1990]
- *Because it's there.* [Mallory]

Formal definition

- Quasi order: reflexive transitive relation.
- Partial order: quasi order + asymmetric.

Definition

Let (S, \leq) be a quasi-ordered (or partially-ordered) set. Then S is said to be well quasi ordered (wqo) under \leq if it

- is well-founded (no infinite descending chain), and
- contains no infinite antichain (set of pairwise incomparable elements).
- Well founded: usually trivial for finite combinatorial objects. This is all about the antichains.

My objects aren't wqo, what can I do?

Don't panic! Maybe you could restrict to a subcollection?

Example: Cographs as induced subgraphs

```
Cographs = graphs containing no induced P_4 = closure of K_1 under complementation and disjoint union.
```

- Cographs are well-quasi-ordered. [Damaschke, 1990]
- Learn to stop worrying and love the antichains! [sorry, Kubrick]

Question

In your favourite ordering, which downsets contain infinite antichains?

• Downset (or hereditary property, or class): set $\mathcal C$ of objects such that

$$G \in \mathcal{C}$$
 and $H \leq G$ implies $H \in \mathcal{C}$.

Examples

- Triangle-free graphs: downset under (induced) subgraphs. Not wqo.
- Cographs: downset under induced subgraphs. Wqo.
- Planar graphs: downset under graph minor. Wqo.
- Words over {0,1} with no '00' factor: downset under factor order. Not wgo: 010, 0110, 01110, 011110,...

Minimal forbidden elements

Downsets often defined by the minimal forbidden elements.

Examples

- Triangle-free graphs: K_3 free as (induced) subgraph.
- Cographs: Free(P_4).
- Planar graphs: $\{K_5, K_{3,3}\}$ -minor free graphs [Wagner's Theorem]
- Pattern-avoiding permutations: Av(321) (see later).
- Confusingly, the set of minimal forbidden elements is an antichain!
- Graph Minor Theorem ⇒ every minor-closed class has finitely many forbidden elements.

Decision procedures

Question

In your favourite ordering, which downsets contain infinite antichains?

Known decision procedures

- Graph minors: no antichains anywhere!
- Subgraph order: a downset is wqo if and only if it contains neither

 Δ □ ♦ ♦ ··· nor > > → ··· [Ding, 1992]
- Factor order: downsets of words over a finite alphabet [Atminas, Lozin & Moshkov, 2013]

Theorem (Cherlin & Latka, 2000)

Any downset with k minimal forbidden elements is wow iff it doesn't contain any of the infinite antichains in a finite collection Λ_k .

Plan for the rest of today

Ordering of the day

Induced subgraph ordering, $H \leq_{\text{ind}} G$.

Question

For which m, n is the following true?

The set of permutation graphs with no induced P_m or K_n is wqo.

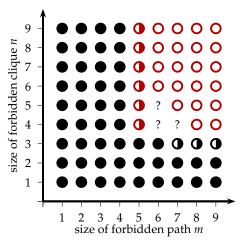
We'll:

- Build some antichains;
- Find structure to prove wqo.

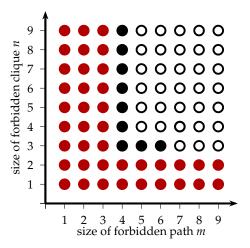
Motivation?

- The 'right' level of difficulty: Interestingly complex, but tractable.
- Demonstration of some recently-developed structural theory.
- Expansion of the graph \longleftrightarrow permutation interplay.

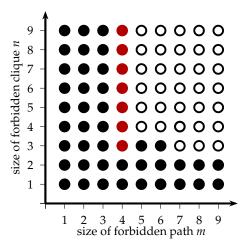
Forbidding paths and cliques



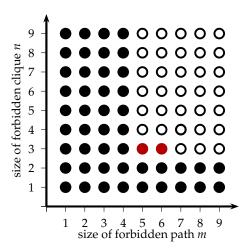
- Graphs wqo
- Permutation graphs wqo, graphs not wqo
- O = Permutation graphs not wqo



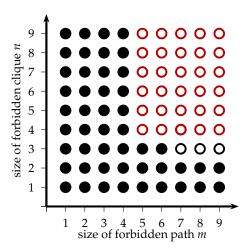
These classes are trivially wqo.



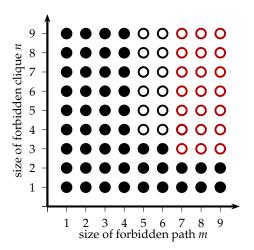
Cographs are wqo [Damaschke, 1990]



P₆, K₃-free graphs are wqo [Atminas and Lozin, 2014]

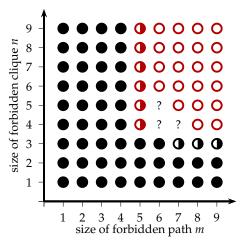


P₅, K₄-free graphs are not wqo [Korpelainen and Lozin, 2011]



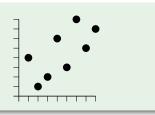
P₇, K₃-free graphs are not wqo [Korpelainen and Lozin, 2011b]

Forbidding paths and cliques



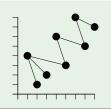
- Graphs wqo
- Permutation graphs wqo, graphs not wqo
- O = Permutation graphs not wqo

Permutation graphs



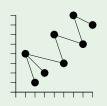
- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Make a graph G_{π} : for i < j, $ij \in E(G_{\pi})$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .

Permutation graphs



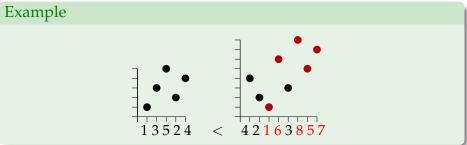
- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Make a graph G_{π} : for i < j, $ij \in E(G_{\pi})$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .

Permutation graphs



- Permutation graph = can be made from a permutation
 = comparability ∩ co-comparibility
 = comparability graphs of dimension 2 posets
- Lots of polynomial time algorithms here (e.g. MAXCLIQUE, TREEWIDTH)

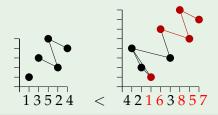
Ordering permutations: containment



• Pattern containment: a partial order, $\sigma \leq \pi$.

Ordering permutations: containment

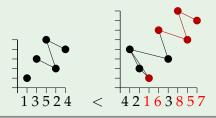
Example



- Pattern containment: a partial order, $\sigma \leq \pi$.
- Draw the graphs: $G_{\sigma} \leq_{\text{ind}} G_{\pi}$.

Ordering permutations: containment

Example



- Pattern containment: a partial order, $\sigma \leq \pi$.
- Draw the graphs: $G_{\sigma} \leq_{\text{ind}} G_{\pi}$.
- Permutation class: downset in this ordering:

$$\pi \in \mathcal{C}$$
 and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

Avoidance: minimal forbidden permutation characterisation:

$$C = Av(B) = \{\pi : \beta \not\leq \pi \text{ for all } \beta \in B\}.$$

$$\sigma \leq \pi \Longrightarrow G_{\sigma} \leq_{\text{ind}} G_{\pi}$$

This means

Av(B) is wqo $\Longrightarrow \{G_{\beta} : \beta \in B\}$ -free permutation graphs are wqo.

Conversely, the perm \rightarrow graph mapping is not injective:

P_4 in two ways

Open Problem

Av(B) is wqo $\stackrel{?}{\Longleftrightarrow} \{G_{\beta} : \beta \in B\}$ -free permutation graphs are wqo.

How to convert antichains

• For a graph *G*, define

$$\Pi(G) = \{\text{permutations } \pi : G_{\pi} \cong G\}.$$

e.g.
$$\Pi(P_4) = \{2413, 3142\}$$
, and $\Pi(K_5) = \{54321\}$.

• Given a permutation antichain

$$A = \{\alpha_1, \alpha_2, \dots\},\$$

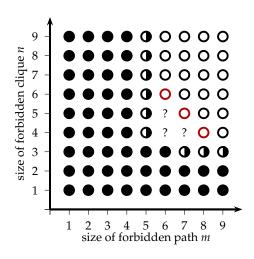
want each $\Pi(G_{\alpha_i})$, to contain as few permutations as possible.

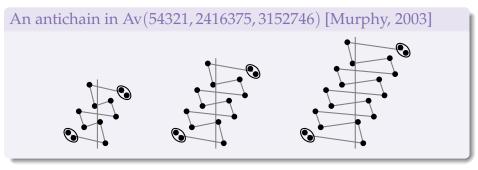
Fact

$$G_{\alpha_i} \not\leq G_{\alpha_i}$$
 iff $\sigma \not\leq \alpha_i$ for all $\sigma \in \Pi(G_{\alpha_i})$.

• So for each $\sigma \in \Pi(G_{\alpha_i})$, it suffices to find $\tau \leq \sigma$ such that $\tau \not\leq \alpha_j$ for every j.

Three permutation antichains required



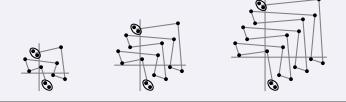


For every π in the above antichain:

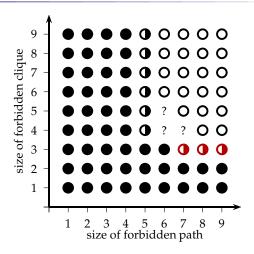
- $|\Pi(G_{\pi})| = 4$, and we know what they are.
- $\pi^{-1} \in \Pi(G_{\pi})$ contains 51423, but π does not.
- Other permutations in $\Pi(G_{\pi})$ can be handled similarly.

The other two antichains

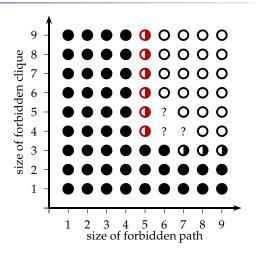
P_6 , K_6 -free permutation graphs [B., 2012]



 P_7 , K_4 -free permutation graphs [Murphy & Vatter, 2003]

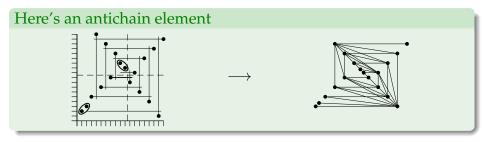


• Known: P_m , K_3 -free permutation graphs are wqo [Lozin and Mayhill, 2011]



- Known: P_m , K_3 -free permutation graphs are wqo [Lozin and Mayhill, 2011]
- Todo: P_5 , K_n -free permutation graphs are wqo, for all n.

• P_5 , $K_{126923785921975}$ -free permutation graphs are wqo, but P_5 -free permutation graphs are not wqo.



• This antichain needs arbitrarily large cliques.

The permutation problem

Theorem

The class of permutations Av $(n \cdots 21, 24153, 31524)$ *is wqo.*

- $G_{n\cdots 21}\cong K_n$
- $G_{24153} \cong G_{31524} \cong P_5$ (and these are the only two permutations).
- So Av($n \cdots 21, 24153, 31524$) corresponds to P_5, K_n -free permutation graphs.

Corollary

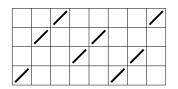
The class of P_5 , K_n -free permutation graphs is wqo.

Proving the theorem – Step 1

Proposition

The simple permutations of $Av(n \cdots 21, 24153, 31524)$ are griddable.

- Simple permutations are 'building blocks' (c.f. prime graphs)
- Griddable = can draw on a picture like this:



Proof

- Induction on *n*.
- Key step: in graph terms, limit the size of the largest matching in a prime graph

Theorem (Albert, Ruškuc, Vatter, 2014)

If the simple permutations in a class are geometrically griddable, then the class is wqo.

'Geometrically griddable' is stricter than 'griddable'

$$GGrid() \rightarrow P_4$$
-free split permutation graphs

is a subclass of:

$$Grid() \rightarrow Split permutation graphs$$

Aim: take gridding from Step 1 and refine to a geometric one

Step 2 – refine the gridding

Proposition

The simple permutations of $Av(n \cdots 21, 24153, 31524)$ are griddable without NW corners.

NW corners and cycles

NW corner = configuration shown in red

Step 2 – refine the gridding

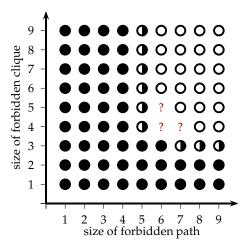
Proposition

The simple permutations of $Av(n \cdots 21, 24153, 31524)$ are griddable without NW corners.

NW corners and cycles

- NW corner = configuration shown in red
- Cycle = closed dotted line
- No NW corners ⇒ no cycles!
- No cycles \Rightarrow gridding is geometric \Rightarrow class is wqo

The question marks



- Three classes remain: $\{P_6, K_5\}$, $\{P_6, K_4\}$ and $\{P_7, K_4\}$.
- Not griddable (in the sense used here)
- None of our antichain construction tricks work

Thanks!

Main reference:

Atminas, B., Korpelainen, Lozin & Vatter, Well-quasi-order for permutation graphs omitting a path and a clique, arXiv 1312:5907