Simple Extensions of Relational Structures – the Permutation Perspective

R.L.F. Brignall joint work with Nik Ruškuc and Vincent Vatter

School of Mathematics and Statistics University of St Andrews

Wednesday 13th June, 2007

Introduction

Concepts

Intervals and Simple Permutations

(日) (日) (日) (日) (日) (日) (日) (日)

- Relational Structures
- Graphs, Posets, Tournaments...
- Tournament Extensions
- 2 The Permutation Case
 - Increasing Permutations
 - The General Approach
- 3 Other Structures
 - Graphs
 - Posets

Concepts

Outline

Intervals and Simple Permutations

- Relational Structures
- Graphs, Posets, Tournaments...
- Tournament Extensions
- 2 The Permutation Case
 - Increasing Permutations
 - The General Approach
- 3 Other Structures
 - Graphs
 - Posets

Concepts Intervals and Simple Permutations

Intervals

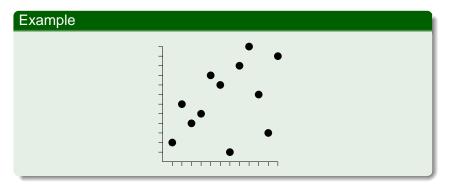
• Pick any permutation π .

An interval of π is a set of contiguous indices *I* = [*a*, *b*] such that π(*I*) = {π(*i*) : *i* ∈ *I*} is also contiguous.

Simple Extensions of Permutations Concepts Intervals and Simple Permutations

Intervals

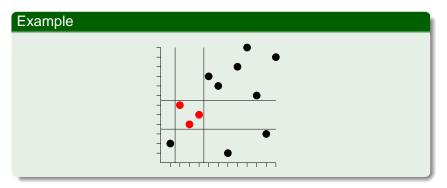
- Pick any permutation π .
- An interval of π is a set of contiguous indices *I* = [*a*, *b*] such that π(*I*) = {π(*i*) : *i* ∈ *I*} is also contiguous.



Simple Extensions of Permutations Concepts Intervals and Simple Permutations

Intervals

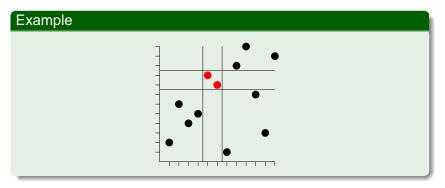
- Pick any permutation π .
- An interval of π is a set of contiguous indices *I* = [*a*, *b*] such that π(*I*) = {π(*i*) : *i* ∈ *I*} is also contiguous.



Simple Extensions of Permutations Concepts Intervals and Simple Permutations

Intervals

- Pick any permutation π .
- An interval of π is a set of contiguous indices *I* = [*a*, *b*] such that π(*I*) = {π(*i*) : *i* ∈ *I*} is also contiguous.



Concepts

Intervals and Simple Permutations

Simple Permutations

• Only intervals are singletons and the whole thing.

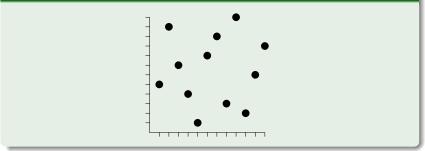
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Concepts

Intervals and Simple Permutations

Simple Permutations

• Only intervals are singletons and the whole thing.



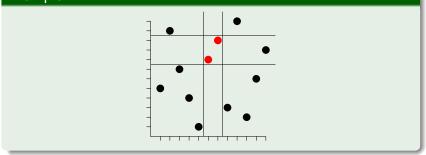
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Concepts

Intervals and Simple Permutations

Simple Permutations

• Only intervals are singletons and the whole thing.

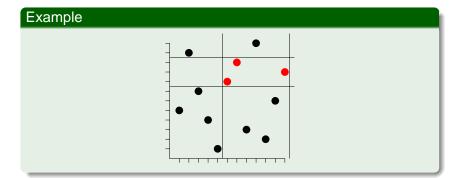


Concepts

Intervals and Simple Permutations

Simple Permutations

• Only intervals are singletons and the whole thing.

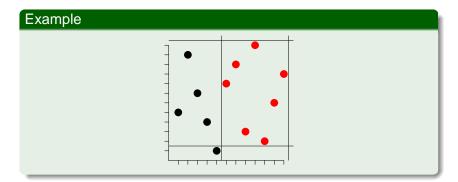


Concepts

Intervals and Simple Permutations

Simple Permutations

• Only intervals are singletons and the whole thing.



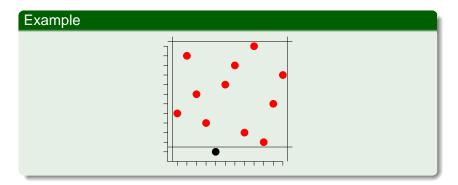
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Concepts

Intervals and Simple Permutations

Simple Permutations

• Only intervals are singletons and the whole thing.

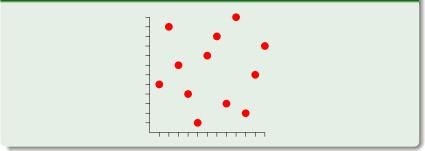


Concepts

Intervals and Simple Permutations

Simple Permutations

• Only intervals are singletons and the whole thing.



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Concepts

Relational Structures

Two Binary Relations

• A relational structure: a set of points, and a set of relations on these points.

・ロット (雪) (日) (日) (日)

Concepts

Relational Structures

Two Binary Relations

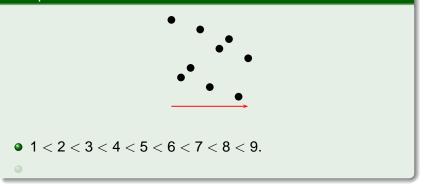
• A permutation of length *n* is a structure on two linear relations.

Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.

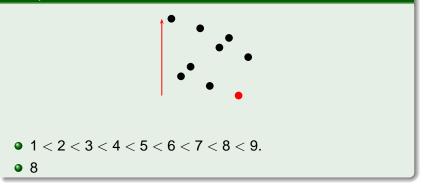


Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.

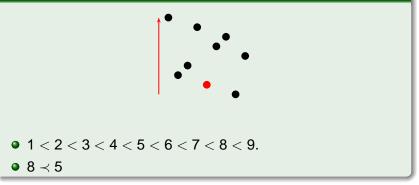


Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.

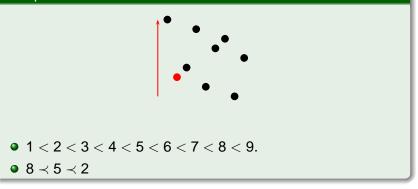


Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.

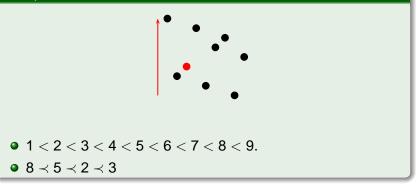


Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.

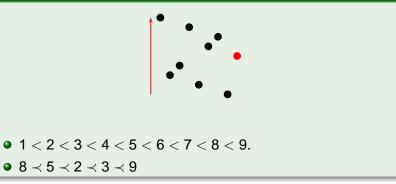


Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.



Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.

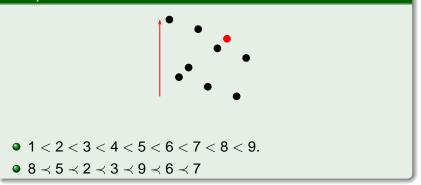
↑ • • • • • • • • • • • • • • • • • • •
 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9. 8 < 5 < 2 < 3 < 9 < 6

Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.



Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.

* • • • • •	
• $1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9$. • $8 < 5 < 2 < 3 < 9 < 6 < 7 < 4$	

Concepts

Relational Structures

Two Binary Relations

• A permutation of length *n* is a structure on two linear relations.

••••
• $1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9$.
• $8 \prec 5 \prec 2 \prec 3 \prec 9 \prec 6 \prec 7 \prec 4 \prec 1$

Concepts Graphs, Posets, Tournaments...

Graphs

• A graph is a relational structure on a single binary symmetric relation.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト … ヨ

Simple graph?

Example

Same neighbourhood = interval.

Concepts Graphs, Posets, Tournaments...

Graphs

• A graph is a relational structure on a single binary symmetric relation.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト … ヨ

• Simple graph?

Example

Same neighbourhood = interval.

Graphs

- A graph is a relational structure on a single binary symmetric relation.
- Simple graph? Well, rather an indecomposable graph.

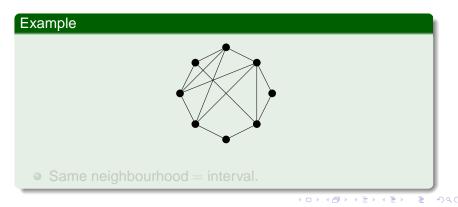
・ コット (雪) ・ (目) ・ 日)

Example

Same neighbourhood = interval.

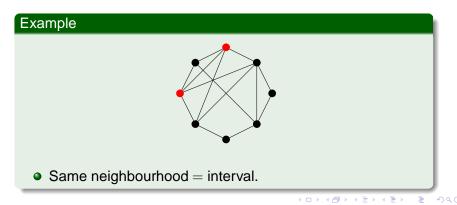
Graphs

- A graph is a relational structure on a single binary symmetric relation.
- Simple graph? Well, rather an indecomposable graph.



Graphs

- A graph is a relational structure on a single binary symmetric relation.
- Simple graph? Well, rather an indecomposable graph.

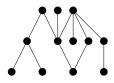


Concepts Graphs, Posets, Tournaments...

Posets

 A poset is a relational structure on a binary reflexive antisymmetric transitive relation.

Simplicity as ever.

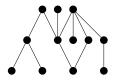


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Concepts Graphs, Posets, Tournaments...

Posets

- A poset is a relational structure on a binary reflexive antisymmetric transitive relation.
- Simplicity as ever.



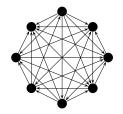
・ロト・日本・日本・日本・日本・日本

Concepts Graphs, Posets, Tournaments...

Tournaments

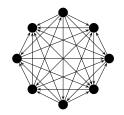
• A tournament is a complete oriented graph.

- As a relational structure, it is a single trichotomous binary relation. (x → y, y → x or x = y.)
- A competition between players: x → y means "y wins."



Concepts Graphs, Posets, Tournaments...

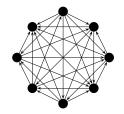
- A tournament is a complete oriented graph.
- As a relational structure, it is a single trichotomous binary relation. (x → y, y → x or x = y.)
- A competition between players: x → y means "y wins."



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Tournaments

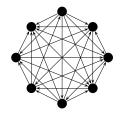
- A tournament is a complete oriented graph.
- As a relational structure, it is a single trichotomous binary relation. (x → y, y → x or x = y.)
- A competition between players: x → y means "y wins."



Simple Extensions of Permutations Concepts Graphs, Posets, Tournaments...

Tournaments

- A tournament is a complete oriented graph.
- As a relational structure, it is a single trichotomous binary relation. (x → y, y → x or x = y.)
- A competition between players: x → y means "y wins."



Concepts

Tournament Extensions

Tournaments and Algebras

Tournament \(\leftarrow Algebra on two idempotent binary operations.

- Can we embed an algebra into a larger simple algebra?

- How small can an embedding be?
- Look at tournaments instead.

Concepts

Tournament Extensions

Tournaments and Algebras

- Tournament \(\leftarrow Algebra on two idempotent binary operations.
- Simple Tournament \(\Low Simple Algebra (= no non-trivial ideals).
- Can we embed an algebra into a larger simple algebra?

- How small can an embedding be?
- Look at tournaments instead.

Concepts

Tournament Extensions

Tournaments and Algebras

- Tournament \(\leftarrow Algebra on two idempotent binary operations.
- Simple Tournament \(\leftarrow Simple Algebra (= no non-trivial ideals).
- Can we embed an algebra into a larger simple algebra?

(日) (日) (日) (日) (日) (日) (日) (日)

- How small can an embedding be?
- Look at tournaments instead.

Concepts

Tournament Extensions

Tournaments and Algebras

- Tournament \(\leftarrow Algebra on two idempotent binary operations.
- Simple Tournament \(\leftarrow Simple Algebra (= no non-trivial ideals).
- Can we embed an algebra into a larger simple algebra?

(日) (日) (日) (日) (日) (日) (日) (日)

- How small can an embedding be?
- Look at tournaments instead.

Concepts

Tournament Extensions

Tournaments and Algebras

- Tournament \(\leftarrow Algebra on two idempotent binary operations.
- Can we embed an algebra into a larger simple algebra?

(日) (日) (日) (日) (日) (日) (日) (日)

- How small can an embedding be?
- Look at tournaments instead.

Concepts

Tournament Extensions

Two-point Simple Extensions

Theorem (Erdős, Fried, Hajnal and Milner, 1972)

Every tournament has a simple extension with at most two additional vertices.

Theorem (Erdős, Hajnal and Milner, 1972)

A tournament T has a one-point simple extension unless |T| = 3 or T has an odd number of vertices and is transitive.

Concepts

Tournament Extensions

Two-point Simple Extensions

Theorem (Erdős, Fried, Hajnal and Milner, 1972)

Every tournament has a simple extension with at most two additional vertices.

Theorem (Erdős, Hajnal and Milner, 1972)

A tournament T has a one-point simple extension unless |T| = 3 or T has an odd number of vertices and is transitive.

The Permutation Case

Outline

Concepts

Intervals and Simple Permutations

- Relational Structures
- Graphs, Posets, Tournaments...
- Tournament Extensions

2 The Permutation Case

- Increasing Permutations
- The General Approach
- 3 Other Structures
 - Graphs
 - Posets

The Permutation Case

Aim

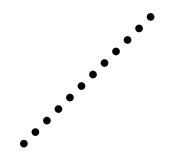
Question

How many additional points are needed to extend an arbitrary permutation to a simple one?

The Permutation Case

Increasing Permutations

Two Intervals at a Time



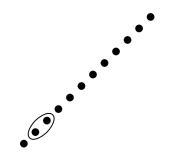
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Worst case: an increasing permutation.

The Permutation Case

Increasing Permutations

Two Intervals at a Time



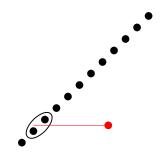
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Pick a minimal proper interval: need to "kill" it.

The Permutation Case

Increasing Permutations

Two Intervals at a Time



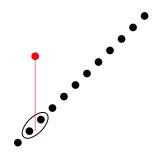
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Kill it horizontally ...

The Permutation Case

Increasing Permutations

Two Intervals at a Time



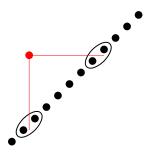
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Kill it horizontally ... or vertically.

The Permutation Case

Increasing Permutations

Two Intervals at a Time



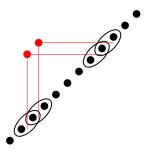
• An additional point can be used to kill two intervals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Permutation Case

Increasing Permutations

Two Intervals at a Time



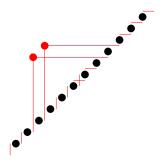
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• No intervals between additional points.

The Permutation Case

Increasing Permutations

Two Intervals at a Time



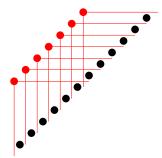
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• There are n + 1 gaps to fill (including ends).

The Permutation Case

Increasing Permutations

Two Intervals at a Time



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Need
$$\left\lceil \frac{n+1}{2} \right\rceil$$
 additional points.

The Permutation Case

The General Approach

The Substitution Decomposition

• Every permutation has a block decomposition.

• Gives a unique simple permutation.

Example

The Permutation Case

The General Approach

The Substitution Decomposition

• Every permutation has a block decomposition.

• Gives a unique simple permutation.

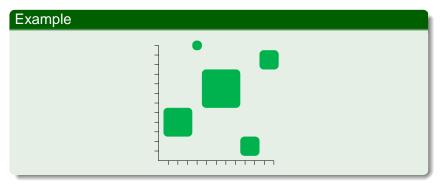
Example

Simple Extensions of Permutations The Permutation Case

The General Approach

The Substitution Decomposition

- Every permutation has a block decomposition.
- Gives a unique simple permutation.



Simple Extensions of Permutations The Permutation Case

The General Approach

The Substitution Decomposition

• If simple has > 2 points then the blocks are unique.

• This is called the substitution decomposition.

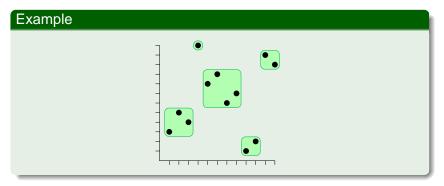
Example

Simple Extensions of Permutations The Permutation Case

The General Approach

The Substitution Decomposition

- If simple has > 2 points then the blocks are unique.
- This is called the substitution decomposition.



The Permutation Case

The General Approach

Approach with Induction

- At most $\lceil (n+1)/2 \rceil$ additional points each.
- First: new leftmost point and new maximum.
- Second: new leftmost point and new minimum.
- At least one is simple. The other nearly so.

The Permutation Case

The General Approach

Approach with Induction

- At most $\lceil (n+1)/2 \rceil$ additional points each.
- First: new leftmost point and new maximum.
- Second: new leftmost point and new minimum.
- At least one is simple. The other nearly so.

The Permutation Case

The General Approach

Approach with Induction

- At most $\lceil (n+1)/2 \rceil$ additional points each.
- First: new leftmost point and new maximum.
- Second: new leftmost point and new minimum.
- At least one is simple. The other nearly so.

The Permutation Case

The General Approach

Approach with Induction

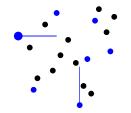
- At most $\lceil (n+1)/2 \rceil$ additional points each.
- First: new leftmost point and new maximum.
- Second: new leftmost point and new minimum.
- At least one is simple. The other nearly so.

The Permutation Case

The General Approach

Approach with Induction

- At most $\lceil (n+1)/2 \rceil$ additional points each.
- First: new leftmost point and new maximum.
- Second: new leftmost point and new minimum.
- At least one is simple. The other nearly so.

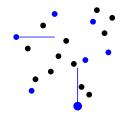


The Permutation Case

The General Approach

Approach with Induction

- At most $\lceil (n+1)/2 \rceil$ additional points each.
- First: new leftmost point and new maximum.
- Second: new leftmost point and new minimum.
- At least one is simple. The other nearly so.



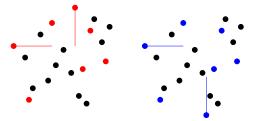
The Permutation Case

The General Approach

Approach with Induction

Claim: Form two extensions of a permutation of length *n*.

- At most $\lceil (n+1)/2 \rceil$ additional points each.
- First: new leftmost point and new maximum.
- Second: new leftmost point and new minimum.
- At least one is simple. The other nearly so.



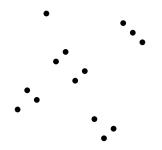
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The Permutation Case

The General Approach

The Inductive Step

• Given a permutation on *n* points.

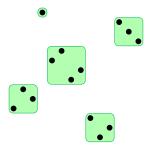


The Permutation Case

The General Approach

The Inductive Step

• Decompose permutation into smaller blocks.

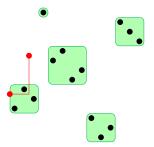


The Permutation Case

The General Approach

The Inductive Step

• Working left to right, extend each block.

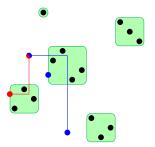


The Permutation Case

The General Approach

The Inductive Step

• Max / min becomes leftmost point for next block.

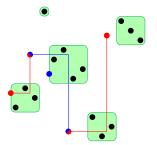


The Permutation Case

The General Approach

The Inductive Step

• Max / min becomes leftmost point for next block.

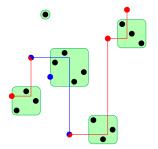


The Permutation Case

The General Approach

The Inductive Step

• Final block: use max or min.

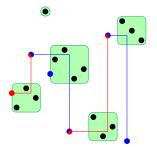


The Permutation Case

The General Approach

The Inductive Step

• Final block: use max or min.



The Permutation Case

The General Approach

And so...

Theorem (RB, NR, VV)

A permutation on n points has a simple extension requiring at most $\left\lceil \frac{n+1}{2} \right\rceil$ additional points.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Other Structures

Outline

Concepts

Intervals and Simple Permutations

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

- Relational Structures
- Graphs, Posets, Tournaments...
- Tournament Extensions
- 2 The Permutation Case
 - Increasing Permutations
 - The General Approach

Other Structures

- Graphs
- Posets

Other Structures

Graphs

The Graph Bound

• Worst cases: complete and independent graphs.

Theorem (Sumner, 1971)

 K_n has a simple extension with $\lceil \log_2(n+1) \rceil$ additional vertices.

- Bound is tight.
- General case: use the substitution decomposition.

Theorem (RB, NR, VV)

Other Structures

Graphs

The Graph Bound

• Worst cases: complete and independent graphs.

Theorem (Sumner, 1971)

 K_n has a simple extension with $\lceil \log_2(n+1) \rceil$ additional vertices.

• Bound is tight.

• General case: use the substitution decomposition.

Theorem (RB, NR, VV)

Other Structures

Graphs

The Graph Bound

• Worst cases: complete and independent graphs.

Theorem (Sumner, 1971)

 K_n has a simple extension with $\lceil \log_2(n+1) \rceil$ additional vertices.

• Bound is tight.

• General case: use the substitution decomposition.

Theorem (RB, NR, VV)

Other Structures

Graphs

The Graph Bound

• Worst cases: complete and independent graphs.

Theorem (Sumner, 1971)

 K_n has a simple extension with $\lceil \log_2(n+1) \rceil$ additional vertices.

Bound is tight.

• General case: use the substitution decomposition.

Theorem (RB, NR, VV)

Other Structures

Graphs

The Graph Bound

• Worst cases: complete and independent graphs.

Theorem (Sumner, 1971)

 K_n has a simple extension with $\lceil \log_2(n+1) \rceil$ additional vertices.

Bound is tight.

• General case: use the substitution decomposition.

Theorem (RB, NR, VV)

Other Structures

Posets

Posets: A Graph-Permutation Mix

- Two (different) bad cases: antichains and linear orders.
- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations. Get [(n+1)/2].
- Substitution decomposition gives a general bound.

Theorem (RB, NR, VV)

A poset with n elements has a simple extension requiring at most $\left\lceil \frac{n+1}{2} \right\rceil$ additional elements.

Other Structures

Posets

Posets: A Graph-Permutation Mix

- Two (different) bad cases: antichains and linear orders.
- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations. Get [(n+1)/2].
- Substitution decomposition gives a general bound.

Theorem (RB, NR, VV)

A poset with n elements has a simple extension requiring at most $\left\lceil \frac{n+1}{2} \right\rceil$ additional elements.

Other Structures

Posets

Posets: A Graph-Permutation Mix

- Two (different) bad cases: antichains and linear orders.
- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations. Get [(n+1)/2].
- Substitution decomposition gives a general bound.

Theorem (RB, NR, VV)

A poset with n elements has a simple extension requiring at most $\left\lceil \frac{n+1}{2} \right\rceil$ additional elements.

Other Structures

Posets

Posets: A Graph-Permutation Mix

- Two (different) bad cases: antichains and linear orders.
- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations. Get $\lceil (n+1)/2 \rceil$.
- Substitution decomposition gives a general bound.

Theorem (RB, NR, VV)

A poset with n elements has a simple extension requiring at most $\left\lceil \frac{n+1}{2} \right\rceil$ additional elements.

Other Structures

Posets

Posets: A Graph-Permutation Mix

- Two (different) bad cases: antichains and linear orders.
- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations. Get $\lceil (n+1)/2 \rceil$.
- Substitution decomposition gives a general bound.

Theorem (RB, NR, VV)

A poset with n elements has a simple extension requiring at most $\left\lceil \frac{n+1}{2} \right\rceil$ additional elements.

Other Structures

Posets

Posets: A Graph-Permutation Mix

- Two (different) bad cases: antichains and linear orders.
- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations. Get [(n+1)/2].
- Substitution decomposition gives a general bound.

Theorem (RB, NR, VV)

A poset with n elements has a simple extension requiring at most $\left\lceil \frac{n+1}{2} \right\rceil$ additional elements.

Other Structures

Posets

Posets: A Graph-Permutation Mix

- Two (different) bad cases: antichains and linear orders.
- Antichains behave like graphs. Get $\lceil \log_2(n+1) \rceil$.
- Linear orders behave like permutations. Get [(n+1)/2].
- Substitution decomposition gives a general bound.

Theorem (RB, NR, VV)

A poset with n elements has a simple extension requiring at most $\left\lceil \frac{n+1}{2} \right\rceil$ additional elements.

Other Structures

Summary

• Permutations: when do we need all $\lceil (n+1)/2 \rceil$ points?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Same question for graphs, posets?
- Say anything more general?

Other Structures

Summary

• Permutations: when do we need all $\lceil (n+1)/2 \rceil$ points?

- Same question for graphs, posets?
- Say anything more general?

Other Structures

Summary

• Permutations: when do we need all $\lceil (n+1)/2 \rceil$ points?

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Same question for graphs, posets?
- Say anything more general?