Finite Basis Results of Wreath Products R.L.F. Brignall robertb@mcs.st-and.ac.uk http://www.rbrignall.org.uk School of Mathematics and Statistics University of St Andrews PP05, Thursday 10th March, 2005 ## Introduction ### Some Structural Considerations Permutation Structure The Wreath Product Profiles ## Approaching the Wreath Finite Basis Property (WFBP) Existing Approaches A New Approach Generalising the New Approach ### **Extensions & Extended Blocks** Structure from Pairs of Symbols WFBP & Extended Blocks Application to WFBP ## Definition ## For a permutation $\sigma = s_1 s_2 \dots s_n$: - A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$. - A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$. - ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous: ### Definition For a permutation $\sigma = s_1 s_2 \dots s_n$: - ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$. - A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \dots, s_{i+j}$. - ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous: ## Definition For a permutation $\sigma = s_1 s_2 \dots s_n$: - ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$. - A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$. - ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous: ## Definition For a permutation $\sigma = s_1 s_2 \dots s_n$: - ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$. - A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$. - ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous: ## Definition For a permutation $\sigma = s_1 s_2 \dots s_n$: - ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$. - ▶ A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$. - ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous: ## Definition The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations $$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$ - (i) each α_i is an interval, - (ii) each α_i is order isomorphic to a permutation of Y, - (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X. ## Definition The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations $$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$ - (i) each α_i is an interval, - (ii) each α_i is order isomorphic to a permutation of Y, - (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X. ## Definition The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations $$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$ - (i) each α_i is an interval, - (ii) each α_i is order isomorphic to a permutation of Y, - (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X. ## Definition The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations $$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$ - (i) each α_i is an interval, - (ii) each α_i is order isomorphic to a permutation of Y, - (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X. # Example \rightarrow $X = \{1, 12\}, Y = \{1, 12, 21\}:$ \triangleright X \setminus Y = {1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143}. # Example $X = \{1, 12\}, Y = \{1, 12, 21\}$: \triangleright X \ Y = {1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143} # Example \rightarrow $X = \{1, 12\}, Y = \{1, 12, 21\}:$ \triangleright X \ Y = {1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143} # Example $\rightarrow X = \{1, 12\}, Y = \{1, 12, 21\}:$ \triangleright X \ Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\} # Example \rightarrow $X = \{1, 12\}, Y = \{1, 12, 21\}$: $X \setminus Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}.$ ## Example $\rightarrow X = \{1, 12\}, Y = \{1, 12, 21\}:$ \triangleright *X* \(\cdot\) Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}. - ▶ If X and Y are closed then X \ Y is closed. - If X and Y are finitely based, is X ≀ Y finitely based? - Not true Atkinson proves A(21) ≀ A(321654) has infinite basis. - ► Half the problem: which classes Y obey *X* finitely based \Rightarrow *X* \wr *Y* finitely based? Y has the Wreath Finite Basis Property (WFBP). ## Example - ▶ If X and Y are closed then X \ Y is closed. - If X and Y are finitely based, is X \ Y finitely based? - Not true Atkinson proves A(21) ≀ A(321654) has infinite basis. - ► Half the problem: which classes Y obey *X* finitely based \Rightarrow *X* \wr *Y* finitely based? Y has the Wreath Finite Basis Property (WFBP). ## Example - If X and Y are closed then X \ Y is closed. - If X and Y are finitely based, is X \ Y finitely based? - Not true Atkinson proves A(21) A(321654) has infinite basis. - ► Half the problem: which classes Y obey X finitely based ⇒ X \ Y finitely based? Y has the Wreath Finite Basis Property (WFBP). # Example - If X and Y are closed then X \ Y is closed. - If X and Y are finitely based, is X \ Y finitely based? - Not true Atkinson proves A(21) A(321654) has infinite basis. - ▶ Half the problem: which classes Y obey *X* finitely based \Rightarrow *X* ? Y finitely based? Y has the Wreath Finite Basis Property (WFBP). ## Example - If X and Y are closed then X \ Y is closed. - If X and Y are finitely based, is X \ Y finitely based? - Not true Atkinson proves A(21) A(321654) has infinite basis. - ▶ Half the problem: which classes Y obey *X* finitely based \Rightarrow *X* ≀ Y finitely based? Y has the Wreath Finite Basis Property (WFBP). ## Example - If X and Y are closed then X \ Y is closed. - If X and Y are finitely based, is X \ Y finitely based? - Not true Atkinson proves A(21) A(321654) has infinite basis. - ▶ Half the problem: which classes Y obey X finitely based ⇒ X ≀ Y finitely based? Y has the Wreath Finite Basis Property (WFBP). ## Example Atkinson, in "Restricted Permutations". Example The profile of 2346751 is $$2346751^* = 2431$$ because of the segments 234, 67, 5 and 1. Atkinson, in "Restricted Permutations". # Example The profile of 2346751 is $$2346751^* = 2431$$ because of the segments 234, 67, 5 and 1. ▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ . ## Or .. • "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}$. #### Generalised ... ▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ . ## Or ... • "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}$. #### Generalised .. ▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ . ## Or ... • "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}$. #### Generalised .. ▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ . ### Or ... • "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}$. #### Generalised ... ▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ . ## Or ... • "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}.$ #### Generalised ... ### Definition For any closed class Y, the permutation σ has Y-profile $$\sigma^{(Y)} = s_1 s_2 \dots s_m$$ if σ can be partitioned into segments $$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$ subject to - (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y, - (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$ ### Definition For any closed class Y, the permutation σ has Y-profile $$\sigma^{(Y)} = s_1 s_2 \dots s_m$$ if σ can be partitioned into segments $$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$ subject to (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y, (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$ ### Definition For any closed class Y, the permutation σ has Y-profile $$\sigma^{(Y)} = s_1 s_2 \dots s_m$$ if σ can be partitioned into segments $$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$ ## subject to - (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y, - (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$ ### Definition For any closed class Y, the permutation σ has Y-profile $$\sigma^{(Y)} = s_1 s_2 \dots s_m$$ if σ can be partitioned into segments $$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$ # subject to - (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y, - (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$. ### Definition For any closed class Y, the permutation σ has Y-profile $$\sigma^{(Y)} = s_1 s_2 \dots s_m$$ if σ can be partitioned into segments $$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$ ## subject to - (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y, - (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$. ### Definition For any closed class Y, the permutation σ has Y-profile $$\sigma^{(Y)} = s_1 s_2 \dots s_m$$ if σ can be partitioned into segments $$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$ ## subject to - (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y, - (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$. ## Profiles III #### Definition For any closed class Y, the permutation σ has Y-profile $$\sigma^{(Y)} = s_1 s_2 \dots s_m$$ if σ can be partitioned into segments $$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$ ### subject to - (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y, - (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$. Made unique by first picking σ_1 maximally, then σ_2 , then σ_3 , etc. # Example Let Y = A(231), the stack sortable permutations. ▶ What is the Y-profile of $\sigma = 24351687$? # Example Let Y = A(231), the stack sortable permutations. ▶ What is the Y-profile of σ = 24351687? # Example Let Y = A(231), the stack sortable permutations. ▶ What is the Y-profile of $\sigma = 24351687$? # Example Let Y = A(231), the stack sortable permutations. ▶ What is the Y-profile of $\sigma = 24351687$? # Example Let Y = A(231), the stack sortable permutations. ▶ What is the Y-profile of $\sigma = 24351687$? # Example Let Y = A(231), the stack sortable permutations. ▶ What is the Y-profile of $\sigma = 24351687$? # Example Let Y = A(231), the stack sortable permutations. ▶ What is the Y-profile of $\sigma = 24351687$? #### **Theorem** For any closed classes X and Y, $$\sigma \in X \wr Y$$ if and only if $\sigma^{(Y)} \in X$. - ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$. - ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$. - ▶ "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$. - ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it. - ► Thus $$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$ #### **Theorem** For any closed classes X and Y, $$\sigma \in X \wr Y$$ if and only if $\sigma^{(Y)} \in X$. ### Proof (\Leftarrow) is easy! - ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$. - ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$. - ▶ "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$. - ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it. - ► Thus $$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$ #### **Theorem** For any closed classes X and Y, $$\sigma \in X \wr Y$$ if and only if $\sigma^{(Y)} \in X$. - ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$. - ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$. - ▶ "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$. - ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it. - ► Thus $$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$ #### **Theorem** For any closed classes X and Y, $$\sigma \in X \wr Y$$ if and only if $\sigma^{(Y)} \in X$. - ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$. - ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$. - ▶ "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$. - ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it. - ► Thus $$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$ #### **Theorem** For any closed classes X and Y, $$\sigma \in X \wr Y$$ if and only if $\sigma^{(Y)} \in X$. - ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$. - ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$. - "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$. - ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it. - ► Thus $$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$ #### **Theorem** For any closed classes X and Y, $$\sigma \in X \wr Y \text{ if and only if } \sigma^{(Y)} \in X.$$ - ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$. - ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$. - "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$. - ▶ Claim: Every σ_i has the right-hand end of some τ_{i} within it. - ► Thus $$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$ #### **Theorem** For any closed classes X and Y, $$\sigma \in X \wr Y$$ if and only if $\sigma^{(Y)} \in X$. - ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$. - ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$. - "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$. - ▶ Claim: Every σ_i has the right-hand end of some τ_{i} within it. - ► Thus $$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$ - Atkinson, Restricted Permutations and the Wreath Product, 2002. - ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to - (i) β is irreducible, - (ii) $\beta \notin X$. - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \preceq \sigma$, - (ii) σ is irreducible. - Then $|\sigma| \leq 2|\beta| 1$. - Atkinson, Restricted Permutations and the Wreath Product, 2002. - ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to - (i) β is irreducible. - (ii) $\beta \notin X$. - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \preccurlyeq \sigma$, - (ii) σ is irreducible Then $|\sigma| \leq 2|\beta| - 1$. - Atkinson, Restricted Permutations and the Wreath Product, 2002. - ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to - (i) β is irreducible, - (ii) $\beta \notin X$. - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \leqslant \sigma$, - (ii) σ is irreducible. - Then $|\sigma| \leq 2|\beta| 1$. - Atkinson, Restricted Permutations and the Wreath Product, 2002. - ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to - (i) β is irreducible, - (ii) $\beta \notin X$. - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \leqslant \sigma$, (ii) σ is irreducible - Then $|\sigma| \leq 2|\beta| 1$. - Atkinson, Restricted Permutations and the Wreath Product, 2002. - ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to - (i) β is irreducible, - (ii) $\beta \notin X$. - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \preccurlyeq \sigma$, - (ii) σ is irreducible. Then $|\sigma| \leq 2|\beta| - 1$ - Atkinson, Restricted Permutations and the Wreath Product, 2002. - ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to - (i) β is irreducible, - (ii) $\beta \notin X$. - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \preccurlyeq \sigma$, - (ii) σ is irreducible. Then $|\sigma| \leq 2|\beta| - 1$ - Atkinson, Restricted Permutations and the Wreath Product, 2002. - ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to - (i) β is irreducible, - (ii) $\beta \notin X$. - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \preccurlyeq \sigma$, - (ii) σ is irreducible. Then $|\sigma| \leq 2|\beta| - 1$ - Atkinson, Restricted Permutations and the Wreath Product, 2002. - ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to - (i) β is irreducible, - (ii) $\beta \notin X$. - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \preccurlyeq \sigma$, - (ii) σ is irreducible. Then $|\sigma| \leq 2|\beta| - 1$. # Theorem I possesses the WFBP. - Any basis element σ of X \(\cdot\) is irreducible by Lemma 1. - ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X - Now construct an irreducible permutation σ' so that $$\beta \preccurlyeq \sigma' \preccurlyeq \sigma.$$ - ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ'' must be a basis element of $X \wr I$. - ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based. # Theorem I possesses the WFBP. - Any basis element σ of X ≀ I is irreducible by Lemma 1. - ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X. - Now construct an irreducible permutation σ' so that $$\beta \preccurlyeq \sigma' \preccurlyeq \sigma.$$ - ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$. - ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based. # Theorem I possesses the WFBP. - ▶ Any basis element σ of $X \wr I$ is irreducible by Lemma 1. - ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X. - Now construct an irreducible permutation σ' so that $$\beta \preccurlyeq \sigma' \preccurlyeq \sigma.$$ - ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$. - ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based. # Theorem I possesses the WFBP. - Any basis element σ of X ≀ I is irreducible by Lemma 1. - ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X. - Now construct an irreducible permutation σ' so that $$\beta \preccurlyeq \sigma' \preccurlyeq \sigma$$. - ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$. - ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based. # Theorem I possesses the WFBP. - Any basis element σ of X ≀ I is irreducible by Lemma 1. - ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X. - ▶ Now construct an irreducible permutation σ' so that $$\beta \preccurlyeq \sigma' \preccurlyeq \sigma$$. - ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$. - ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based. #### **Theorem** I possesses the WFBP. - Any basis element σ of X ≀ I is irreducible by Lemma 1. - ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X. - Now construct an irreducible permutation σ' so that $$\beta \preccurlyeq \sigma' \preccurlyeq \sigma$$. - ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$. - ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based. ### Rewrite Lemma 2 in terms of profiles: - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \leq \sigma$, - (ii) σ is irreducible. Then $|\sigma| \leq 2|\beta| - 1$. #### Becomes... ▶ Lemma 2b. Let β and σ be any permutations with $\beta \leq \sigma^*$. If ω is minimal subject to $$\beta \preceq \omega^* \preceq \omega \preceq \sigma$$ then $$|\omega| \leq 2|\beta| - 1$$. Proof, is almost identical. ### Rewrite Lemma 2 in terms of profiles: - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \preccurlyeq \sigma$, - (ii) σ is irreducible. Then $$|\sigma| \leq 2|\beta| - 1$$. #### Becomes... ▶ Lemma 2b. Let β and σ be any permutations with $\beta \leq \sigma^*$. If ω is minimal subject to $$\beta \preceq \omega^* \preceq \omega \preceq \sigma$$ then $$|\omega| \leq 2|\beta| - 1$$. Proof, is almost identical. ### Rewrite Lemma 2 in terms of profiles: - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \preccurlyeq \sigma$, - (ii) σ is irreducible. Then $|\sigma| \leq 2|\beta| - 1$. #### Becomes... ▶ Lemma 2b. Let β and σ be any permutations with $\beta \leq \sigma^*$. If ω is minimal subject to $$\beta \preceq \omega^* \preceq \omega \preceq \sigma$$ then $$|\omega| \leq 2|\beta| - 1$$. Proof, is almost identical. ### Rewrite Lemma 2 in terms of profiles: - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \preccurlyeq \sigma$, - (ii) σ is irreducible. Then $$|\sigma| \leq 2|\beta| - 1$$. #### Becomes... ▶ Lemma 2b. Let β and σ be any permutations with $\beta \preccurlyeq \sigma^*$. If ω is minimal subject to $$\beta \preccurlyeq \omega^* \preccurlyeq \omega \preccurlyeq \sigma$$ then $$|\omega| \leq 2|\beta| - 1$$. Proof. is almost identical. ### Rewrite Lemma 2 in terms of profiles: - ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to - (i) $\beta \leq \sigma$, - (ii) σ is irreducible. Then $$|\sigma| \leq 2|\beta| - 1$$. #### Becomes... ▶ Lemma 2b. Let β and σ be any permutations with $\beta \preccurlyeq \sigma^*$. If ω is minimal subject to $$\beta \preccurlyeq \omega^* \preccurlyeq \omega \preccurlyeq \sigma$$ then $$|\omega| \leq 2|\beta| - 1$$. Proof. is almost identical. # Theorem I possesses the WFBP. #### Proof. ▶ Take any basis element σ of $X \wr I$. $$\sigma \notin X \wr I \quad \Rightarrow \quad \sigma^* \notin X.$$ - ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$. - ▶ Construct a new permutation ω with $\tau \preceq \omega^* \preceq \omega \preceq \sigma$, of bounded length in terms of $|\beta|$. - ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$. # Theorem I possesses the WFBP. ### Proof. ▶ Take any basis element σ of $X \wr I$. $$\sigma \notin X \wr I \quad \Rightarrow \quad \sigma^* \notin X.$$ - ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$. - ▶ Construct a new permutation ω with $\tau \leq \omega^* \leq \omega \leq \sigma$, of bounded length in terms of $|\beta|$. - ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$. ## A New Approach to WFBP II #### **Theorem** I possesses the WFBP. #### Proof. ▶ Take any basis element σ of $X \wr I$. $$\sigma \notin X \wr I \Rightarrow \sigma^* \notin X.$$ - ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$. - ▶ Construct a new permutation ω with $\tau \leq \omega^* \leq \omega \leq \sigma$, of bounded length in terms of $|\beta|$. - ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$. ## A New Approach to WFBP II #### **Theorem** I possesses the WFBP. #### Proof. Take any basis element σ of X ≀ I. $$\sigma \notin X \wr I \quad \Rightarrow \quad \sigma^* \notin X.$$ - ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$. - ▶ Construct a new permutation ω with $\tau \preccurlyeq \omega^* \preccurlyeq \omega \preccurlyeq \sigma$, of bounded length in terms of $|\beta|$. - ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$. ## A New Approach to WFBP II #### **Theorem** I possesses the WFBP. #### Proof. Take any basis element σ of X ≀ I. $$\sigma \notin X \wr I \Rightarrow \sigma^* \notin X.$$ - ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$. - ▶ Construct a new permutation ω with $\tau \preccurlyeq \omega^* \preccurlyeq \omega \preccurlyeq \sigma$, of bounded length in terms of $|\beta|$. - ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$. ### ► How do we prove Lemma 2b? - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ . - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω . - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* . - (iv) For $X \wr I$, we must add at most one symbol per pair, hence $$|\omega| \le |\beta| + (|\beta| - 1).$$ - ► How do we prove Lemma 2b? - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ . - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω . - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* . - (iv) For $X \wr I$, we must add at most one symbol per pair, hence $$|\omega| \le |\beta| + (|\beta| - 1).$$ - ► How do we prove Lemma 2b? - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ . - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω . - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* . - (iv) For $X \wr I$, we must add at most one symbol per pair, hence $$|\omega| \le |\beta| + (|\beta| - 1).$$ - ► How do we prove Lemma 2b? - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ . - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω . - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* . - (iv) For $X \wr I$, we must add at most one symbol per pair, hence $$|\omega| \le |\beta| + (|\beta| - 1).$$ - ► How do we prove Lemma 2b? - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ . - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω . - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* . - (iv) For $X \wr I$, we must add at most one symbol per pair, hence $$|\omega| \le |\beta| + (|\beta| - 1).$$ - ► How do we prove Lemma 2b? - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ . - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω . - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* . - (iv) For $X \wr I$, we must add at most one symbol per pair, hence $$|\omega| \le |\beta| + (|\beta| - 1).$$ #### **Definition** The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j . - ▶ Denoted $\sigma_{i,j}^{\diamondsuit}$. - $ightharpoonup \sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j). #### Definition The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_i < s_k < s_j$, written $L_{\sigma}(i,j)$. #### **Definition** The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j . - ▶ Denoted $\sigma_{i,j}^{\Diamond}$. - $ightharpoonup \sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j). #### Definition The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_j < s_k < s_j$, written $L_{\sigma}(i,j)$. #### Definition The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j . - ▶ Denoted $\sigma_{i,j}^{\Diamond}$. - $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j). #### Definition The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_j < s_k < s_j$, written $L_{\sigma}(i,j)$. #### Definition The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j . - ▶ Denoted $\sigma_{i,j}^{\Diamond}$. - $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j). #### **Definition** The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_j < s_k < s_i$, written $L_{\sigma}(i,j)$. #### Definition The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j . - ▶ Denoted $\sigma_{i,j}^{\Diamond}$. - $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j). #### Definition The right extension of σ with symbols s_i , s_j is the maximal position k such that $s_i < s_k < s_j$, or $s_i < s_k < s_i$, written $R_{\sigma}(i, j)$. #### Definition The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j . - ▶ Denoted $\sigma_{i,j}^{\diamondsuit}$. - $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j). #### Definition The up extension of σ with symbols s_i, s_j is the position k such that s_k is maximal and i < k < j, written $U_{\sigma}(i, j)$. #### Definition The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j . - ▶ Denoted $\sigma_{i,j}^{\diamondsuit}$. - $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j). #### **Definition** The down extension of σ with symbols s_i, s_j is the position k such that s_k is minimal and i < k < j, written $D_{\sigma}(i, j)$. ► For a pair of positions i, j of a permutation σ , the 8 primary extensions. ► For a pair of positions i, j of a permutation σ , the 8 primary extensions. - ▶ For a pair of positions i, j of a permutation σ , the 8 primary extensions. - Use these to take further extensions, the 16 secondary extensions. - ► For a pair of positions i, j of a permutation σ , the 8 primary extensions. - Use these to take further extensions, the 16 secondary extensions. - ▶ For a pair of positions i, j of a permutation σ , the 8 primary extensions. - Use these to take further extensions, the 16 secondary extensions. - ► Then the 32 tertiary extensions, ..., the 2^{n+2} *n*-ary extensions ... - ▶ For a pair of positions i, j of a permutation σ , the 8 primary extensions. - Use these to take further extensions, the 16 secondary extensions. - ► Then the 32 tertiary extensions, ..., the 2^{n+2} *n*-ary extensions ... - n-ary extensions may not exist. Must eventually reach the edges of the minimal block. #### Definition An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by: - ► An *n*-ary extension. - ▶ The (n-1)-ary "parent" extension. ▶ The primary "parent" extension, and the original i, j. #### Definition The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks. $$\mathcal{E}(n)$$. #### Definition An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by: - An n-ary extension. - ▶ The (n-1)-ary "parent" extension. ▶ The primary "parent" extension, and the original *i*, *j*. #### Definition The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks. $$\mathcal{E}(n)$$ #### Definition An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by: - An n-ary extension. - ▶ The (n-1)-ary "parent" extension. - ▶ The primary "parent" extension, and the original i, j. #### Definition The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks. $\mathcal{E}(n)$ #### Definition An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by: - An n-ary extension. - ▶ The (n-1)-ary "parent" extension. : ▶ The primary "parent" extension, and the original *i*, *j*. #### Definition The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks. $\mathcal{E}(n)$. #### Definition An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by: - An n-ary extension. - ▶ The (n-1)-ary "parent" extension. : ▶ The primary "parent" extension, and the original *i*, *j*. #### Definition The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks, $$\mathcal{E}(n)$$ #### Definition An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by: - An n-ary extension. - ▶ The (n-1)-ary "parent" extension. : ▶ The primary "parent" extension, and the original i, j. #### Definition The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks, $$\mathcal{E}(n)$$. #### **Theorem** Let $Y = A(\beta_1, ..., \beta_m)$, and suppose $$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$ Then Y possesses the WFBP. #### **Proof** - Invoke Lemma 2b: embed basis elements of a class X within basis elements of X Y. - ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\diamondsuit}$ must involve a basis element β_k of Y. - ► Take extensions. Either: - (i) There exists a *q*-ary extension, which involves β_k . #### **Theorem** Let $$Y = A(\beta_1, ..., \beta_m)$$, and suppose $$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$ ## Then Y possesses the WFBP. #### Proof - Invoke Lemma 2b: embed basis elements of a class X within basis elements of X Y. - ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\diamondsuit}$ must involve a basis element β_k of Y. - ► Take extensions. Either: - (i) There exists a *q*-ary extension, which involves β_k . #### **Theorem** Let $$Y = A(\beta_1, ..., \beta_m)$$, and suppose $$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$ ### Then Y possesses the WFBP. #### Proof. - Invoke Lemma 2b: embed basis elements of a class X within basis elements of X Y. - ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\diamondsuit}$ must involve a basis element β_k of Y. - ► Take extensions. Either: - (i) There exists a *q*-ary extension, which involves β_k . #### **Theorem** Let $$Y = A(\beta_1, \dots, \beta_m)$$, and suppose $$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$ ### Then Y possesses the WFBP. #### Proof. - Invoke Lemma 2b: embed basis elements of a class X within basis elements of X Y. - ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\Diamond}$ must involve a basis element β_k of Y. - ► Take extensions. Either: - (i) There exists a *q*-ary extension, which involves β_k . #### **Theorem** Let $Y = A(\beta_1, ..., \beta_m)$, and suppose $$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$ ### Then Y possesses the WFBP. #### Proof. - Invoke Lemma 2b: embed basis elements of a class X within basis elements of X Y. - ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\Diamond}$ must involve a basis element β_k of Y. - Take extensions. Either: - (i) There exists a q-ary extension, which involves β_k . ### Proof (ctd). #### Or: - (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$. - ▶ Thus we bound basis elements ω of $X \ Y$ by $$|\omega| \leq p + (2(q-1)+r)(p-1)$$ #### where: (i) p = maximum length of basis elements in X. (ii) r = maximum length of basis elements in Y. ► Hence *X* ≀ *Y* is finitely based. ### Proof (ctd). #### Or: - (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$. - Thus we bound basis elements ω of X ≀ Y by $$|\omega| \le p + (2(q-1)+r)(p-1)$$ - (i) p = maximum length of basis elements in X. - (ii) r = maximum length of basis elements in Y - ► Hence *X* ≀ *Y* is finitely based. ### Proof (ctd). #### Or: - (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$. - Thus we bound basis elements ω of X ≀ Y by $$|\omega| \le p + (2(q-1)+r)(p-1)$$ - (i) p = maximum length of basis elements in X. - (ii) r = maximum length of basis elements in Y. - ► Hence *X* ≀ *Y* is finitely based. ### Proof (ctd). #### Or: - (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$. - Thus we bound basis elements ω of X ≀ Y by $$|\omega| \le p + (2(q-1) + r)(p-1)$$ - (i) p = maximum length of basis elements in X. - (ii) r = maximum length of basis elements in Y. - ► Hence *X* ≀ *Y* is finitely based. ### Proof (ctd). #### Or: - (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$. - Thus we bound basis elements ω of X \ Y by $$|\omega| \le p + (2(q-1)+r)(p-1)$$ - (i) p = maximum length of basis elements in X. - (ii) r = maximum length of basis elements in Y. - ► Hence X \ Y is finitely based. - ▶ Separable permutations, A(2413, 3142). Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142. - $A(\beta)$ for $\beta \in \{132, 312, 213\}$. - ► All finite classes. - ▶ Intersections $Y_1 \cap Y_2, ...$ - ▶ Separable permutations, $\mathcal{A}(2413,3142)$. Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142. - $ightharpoonup \mathcal{A}(\beta) \text{ for } \beta \in \{132, 312, 213\}.$ - All finite classes. - ▶ Intersections $Y_1 \cap Y_2, ...$ - ▶ Separable permutations, $\mathcal{A}(2413,3142)$. Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142. - $\mathcal{A}(\beta)$ for $\beta \in \{132, 312, 213\}$. - ► All finite classes. - ▶ Intersections $Y_1 \cap Y_2, ...$ - ▶ Separable permutations, $\mathcal{A}(2413,3142)$. Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142. - $\mathcal{A}(\beta)$ for $\beta \in \{132, 312, 213\}$. - All finite classes. - ▶ Intersections $Y_1 \cap Y_2, ...$ - ▶ Separable permutations, $\mathcal{A}(2413,3142)$. Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142. - $\mathcal{A}(\beta)$ for $\beta \in \{132, 312, 213\}$. - All finite classes. - ▶ Intersections $Y_1 \cap Y_2, ...$ - Extensions sufficient, but necessary? - ▶ The class A(123) may provide a counter-example: Endless extensions avoiding 123, but does $\mathcal{A}(123)$ still have WFBP? - Extensions sufficient, but necessary? - ▶ The class A(123) may provide a counter-example: Endless extensions avoiding 123, but does $\mathcal{A}(123)$ still have WFBP? - Extensions sufficient, but necessary? - ▶ The class A(123) may provide a counter-example: Endless extensions avoiding 123, but does $\mathcal{A}(123)$ still have WFBP? - Extensions sufficient, but necessary? - ▶ The class A(123) may provide a counter-example: Endless extensions avoiding 123, but does $\mathcal{A}(123)$ still have WFBP?