Finite Basis Results of Wreath Products

R.L.F. Brignall

robertb@mcs.st-and.ac.uk
http://www.rbrignall.org.uk

School of Mathematics and Statistics University of St Andrews

PP05, Thursday 10th March, 2005

Introduction

Some Structural Considerations

Permutation Structure
The Wreath Product
Profiles

Approaching the Wreath Finite Basis Property (WFBP)

Existing Approaches
A New Approach
Generalising the New Approach

Extensions & Extended Blocks

Structure from Pairs of Symbols WFBP & Extended Blocks Application to WFBP

Definition

For a permutation $\sigma = s_1 s_2 \dots s_n$:

- A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$.
- A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$.
- ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous:

Definition

For a permutation $\sigma = s_1 s_2 \dots s_n$:

- ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$.
- A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \dots, s_{i+j}$.
- ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous:

Definition

For a permutation $\sigma = s_1 s_2 \dots s_n$:

- ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$.
- A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$.
- ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous:

Definition

For a permutation $\sigma = s_1 s_2 \dots s_n$:

- ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$.
- A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$.
- ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous:

Definition

For a permutation $\sigma = s_1 s_2 \dots s_n$:

- ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$.
- ▶ A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$.
- ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous:

Definition

The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations

$$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$

- (i) each α_i is an interval,
- (ii) each α_i is order isomorphic to a permutation of Y,
- (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X.

Definition

The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations

$$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$

- (i) each α_i is an interval,
- (ii) each α_i is order isomorphic to a permutation of Y,
- (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X.

Definition

The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations

$$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$

- (i) each α_i is an interval,
- (ii) each α_i is order isomorphic to a permutation of Y,
- (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X.

Definition

The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations

$$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$

- (i) each α_i is an interval,
- (ii) each α_i is order isomorphic to a permutation of Y,
- (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X.

Example

 \rightarrow $X = \{1, 12\}, Y = \{1, 12, 21\}:$

 \triangleright X \setminus Y = {1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143}.

Example

 $X = \{1, 12\}, Y = \{1, 12, 21\}$:

 \triangleright X \ Y = {1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143}

Example

 \rightarrow $X = \{1, 12\}, Y = \{1, 12, 21\}:$

 \triangleright X \ Y = {1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143}

Example

 $\rightarrow X = \{1, 12\}, Y = \{1, 12, 21\}:$

 \triangleright X \ Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}

Example

 \rightarrow $X = \{1, 12\}, Y = \{1, 12, 21\}$:

 $X \setminus Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}.$

Example

 $\rightarrow X = \{1, 12\}, Y = \{1, 12, 21\}:$

 \triangleright *X* \(\cdot\) Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}.

- ▶ If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X ≀ Y finitely based?
- Not true Atkinson proves A(21) ≀ A(321654) has infinite basis.
- ► Half the problem: which classes Y obey

X finitely based \Rightarrow *X* \wr *Y* finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

- ▶ If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21) ≀ A(321654) has infinite basis.
- ► Half the problem: which classes Y obey

X finitely based \Rightarrow *X* \wr *Y* finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

- If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21)

 A(321654) has infinite basis.
- ► Half the problem: which classes Y obey
 X finitely based ⇒ X \ Y finitely based?
 Y has the Wreath Finite Basis Property (WFBP).

Example

- If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21)

 A(321654) has infinite basis.
- ▶ Half the problem: which classes Y obey

X finitely based \Rightarrow *X* ? Y finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

- If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21)

 A(321654) has infinite basis.
- ▶ Half the problem: which classes Y obey

X finitely based \Rightarrow *X* ≀ Y finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

- If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21)

 A(321654) has infinite basis.
- ▶ Half the problem: which classes Y obey

X finitely based ⇒ X ≀ Y finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

Atkinson, in "Restricted Permutations".

Example

The profile of 2346751 is

$$2346751^* = 2431$$

because of the segments 234, 67, 5 and 1.

Atkinson, in "Restricted Permutations".

Example

The profile of 2346751 is

$$2346751^* = 2431$$

because of the segments 234, 67, 5 and 1.

▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ .

Or ..

• "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}$.

Generalised ...

▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ .

Or ...

• "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}$.

Generalised ..

▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ .

Or ...

• "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}$.

Generalised ..

▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ .

Or ...

• "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}$.

Generalised ...

▶ View profile σ^* as "collapsing" maximal consecutive increasing sequences from σ .

Or ...

• "collapsing" maximal intervals of σ order isomorphic to elements from $I = \mathcal{A}(21) = \{1, 12, 123, \ldots\}.$

Generalised ...

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

(i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,

(ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$.

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$.

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$.

Profiles III

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$.

Made unique by first picking σ_1 maximally, then σ_2 , then σ_3 , etc.

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of σ = 24351687?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Theorem

For any closed classes X and Y,

$$\sigma \in X \wr Y$$
 if and only if $\sigma^{(Y)} \in X$.

- ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$.
- ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$.
- ▶ "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$.
- ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it.
- ► Thus

$$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$

Theorem

For any closed classes X and Y,

$$\sigma \in X \wr Y$$
 if and only if $\sigma^{(Y)} \in X$.

Proof (\Leftarrow) is easy!

- ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$.
- ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$.
- ▶ "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$.
- ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it.
- ► Thus

$$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$

Theorem

For any closed classes X and Y,

$$\sigma \in X \wr Y$$
 if and only if $\sigma^{(Y)} \in X$.

- ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$.
- ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$.
- ▶ "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$.
- ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it.
- ► Thus

$$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$

Theorem

For any closed classes X and Y,

$$\sigma \in X \wr Y$$
 if and only if $\sigma^{(Y)} \in X$.

- ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$.
- ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$.
- ▶ "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$.
- ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it.
- ► Thus

$$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$

Theorem

For any closed classes X and Y,

$$\sigma \in X \wr Y$$
 if and only if $\sigma^{(Y)} \in X$.

- ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$.
- ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$.
- "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$.
- ▶ Claim: Every σ_i has the right-hand end of some τ_{i_i} within it.
- ► Thus

$$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$

Theorem

For any closed classes X and Y,

$$\sigma \in X \wr Y \text{ if and only if } \sigma^{(Y)} \in X.$$

- ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$.
- ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$.
- "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$.
- ▶ Claim: Every σ_i has the right-hand end of some τ_{i} within it.
- ► Thus

$$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$

Theorem

For any closed classes X and Y,

$$\sigma \in X \wr Y$$
 if and only if $\sigma^{(Y)} \in X$.

- ▶ Decompose σ into the intervals defined by the Y-profile, $\sigma = \sigma^{(Y)} \wr (\sigma_1, \sigma_2, \dots, \sigma_k)$.
- ▶ Take any known decomposition $\sigma = \tau \wr (\tau_1, \tau_2, \dots, \tau_l)$ with $\tau \in X$.
- "Superimpose" τ_1, \ldots, τ_l over $\sigma_1, \ldots, \sigma_k$.
- ▶ Claim: Every σ_i has the right-hand end of some τ_{i} within it.
- ► Thus

$$\sigma^{(Y)} \preccurlyeq \tau \in X \Rightarrow \sigma^{(Y)} \in X.$$

- Atkinson, Restricted Permutations and the Wreath Product, 2002.
- ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to
 - (i) β is irreducible,
 - (ii) $\beta \notin X$.
- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \preceq \sigma$,
 - (ii) σ is irreducible.
 - Then $|\sigma| \leq 2|\beta| 1$.

- Atkinson, Restricted Permutations and the Wreath Product, 2002.
- ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to
 - (i) β is irreducible.
 - (ii) $\beta \notin X$.
- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \preccurlyeq \sigma$,
 - (ii) σ is irreducible

Then $|\sigma| \leq 2|\beta| - 1$.

- Atkinson, Restricted Permutations and the Wreath Product, 2002.
- ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to
 - (i) β is irreducible,
 - (ii) $\beta \notin X$.
- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \leqslant \sigma$,
 - (ii) σ is irreducible.
 - Then $|\sigma| \leq 2|\beta| 1$.

- Atkinson, Restricted Permutations and the Wreath Product, 2002.
- ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to
 - (i) β is irreducible,
 - (ii) $\beta \notin X$.
- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \leqslant \sigma$, (ii) σ is irreducible
 - Then $|\sigma| \leq 2|\beta| 1$.

- Atkinson, Restricted Permutations and the Wreath Product, 2002.
- ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to
 - (i) β is irreducible,
 - (ii) $\beta \notin X$.
- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \preccurlyeq \sigma$,
 - (ii) σ is irreducible.

Then $|\sigma| \leq 2|\beta| - 1$

- Atkinson, Restricted Permutations and the Wreath Product, 2002.
- ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to
 - (i) β is irreducible,
 - (ii) $\beta \notin X$.
- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \preccurlyeq \sigma$,
 - (ii) σ is irreducible.

Then $|\sigma| \leq 2|\beta| - 1$

- Atkinson, Restricted Permutations and the Wreath Product, 2002.
- ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to
 - (i) β is irreducible,
 - (ii) $\beta \notin X$.
- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \preccurlyeq \sigma$,
 - (ii) σ is irreducible.

Then $|\sigma| \leq 2|\beta| - 1$

- Atkinson, Restricted Permutations and the Wreath Product, 2002.
- ▶ Lemma 1. β is a basis elements of $X \wr I$ if and only if β is minimal (under involvement) subject to
 - (i) β is irreducible,
 - (ii) $\beta \notin X$.
- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \preccurlyeq \sigma$,
 - (ii) σ is irreducible.

Then $|\sigma| \leq 2|\beta| - 1$.

Theorem I possesses the WFBP.

- Any basis element σ of X \(\cdot\) is irreducible by Lemma 1.
- ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X
- Now construct an irreducible permutation σ' so that

$$\beta \preccurlyeq \sigma' \preccurlyeq \sigma.$$

- ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ'' must be a basis element of $X \wr I$.
- ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based.

Theorem I possesses the WFBP.

- Any basis element σ of X ≀ I is irreducible by Lemma 1.
- ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X.
- Now construct an irreducible permutation σ' so that

$$\beta \preccurlyeq \sigma' \preccurlyeq \sigma.$$

- ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$.
- ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based.

Theorem I possesses the WFBP.

- ▶ Any basis element σ of $X \wr I$ is irreducible by Lemma 1.
- ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X.
- Now construct an irreducible permutation σ' so that

$$\beta \preccurlyeq \sigma' \preccurlyeq \sigma.$$

- ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$.
- ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based.

Theorem I possesses the WFBP.

- Any basis element σ of X ≀ I is irreducible by Lemma 1.
- ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X.
- Now construct an irreducible permutation σ' so that

$$\beta \preccurlyeq \sigma' \preccurlyeq \sigma$$
.

- ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$.
- ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based.

Theorem

I possesses the WFBP.

- Any basis element σ of X ≀ I is irreducible by Lemma 1.
- ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X.
- ▶ Now construct an irreducible permutation σ' so that

$$\beta \preccurlyeq \sigma' \preccurlyeq \sigma$$
.

- ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$.
- ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based.

Theorem

I possesses the WFBP.

- Any basis element σ of X ≀ I is irreducible by Lemma 1.
- ▶ Moreover, $\sigma \notin X$, so there exists $\beta \preccurlyeq \sigma$ in the basis of X.
- Now construct an irreducible permutation σ' so that

$$\beta \preccurlyeq \sigma' \preccurlyeq \sigma$$
.

- ▶ By Lemma 2, we know $|\sigma'| \le 2|\beta| 1$. By Lemma 1, σ' must be a basis element of $X \wr I$.
- ▶ Thus $\sigma = \sigma'$, and so the basis element of $X \wr I$ is bounded, since X is finitely based.

Rewrite Lemma 2 in terms of profiles:

- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \leq \sigma$,
 - (ii) σ is irreducible.

Then $|\sigma| \leq 2|\beta| - 1$.

Becomes...

▶ Lemma 2b. Let β and σ be any permutations with $\beta \leq \sigma^*$. If ω is minimal subject to

$$\beta \preceq \omega^* \preceq \omega \preceq \sigma$$

then
$$|\omega| \leq 2|\beta| - 1$$
.

Proof, is almost identical.

Rewrite Lemma 2 in terms of profiles:

- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \preccurlyeq \sigma$,
 - (ii) σ is irreducible.

Then
$$|\sigma| \leq 2|\beta| - 1$$
.

Becomes...

▶ Lemma 2b. Let β and σ be any permutations with $\beta \leq \sigma^*$. If ω is minimal subject to

$$\beta \preceq \omega^* \preceq \omega \preceq \sigma$$

then
$$|\omega| \leq 2|\beta| - 1$$
.

Proof, is almost identical.

Rewrite Lemma 2 in terms of profiles:

- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \preccurlyeq \sigma$,
 - (ii) σ is irreducible.

Then $|\sigma| \leq 2|\beta| - 1$.

Becomes...

▶ Lemma 2b. Let β and σ be any permutations with $\beta \leq \sigma^*$. If ω is minimal subject to

$$\beta \preceq \omega^* \preceq \omega \preceq \sigma$$

then
$$|\omega| \leq 2|\beta| - 1$$
.

Proof, is almost identical.

Rewrite Lemma 2 in terms of profiles:

- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \preccurlyeq \sigma$,
 - (ii) σ is irreducible.

Then
$$|\sigma| \leq 2|\beta| - 1$$
.

Becomes...

▶ Lemma 2b. Let β and σ be any permutations with $\beta \preccurlyeq \sigma^*$. If ω is minimal subject to

$$\beta \preccurlyeq \omega^* \preccurlyeq \omega \preccurlyeq \sigma$$

then
$$|\omega| \leq 2|\beta| - 1$$
.

Proof. is almost identical.

Rewrite Lemma 2 in terms of profiles:

- ▶ Lemma 2. Let β be any permutation and σ a permutation minimal subject to
 - (i) $\beta \leq \sigma$,
 - (ii) σ is irreducible.

Then
$$|\sigma| \leq 2|\beta| - 1$$
.

Becomes...

▶ Lemma 2b. Let β and σ be any permutations with $\beta \preccurlyeq \sigma^*$. If ω is minimal subject to

$$\beta \preccurlyeq \omega^* \preccurlyeq \omega \preccurlyeq \sigma$$

then
$$|\omega| \leq 2|\beta| - 1$$
.

Proof. is almost identical.

Theorem I possesses the WFBP.

Proof.

▶ Take any basis element σ of $X \wr I$.

$$\sigma \notin X \wr I \quad \Rightarrow \quad \sigma^* \notin X.$$

- ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$.
- ▶ Construct a new permutation ω with $\tau \preceq \omega^* \preceq \omega \preceq \sigma$, of bounded length in terms of $|\beta|$.
- ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$.

Theorem I possesses the WFBP.

Proof.

▶ Take any basis element σ of $X \wr I$.

$$\sigma \notin X \wr I \quad \Rightarrow \quad \sigma^* \notin X.$$

- ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$.
- ▶ Construct a new permutation ω with $\tau \leq \omega^* \leq \omega \leq \sigma$, of bounded length in terms of $|\beta|$.
- ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$.

A New Approach to WFBP II

Theorem

I possesses the WFBP.

Proof.

▶ Take any basis element σ of $X \wr I$.

$$\sigma \notin X \wr I \Rightarrow \sigma^* \notin X.$$

- ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$.
- ▶ Construct a new permutation ω with $\tau \leq \omega^* \leq \omega \leq \sigma$, of bounded length in terms of $|\beta|$.
- ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$.

A New Approach to WFBP II

Theorem

I possesses the WFBP.

Proof.

Take any basis element σ of X ≀ I.

$$\sigma \notin X \wr I \quad \Rightarrow \quad \sigma^* \notin X.$$

- ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$.
- ▶ Construct a new permutation ω with $\tau \preccurlyeq \omega^* \preccurlyeq \omega \preccurlyeq \sigma$, of bounded length in terms of $|\beta|$.
- ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$.

A New Approach to WFBP II

Theorem

I possesses the WFBP.

Proof.

Take any basis element σ of X ≀ I.

$$\sigma \notin X \wr I \Rightarrow \sigma^* \notin X.$$

- ▶ There exists a basis element β of X such that $\beta \leq \sigma^*$.
- ▶ Construct a new permutation ω with $\tau \preccurlyeq \omega^* \preccurlyeq \omega \preccurlyeq \sigma$, of bounded length in terms of $|\beta|$.
- ▶ $\omega^* \notin X$ so $\omega \notin X \wr I$. But $\omega \preccurlyeq \sigma \in \mathcal{B}(X \wr I)$ so $\omega = \sigma$ and $|\sigma| \leq 2|\beta| 1$.

► How do we prove Lemma 2b?

- (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ .
- (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω .
- (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* .
- (iv) For $X \wr I$, we must add at most one symbol per pair, hence

$$|\omega| \le |\beta| + (|\beta| - 1).$$

- ► How do we prove Lemma 2b?
 - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ .
 - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω .
 - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* .
 - (iv) For $X \wr I$, we must add at most one symbol per pair, hence

$$|\omega| \le |\beta| + (|\beta| - 1).$$

- ► How do we prove Lemma 2b?
 - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ .
 - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω .
 - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* .
 - (iv) For $X \wr I$, we must add at most one symbol per pair, hence

$$|\omega| \le |\beta| + (|\beta| - 1).$$

- ► How do we prove Lemma 2b?
 - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ .
 - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω .
 - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* .
 - (iv) For $X \wr I$, we must add at most one symbol per pair, hence

$$|\omega| \le |\beta| + (|\beta| - 1).$$

- ► How do we prove Lemma 2b?
 - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ .
 - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω .
 - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* .
 - (iv) For $X \wr I$, we must add at most one symbol per pair, hence

$$|\omega| \le |\beta| + (|\beta| - 1).$$

- ► How do we prove Lemma 2b?
 - (i) Embed the permutation $\beta = b_1 \dots b_k$ as a subsequence s_{i_1}, \dots, s_{i_k} of σ .
 - (ii) Include the subsequence $s_{i_1} \dots s_{i_k}$ in our new permutation ω .
 - (iii) For each pair s_{i_j} , $s_{i_{j+1}}$, add symbols to ω from σ so the subsequence s_{i_1}, \ldots, s_{i_k} is preserved in the profile ω^* .
 - (iv) For $X \wr I$, we must add at most one symbol per pair, hence

$$|\omega| \le |\beta| + (|\beta| - 1).$$

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\diamondsuit}$.
- $ightharpoonup \sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_i < s_k < s_j$, written $L_{\sigma}(i,j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\Diamond}$.
- $ightharpoonup \sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_j < s_k < s_j$, written $L_{\sigma}(i,j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\Diamond}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_j < s_k < s_j$, written $L_{\sigma}(i,j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\Diamond}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_j < s_k < s_i$, written $L_{\sigma}(i,j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\Diamond}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The right extension of σ with symbols s_i , s_j is the maximal position k such that $s_i < s_k < s_j$, or $s_i < s_k < s_i$, written $R_{\sigma}(i, j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\diamondsuit}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The up extension of σ with symbols s_i, s_j is the position k such that s_k is maximal and i < k < j, written $U_{\sigma}(i, j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\diamondsuit}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The down extension of σ with symbols s_i, s_j is the position k such that s_k is minimal and i < k < j, written $D_{\sigma}(i, j)$.

► For a pair of positions i, j of a permutation σ , the 8 primary extensions.

► For a pair of positions i, j of a permutation σ , the 8 primary extensions.

- ▶ For a pair of positions i, j of a permutation σ , the 8 primary extensions.
- Use these to take further extensions, the 16 secondary extensions.

- ► For a pair of positions i, j of a permutation σ , the 8 primary extensions.
- Use these to take further extensions, the 16 secondary extensions.

- ▶ For a pair of positions i, j of a permutation σ , the 8 primary extensions.
- Use these to take further extensions, the 16 secondary extensions.
- ► Then the 32 tertiary extensions, ..., the 2^{n+2} *n*-ary extensions ...

- ▶ For a pair of positions i, j of a permutation σ , the 8 primary extensions.
- Use these to take further extensions, the 16 secondary extensions.
- ► Then the 32 tertiary extensions, ..., the 2^{n+2} *n*-ary extensions ...
- n-ary extensions may not exist. Must eventually reach the edges of the minimal block.

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- ► An *n*-ary extension.
- ▶ The (n-1)-ary "parent" extension.

▶ The primary "parent" extension, and the original i, j.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks.

$$\mathcal{E}(n)$$
.

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

▶ The primary "parent" extension, and the original *i*, *j*.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks.

$$\mathcal{E}(n)$$

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

-

▶ The primary "parent" extension, and the original i, j.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks.

 $\mathcal{E}(n)$

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

:

▶ The primary "parent" extension, and the original *i*, *j*.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks.

 $\mathcal{E}(n)$.

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

:

▶ The primary "parent" extension, and the original *i*, *j*.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks,

$$\mathcal{E}(n)$$

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

:

▶ The primary "parent" extension, and the original i, j.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks,

$$\mathcal{E}(n)$$
.

Theorem

Let $Y = A(\beta_1, ..., \beta_m)$, and suppose

$$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$

Then Y possesses the WFBP.

Proof

- Invoke Lemma 2b: embed basis elements of a class X within basis elements of X

 Y.
- ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\diamondsuit}$ must involve a basis element β_k of Y.
- ► Take extensions. Either:
 - (i) There exists a *q*-ary extension, which involves β_k .

Theorem

Let
$$Y = A(\beta_1, ..., \beta_m)$$
, and suppose

$$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$

Then Y possesses the WFBP.

Proof

- Invoke Lemma 2b: embed basis elements of a class X within basis elements of X

 Y.
- ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\diamondsuit}$ must involve a basis element β_k of Y.
- ► Take extensions. Either:
 - (i) There exists a *q*-ary extension, which involves β_k .

Theorem

Let
$$Y = A(\beta_1, ..., \beta_m)$$
, and suppose

$$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$

Then Y possesses the WFBP.

Proof.

- Invoke Lemma 2b: embed basis elements of a class X within basis elements of X

 Y.
- ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\diamondsuit}$ must involve a basis element β_k of Y.
- ► Take extensions. Either:
 - (i) There exists a *q*-ary extension, which involves β_k .

Theorem

Let
$$Y = A(\beta_1, \dots, \beta_m)$$
, and suppose

$$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$

Then Y possesses the WFBP.

Proof.

- Invoke Lemma 2b: embed basis elements of a class X within basis elements of X

 Y.
- ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\Diamond}$ must involve a basis element β_k of Y.
- ► Take extensions. Either:
 - (i) There exists a *q*-ary extension, which involves β_k .

Theorem

Let $Y = A(\beta_1, ..., \beta_m)$, and suppose

$$\exists q \text{ s.t. } \forall \varepsilon \in \mathcal{E}(q), \exists k \in \{1, \ldots, m\} \text{ s.t. } \beta_k \leq \varepsilon.$$

Then Y possesses the WFBP.

Proof.

- Invoke Lemma 2b: embed basis elements of a class X within basis elements of X

 Y.
- ► For each pair s_{i_j} , $s_{i_{j+1}}$, the minimal block $\sigma_{i_j,i_{j+1}}^{\Diamond}$ must involve a basis element β_k of Y.
- Take extensions. Either:
 - (i) There exists a q-ary extension, which involves β_k .

Proof (ctd).

Or:

- (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$.
- ▶ Thus we bound basis elements ω of $X \ Y$ by

$$|\omega| \leq p + (2(q-1)+r)(p-1)$$

where:

(i) p = maximum length of basis elements in X.
 (ii) r = maximum length of basis elements in Y.

► Hence *X* ≀ *Y* is finitely based.

Proof (ctd).

Or:

- (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$.
- Thus we bound basis elements ω of X ≀ Y by

$$|\omega| \le p + (2(q-1)+r)(p-1)$$

- (i) p = maximum length of basis elements in X.
- (ii) r = maximum length of basis elements in Y
- ► Hence *X* ≀ *Y* is finitely based.

Proof (ctd).

Or:

- (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$.
- Thus we bound basis elements ω of X ≀ Y by

$$|\omega| \le p + (2(q-1)+r)(p-1)$$

- (i) p = maximum length of basis elements in X.
- (ii) r = maximum length of basis elements in Y.
- ► Hence *X* ≀ *Y* is finitely based.

Proof (ctd).

Or:

- (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$.
- Thus we bound basis elements ω of X ≀ Y by

$$|\omega| \le p + (2(q-1) + r)(p-1)$$

- (i) p = maximum length of basis elements in X.
- (ii) r = maximum length of basis elements in Y.
- ► Hence *X* ≀ *Y* is finitely based.

Proof (ctd).

Or:

- (ii) No q-ary extensions exist: we reach the boundaries of $\sigma_{i_j,i_{j+1}}^{\Diamond}$. Then β_k appears within these boundaries, and separates s_{i_j} from $s_{i_{j+1}}$.
- Thus we bound basis elements ω of X \ Y by

$$|\omega| \le p + (2(q-1)+r)(p-1)$$

- (i) p = maximum length of basis elements in X.
- (ii) r = maximum length of basis elements in Y.
- ► Hence X \ Y is finitely based.

- ▶ Separable permutations, A(2413, 3142). Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $A(\beta)$ for $\beta \in \{132, 312, 213\}$.
- ► All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- ▶ Separable permutations, $\mathcal{A}(2413,3142)$. Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $ightharpoonup \mathcal{A}(\beta) \text{ for } \beta \in \{132, 312, 213\}.$
- All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- ▶ Separable permutations, $\mathcal{A}(2413,3142)$. Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $\mathcal{A}(\beta)$ for $\beta \in \{132, 312, 213\}$.
- ► All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- ▶ Separable permutations, $\mathcal{A}(2413,3142)$. Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $\mathcal{A}(\beta)$ for $\beta \in \{132, 312, 213\}$.
- All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- ▶ Separable permutations, $\mathcal{A}(2413,3142)$. Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $\mathcal{A}(\beta)$ for $\beta \in \{132, 312, 213\}$.
- All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- Extensions sufficient, but necessary?
- ▶ The class A(123) may provide a counter-example:

Endless extensions avoiding 123, but does $\mathcal{A}(123)$ still have WFBP?

- Extensions sufficient, but necessary?
- ▶ The class A(123) may provide a counter-example:

Endless extensions avoiding 123, but does $\mathcal{A}(123)$ still have WFBP?

- Extensions sufficient, but necessary?
- ▶ The class A(123) may provide a counter-example:

Endless extensions avoiding 123, but does $\mathcal{A}(123)$ still have WFBP?

- Extensions sufficient, but necessary?
- ▶ The class A(123) may provide a counter-example:

Endless extensions avoiding 123, but does $\mathcal{A}(123)$ still have WFBP?