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Aim

Question
How many additional points are needed to extend an arbitrary
permutation to a simple one?
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Second: new leftmost point and new minimum.

At least one is simple. The other nearly so.



Simple Extensions of Permutations

The Permutation Case

The General Approach

Approach with Induction

Claim: Form two extensions of a permutation of length n.

At most ⌈(n + 1)/2⌉ additional points each.

First: new leftmost point and new maximum.

Second: new leftmost point and new minimum.

At least one is simple. The other nearly so.



Simple Extensions of Permutations

The Permutation Case

The General Approach

Approach with Induction

Claim: Form two extensions of a permutation of length n.

At most ⌈(n + 1)/2⌉ additional points each.

First: new leftmost point and new maximum.

Second: new leftmost point and new minimum.

At least one is simple. The other nearly so.



Simple Extensions of Permutations

The Permutation Case

The General Approach

Approach with Induction

Claim: Form two extensions of a permutation of length n.

At most ⌈(n + 1)/2⌉ additional points each.

First: new leftmost point and new maximum.

Second: new leftmost point and new minimum.

At least one is simple. The other nearly so.



Simple Extensions of Permutations

The Permutation Case

The General Approach

Approach with Induction

Claim: Form two extensions of a permutation of length n.

At most ⌈(n + 1)/2⌉ additional points each.

First: new leftmost point and new maximum.

Second: new leftmost point and new minimum.

At least one is simple. The other nearly so.



Simple Extensions of Permutations

The Permutation Case

The General Approach

Approach with Induction

Claim: Form two extensions of a permutation of length n.

At most ⌈(n + 1)/2⌉ additional points each.

First: new leftmost point and new maximum.

Second: new leftmost point and new minimum.

At least one is simple. The other nearly so.



Simple Extensions of Permutations

The Permutation Case

The General Approach

Approach with Induction

Claim: Form two extensions of a permutation of length n.

At most ⌈(n + 1)/2⌉ additional points each.

First: new leftmost point and new maximum.

Second: new leftmost point and new minimum.

At least one is simple. The other nearly so.



Simple Extensions of Permutations

The Permutation Case

The General Approach

The Inductive Step

Given a permutation on n points.



Simple Extensions of Permutations

The Permutation Case

The General Approach

The Inductive Step

Decompose permutation into smaller blocks.



Simple Extensions of Permutations

The Permutation Case

The General Approach

The Inductive Step

Working left to right, extend each block.



Simple Extensions of Permutations

The Permutation Case

The General Approach

The Inductive Step

Max / min becomes leftmost point for next block.



Simple Extensions of Permutations

The Permutation Case

The General Approach

The Inductive Step

Max / min becomes leftmost point for next block.



Simple Extensions of Permutations

The Permutation Case

The General Approach

The Inductive Step

Final block: use max or min.



Simple Extensions of Permutations

The Permutation Case

The General Approach

The Inductive Step

Final block: use max or min.



Simple Extensions of Permutations

The Permutation Case

The General Approach

And so...

Theorem (RB, NR, VV)

A permutation on n points has a simple extension requiring at

most
⌈

n + 1
2

⌉

additional points.
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The Graph Bound

Worst cases: complete and independent graphs.

Theorem (Sumner, 1971)

Kn has a simple extension with ⌈log2(n + 1)⌉ additional vertices.

Bound is tight.

General case: use the substitution decomposition.

Theorem (RB, NR, VV)

A graph on n vertices has a simple extension requiring at most
⌈log2(n + 1)⌉ additional vertices.
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