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Permutation Structure

Definition
For a permutation o = s1S; ... Sp:
» A sequence is any set of symbols s;,,s;,,...,s; fromo
with iy <ip < ... <.
» A segment is a sequence of adjacent symbols,
S, Si+1, ey Si+j'
> An interval or block of o is a segment s;sj ;1 ...Sj4j, i
which the set of values is contiguous:

» o is irreducible if it contains no segment of the formi,i + 1.
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Wreath Product |

Definition
The wreath product of the set of permutations X with the set of
permutations Y is the set X ' Y of permutations

O =aQ109...0k

such that:
() each qj is an interval,
(i) each «;j is order isomorphic to a permutation of Y,
(iii) if for every i we pick a symbol a; from «j, then a;a, ... ay is
order isomorphic to a permutation in X.
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Example

» X ={1,12}, Y = {1,12,21}:

» XY ={1,12,21,123,132, 213, 1234, 1243, 2134, 2143}.
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v

If X and Y are closed then X (Y is closed.
If X and Y are finitely based, is X 'Y finitely based?

Not true — Atkinson proves A(21) ¢ A(321654) has infinite
basis.

Half the problem: which classes Y obey
X finitely based = X 'Y finitely based?
Y has the Wreath Finite Basis Property (WFBP).

v

v

v

Example
Y = {1}. Then XY = X for any class X.
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» Atkinson, in “Restricted Permutations”.

Example
The profile of 2346751 is

2346751" = 2431

because of the segments 234, 67, 5 and 1.
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Profiles I

» View profile o* as “collapsing” maximal consecutive
increasing sequences from o.
Or ...

» “collapsing” maximal intervals of o order isomorphic to
elements from | = A(21) = {1,12,123,...}.

Generalised ...

» “collapsing” maximal intervals of o order isomorphic to
permutations from an arbitrary class Y.
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Profiles IlI

Definition
For any closed class Y, the permutation ¢ has Y -profile

o) =s18,...5m
if o can be partitioned into segments
0 = 0102...0m

subject to

() each oj is a non-empty interval, order isomorphic to a
permutation from Y,

(i) oi < ojifandonlyifs; <s;.
Made unique by first picking o3 maximally, then o, then o3, etc.
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Profiles IV

Example
Let Y = A(231), the stack sortable permutations.

» What is the Y -profile of 0 = 243516877

» Answer: oY) = 213,
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Profiles & the Wreath Product

Theorem
For any closed classes X and Y,

o € XY ifand only ifo(Y) € X.

Proof (=)

» Decompose o into the intervals defined by the Y -profile,
o =0 (01,00,...,0k).

» Take any known decomposition o = 7 (71,72, ...,7) With
T e X.

» “Superimpose” 1q,...,7 Over oy, ..., 0.

» Claim: Every oj has the right-hand end of some 7, within it.

» Thus

O'(Y)%TEX:>O'(Y)EX.
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Theorem
| possesses the WFBP.
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» Any basis element ¢ of X 1| is irreducible by Lemma 1.
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Theorem
| possesses the WFBP.

Proof.

» Any basis element ¢ of X 1| is irreducible by Lemma 1.

v

Moreover, o ¢ X, so there exists (3 < o in the basis of X.

v

Now construct an irreducible permutation ¢’ so that
=o' go.

» By Lemma 2, we know |¢’| < 2|3| — 1. By Lemma 1, ¢’
must be a basis element of X 1.

Thus ¢ = ¢/, and so the basis element of X 1 | is bounded,
since X is finitely based.

v

O
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A New Approach to WFBP |

Rewrite Lemma 2 in terms of profiles:

» Lemma 2. Let § be any permutation and ¢ a permutation
minimal subject to

(i) B=o,

(i) o isirreducible.
Then |o| < 2|5] — 1.
Becomes...

» Lemma 2b. Let 8 and o be any permutations with 3 < o*.
If w is minimal subject to

fw' sw=so
then |w| < 2|5] — 1.

» Proof. is almost identical.
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Theorem
| possesses the WFBP.

Proof.

» Take any basis element o of X 1 1.
c¢g Xl = o ¢X.

» There exists a basis element 3 of X such that 5 < o*.

» Construct a new permutation w with 7 < w* < w < o, of
bounded length in terms of |3|.

> w* ¢ XsowégXl.Butw <o eB(Xl)sow=ocand
o] <2|B| - 1.
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Generalising the New Approach

» How do we prove Lemma 2b?
(i) Embed the permutation 5 = b, ... by as a subsequence
Si;,- -, Sj Of 0.
(i) Include the subsequence s;, .. .s;, in our new permutation

w.
(iii) For each pair s;,s;,,, add symbols to w from o so the

subsequence s;, .. .,s;, is preserved in the profile w*.
(iv) For X1, we must add at most one symbol per pair, hence

jwl <181+ (18] = 1).

» In general: When can we do this, and how many symbols
need to be added?
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(some i,]) is the smallest interval of & containing both s; and s;.

» Denoted Ui<>j .

> o is unique for each pair (i, }).
Definition

The right extension of o with symbols s;, s; is the maximal
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Definition

The minimal block of o = s ... s, containing symbols s; and s;

(some i,]) is the smallest interval of o containing both s; and s;.
> Denoted 5.

> o, is unique for each pair (i, j).

Definition
The up extension of o with symbols s;, s; is the position k such
that sy is maximal and i < k < j, written U,(i,]).




Structure from Pairs of Symbols |

Definition
The minimal block of o = s ... s, containing symbols s; and s;
(some i,]) is the smallest interval of o containing both s; and s;.

» Denoted o—i<>j .

> o, is unique for each pair (i, j).
Definition

The down extension of o with symbols s;, s; is the position k
such that sy is minimal and i < k < j, written D, (i, ]).
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Structure from Pairs of Symbols Il

» For a pair of positions i, j of a permutation o, the 8 primary
extensions.

» Use these to take further extensions, the 16 secondary
extensions.

» Then the 32 tertiary extensions, ..., the 2"t2 n-ary
extensions ...

» n-ary extensions may not exist. Must eventually reach the
edges of the minimal block.
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Definition
An n-ary extended block of ¢ is the permutation formed by
taking symbols with positions given by:

» An n-ary extension.

» The (n — 1)-ary “parent” extension.

» The primary “parent” extension, and the original i, j.

Definition
The set of n-ary extended blocks of o on pair (i,]) is £,(i,]; n).
It is a subset of the generalised set of all 2"*2 possible n-ary
extended blocks,

E(n).



WFBP & Extended Blocks |

Theorem



WFBP & Extended Blocks |

Theorem
LetY = A(f1,...,0m), and suppose

dgs.t.Vee&(q), Ik € {1,

Then Y possesses the WFBP.

..,m}st o e



WFBP & Extended Blocks |

Theorem
LetY = A(f1,...,0m), and suppose

JdgstVeecé&(q),Ik e {1,....m}st. Gk < e.

Then Y possesses the WFBP.
Proof.

» Invoke Lemma 2b: embed basis elements of a class X
within basis elements of X Y.



WFBP & Extended Blocks |

Theorem
LetY = A(f1,...,0m), and suppose

JdgstVeecé&(q),Ik e {1,....m}st. Gk < e.

Then Y possesses the WFBP.
Proof.

» Invoke Lemma 2b: embed basis elements of a class X
within basis elements of X Y.

» For each pair Sij Sii1» the minimal block Ui?im must involve
a basis element g of Y.



WFBP & Extended Blocks |

Theorem
LetY = A(f1,...,0m), and suppose

JdgstVeecé&(q),Ik e {1,....m}st. Gk < e.

Then Y possesses the WFBP.
Proof.
» Invoke Lemma 2b: embed basis elements of a class X
within basis elements of X 1 Y.
» For each pair Sij Sii1» the minimal block Ui?,im must involve
a basis element g of Y.

» Take extensions. Either:
(i) There exists a g-ary extension, which involves f.
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Proof (ctd).
Or:

(i) No g-ary extensions exist: we reach the boundaries of

Ji?i,ﬂ' Then gk appears within these boundaries, and
separates s; froms; ;.

» Thus we bound basis elements w of X 'Y by

lwl<p+(2(Q@-1)+r)(p—-1)

where:
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Proof (ctd).
Or:

(i) No g-ary extensions exist: we reach the boundaries of

Ji,O.iJH' Then gk appears within these boundaries, and

separates s; froms; ,.
» Thus we bound basis elements w of X 'Y by

lwl<p+(2(Q@-1)+r)(p—-1)

where;:

(i) p = maximum length of basis elements in X.
(i) r = maximum length of basis elementsin Y.

» Hence XY is finitely based.
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Applications: Classes with WFBP

v

Stack sortable permutations, A(231). Every ¢ € £(3)
involves 231.

v

Separable permutations, .4(2413,3142). Every € € £(3)
involves 2413 or 3142.

A(p) for g € {132,312,213}.
All finite classes.
Intersections Y1 N Yoy, ...

v

v

v
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Where Next?

» Extensions sufficient, but necessary?
» The class .A(123) may provide a counter-example:

Endless extensions avoiding 123, but does .4(123) still
have WFBP?

» What do the extended block sets £(n) look like?
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