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Setup

• Graph G = (V, E), undirected, simple (no loops, or multiple
edges).

• Induced subgraph: H ≤ind G.

Example (Graphs and induced subgraphs)

• Class: C, a hereditary property of graphs:

G ∈ C and H ≤ind G =⇒ H ∈ C.

(Example: set of all planar graphs.)
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• Class: C, a hereditary property of graphs:

G ∈ C and H ≤ind G =⇒ H ∈ C.
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Build-a-graph

Set of labels Σ. You have 4 operations to build a labelled graph:
1. Create a new vertex with a label i ∈ Σ.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j, where i, j ∈ Σ, i 6= j.
4. Relabel every vertex labelled i with j.

Example (Binary trees need at most 3 labels)
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1. Create a new vertex with a label i ∈ Σ.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j, where i, j ∈ Σ, i 6= j.
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• Clique-width, cw(G) = size of smallest Σ needed to build G.
• If H ≤ind G, then cw(H) ≤ cw(G).
• Clique-width of a class C

cw(C) = max
G∈C

cw(G)

if this exists.



Motivation

Theorem (Courcelle, Makowsky and Rotics (2000))

If cw(C) < ∞, then any property expressible in monadic second-order
(MSO1) logic can be determined in polynomial time for C.

• MSO1 includes many NP-hard algorithms: e.g. k-colouring
(k ≥ 3), graph connectivity, maximum independent set,. . .

• Generalises treewidth, critical to the proof of the Graph Minor
Theorem (see next slide)

• Unlike treewidth, clique-width can cope with dense graphs



Diversion: treewidth, tw(G)

• tw(G) measures ‘how like a tree’ G is (tw(G) = 1 iff G is a tree).
• Bounded treewidth =⇒ all problems in MSO2 in polynomial time.

Theorem (Robertson and Seymour, 1986)

For a minor-closed family of graphs C, tw(C) bounded if and only if C does
not contain all planar graphs.

• Planar graphs are the unique “minimal” family for treewidth.

Question
Can we get a similar theorem for clique width?



Plan for the rest of today

• Bounded vs unbounded clique-width
• Look at minimal classes with unbounded clique-width
• See how permutations can help here
• Compare clique-width with linear clique-width
• Look at connections with well-quasi-ordering



Bounding clique-width

Question
Given a class C, is cw(C) bounded?

• cw(G) ≤ 3 · 2tw(G)−1 (Corneil and Rotics, 2005).
• Rank-width: rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1 (Oum and Seymour,

2006) – critical for algorithmic consequences.

Example (Classes of bounded clique-width)
• F = the class of all forests. cw(F ) = 3.
• C = all cographs
= {G : G built from by disjoint union and join}
cw(C) = 2.



What has unbounded clique-width?

Graphs from grids

n× k grids, fixed k: cw = O(k)

• Intuition: Unbounded clique width needs two dimensions of
complexity.



What has unbounded clique-width?

Graphs from grids

n× n grids: cw = n + 1 (Golumbic and Rotics, 1999)

• Intuition: Unbounded clique width needs two dimensions of
complexity.



Classes of unbounded clique-width

Plenty of examples:
• Unit interval graphs (intersection graph of unit-length intervals)
• Split graphs (partition into clique and independent set)
• Bipartite permutation graphs (see later)
• Any class with superfactorial speed

(∼more than ncn labelled graphs of order n, for any c)
• Modifications to the n× n grid gives many more. . .

Question
Which classes of graphs are minimal with unbounded clique-width?



Minimal classes of unbounded clique-width

These are rarer (there’s more to prove). Four known:
• Unit interval graphs [Lozin, 2011]
• Bipartite permutation graphs [Lozin, 2011]
• Split permutation graphs [Atminas, B., Lozin, Stacho, 2015+]
• Bichain graphs [Atminas, B., Lozin, Stacho, 2015+]

General method to prove minimality of C
1. Get a structural characterisation of C
2. Find universal graphs Un: contain all graphs in C on n vertices
3. Show cw(Un) = f (n), for some suitably-growing f .
4. Technical lemma: forbidding some Un ∈ C bounds cw.



Permutations and permutation graphs

4 1 2 6 3 8 5 7

• Permutation π = π(1) · · ·π(n)
• Make a graph Gπ: for i < j, ij ∈ E(Gπ) iff π(i) > π(j).
• Note: n · · · 21 becomes Kn.
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Permutations and permutation graphs

4 1 2 6 3 8 5 7

• Permutation graph = can be made from a permutation



Ordering permutations: containment

1 3 5 2 4 < 4 1 2 6 3 8 5 7

• Pattern containment: a partial order, σ ≤ π.

• Draw the graphs: Gσ ≤ind Gπ.
• Permutation class: hereditary collection

π ∈ C and σ ≤ π implies σ ∈ C.
• Avoidance: minimal forbidden permutation characterisation:

C = Av(B) = {π : β 6≤ π for all β ∈ B}.
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Av(321) vs Bipartite permutation graphs

Theorem (Lozin, 2011)
Bipartite permutation graphs are a minimal class with unbounded
clique-width.

Permutations Graphs

π = 321 Gπ =

Class: Av(321) Bipartite permutation

Structure:
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Split permutation graphs

Theorem (Atminas, B., Lozin, Stacho, 2015+)
Split permutation graphs are a minimal class with unbounded clique-width.

Split graph = partition vertices into clique and independent set.

Permutations Graphs

Merge of 1 . . . k, j . . . 1 Indep set + clique

Class: Av(2143, 3412) Split permutation

Structure:
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Bichain graphs

Theorem (Atminas, B., Lozin, Stacho, 2015+)
Bichain graphs are a minimal class with unbounded clique-width.

Bichain graph = union of two chains (whatever that means).

Flip edges from split permutation graphs

Split permutation → bichain



More minimal classes?

• Permutation class structure is a long ‘path’:

?
• Could find minimal classes of permutation graphs.
• Carry out edge flipping to make other graph classes.

The bad news
It looks like there are going to be lots of minimal classes with
unbounded clique-width.



Linear clique-width

Set of labels Σ. You have 3 operations to build a labelled graph:
1. Create a new vertex with a label i ∈ Σ.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j, where i, j ∈ Σ, i 6= j.
4. Relabel every vertex labelled i with j.

• Can only add vertices one at a time.
• Linear clique-width, lcw(G) = size of smallest Σ to build G.
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Set of labels Σ. You have 3 operations to build a labelled graph:
1. Create a new vertex with a label i ∈ Σ.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j, where i, j ∈ Σ, i 6= j.
4. Relabel every vertex labelled i with j.

Example (Binary trees need lots of labels)



Minimal linear clique-width

• Clear: unbounded cw =⇒ unbounded lcw.
• Recent results about Av(321) proves the following:

Corollary (of Albert, B., Ruškuc, Vatter, 201?)
The class of bipartite permutation graphs is a minimal class with
unbounded linear clique-width.

• Likely that the three other minimal unbounded cw classes have
the same property.

Question
Do there exist classes that are minimal of unbounded clique-width, but not
minimal of unbounded linear clique-width?



cw versus lcw

Question
When does a class have unbounded lcw, but bounded cw?

Two examples:
• Binary trees (cw ≤ 3)
• Cographs (cw = 2): lcw is unbounded (Gurski and Wanke, 2005)

Heuristic connection
Classes which admit a tree structure of arbitrary height and width
have unbounded linear clique-width.



Cographs as trees

• Cographs: build from by disjoint union and join
• Construct using binary trees (⊕ = union, � = join):

⊕
��

⊕
�

• Trees can be arbitrarily high and wide, so lcw is unbounded.



Inside cographs

• Quasi-threshold graphs: build from by disjoint union and
joining 1 new vertex

⊕
��

⊕
�

• Can use ⊕ freely: trees still arbitrarily high and wide, lcw
unbounded.

• Any further restriction: width or height gets bounded. lcw
bounded.



Inside cographs

• Quasi-threshold graphs: build from by disjoint union and
joining 1 new vertex

⊕
��

⊕
�

Theorem (B., Korpelainen, Vatter, 2015+)
A subclass of cographs has unbounded lcw if and only if it contains all
quasi-threshold graphs, or the complement of this class.



Diversion: Infinite antichains

• Antichain: set of pairwise incomparable graphs

The set of cycles forms an antichain

· · ·

Paths form a labelled antichain
· · ·

A class is:
• well-quasi-ordered: contains no infinite antichain.
• labelled well-quasi-ordered: contains no labelled infinite

antichain.



Well-quasi-order and clique-width

Conjecture (Daligault, Rao, Thomassé, 2010)
If C is labelled well-quasi-ordered, then C has bounded clique-width.

They also asked. . .

Question
If C is well-quasi-ordered, must it have bounded clique-width?

Answer is no (Lozin, Razgon, Zamaraev, 2015)

. . .

wqo, but not labelled wqo



Well-quasi-order and clique-width

Conjecture (Daligault, Rao, Thomassé, 2010)
If C is labelled well-quasi-ordered, then C has bounded clique-width.

They also asked. . .

Question
If C is well-quasi-ordered, must it have bounded clique-width?

Answer is no (Lozin, Razgon, Zamaraev, 2015)

. . .

wqo, but not labelled wqo



Minimal unbounded cw and wqo

• The four known minimal unbounded clique-width classes satisfy:

Property
C contains a canonical labelled infinite antichain A:
If D ⊂ C is a subclass with |D ∩A| < ∞, then D is labelled
well-quasi-ordered.

• In each case, at most two labels are needed, so we propose:

Conjecture
Every minimal class of graphs of unbounded clique-width contains a
canonical infinite antichain that uses at most two labels.
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Thanks!
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