

Permutation classes and infinite antichains

Robert Brignall

Based on joint work with David Bevan and Nik Ruškuc

Dartmouth College, 12th July 2018

For a permutation class C:

- What is the growth rate?
- What is the generating function? (e.g. rational, algebraic, *D*-finite)
- What is the basis? (Is it finite?)
- What do the permutations 'look like'?

Examples: Av(231) and Av(321)

Both enumerated by Catalan numbers:
$$f(z) = \frac{1 - \sqrt{1 - 4z}}{2z}$$

$\mathcal{C} \subsetneq \operatorname{Av}(231) \qquad \qquad \mathcal{D} \subsetneq \operatorname{Av}(321)$

Growth rate

Generating function

Basis

	$\mathcal{C} \subsetneq \operatorname{Av}(231)$	$\mathcal{D} \subsetneq \operatorname{Av}(321)$
Crowth rate	Countably many	Includes [2.36, 2.48]
Glowin Tale	possibilities	(Bevan, 2018)

Generating function

Basis

Basis

sity
ver ol
ĒŚ

	$\mathcal{C} \subsetneq \operatorname{Av}(231)$	$\mathcal{D} \subsetneq \operatorname{Av}(321)$
Growth rate	Countably many possibilities	Includes [2.36, 2.48] (Bevan, 2018)
Generating function	Rational (Albert, Atkinson, 2005)	Could be anything

	$\mathcal{C} \subsetneq \operatorname{Av}(231)$	$\mathcal{D} \subsetneq \operatorname{Av}(321)$
Growth rate	Countably many possibilities	Includes [2.36, 2.48] (Bevan, 2018)
Generating function	Rational (Albert, Atkinson, 2005)	Could be anything
Basis	Finite	Finite or infinite

he Oper Jniversity

What's causing Av(321) to misbehave?

Sorting Using Networks of Queues and Stacks

ROBERT TARJAN

Stanford University,* Stanford, California

We might have conjectured that some finite set of patterns would characterize the sequences sortable in a switchyard. However, using the concept of the union graph, we may disprove this for the case of two parallel stacks:

LEMMA 6. There is an infinite set of permutations, none of which contains another as a pattern, and such that each permutation is unsortable using two parallel stacks.

PROOF. Consider the union graphs of the permutations (2341) and (27416385) (see Figure 5).

We may generalize the second example in Figure 5 to give a permutation whose union graph is a cycle of length 2n + 1, for arbitrary $n \ge 2$. $(2, 4n - 1, 4, 1, 6, 3, 8, 5, \dots, 4n, 4n - 3)$ is the general permutation. Since the union graph of this permu-

 $2 \ 11 \ 4 \ 1 \ 6 \ 3 \ 8 \ 5 \ 10 \ 7 \ 12 \ 9$

 $2\ 13\ 4\ 1\ 6\ 3\ 8\ 5\ 10\ 7\ 12\ 9\ 14\ 11$

 $2\,11\,4\,1\,6\,3\,8\,5\,10\,7\,12\,9$

 $2 \ {\color{red}13} \ 4 \ 1 \ 6 \ 3 \ 8 \ 5 \ 10 \ 7 \ 12 \ 9 \ 14 \ 11 \\$

$4\ 1\ 2\ 6\ 3\ 8\ 5\ 10\ 7\ 13\ 9\ 11\ 12$

$4\ 1\ 2\ 6\ 3\ 8\ 5\ 10\ 7\ 12\ 9\ 15\ 11\ 13\ 14$

 $4\,1\,2\,6\,3\,8\,5\,10\,7\,13\,9\,11\,12 \quad \not\leq \quad 4\,1\,2\,6\,3\,8\,5\,10\,7\,12\,9\,15\,11\,13\,14$

The increasing oscillating antichain, Dsc, avoids 321

Permutation Patterns 2018

Permutation Patterns 2018

• An antichain: any set of permutations where no permutation is contained in any other.

$$\mathfrak{A} = \{\alpha_1, \alpha_2, \ldots : \alpha_i \not\leq \alpha_j \text{ for all } i, j\}.$$

- N.B. By minimality, the basis of a permutation class is always an antichain.
- Well-quasi-order or partial well-order: no infinite antichains. [I'll avoid these terms in this talk.]

Proposition (Atkinson, Murphy, Ruškuc, 2002)

Let C be a finitely based permutation class. The following are equivalent:

- (1) Every subclass of C is finitely based,
- (2) C contains at most countably many subclasses,
- (3) C has no infinite antichain.

Conjecture (Vatter, 2015)

If C is a permutation class that contains no infinite antichains, then it has an algebraic generating function.

Back to those subclasses of Av(231), Av(321)

	$\mathcal{C} \subsetneq \operatorname{Av}(231)$	$\mathcal{D}\subsetneq\operatorname{Av}(321)$
Growth rate	Countably many possibilities	Includes [2.36, 2.48] (Bevan, 2018)
Generating function	Rational (Albert, Atkinson, 2005)	Could be anything
Basis	Finite	Finite or infinite
Infinite antichains	None	Øsc

Theorem (Bevan, 2018; Vatter, 2010)

Every real number above **2**.35698 *is the growth rate of some permutation class.*

'Proof'.

Create sum-closed classes by choosing sum indecomposables from \mathfrak{Dsc} , and some easy variants. Using cleverness, find a class with any growth rate above the unique real root of $x^8 - 2x^7 - x^5 - x^4 - 2x^3 - 2x^2 - x - 1$.

N.B. 'sum-closed' guarantees existence of a growth rate (Arratia, 1999)

Underpinning Dsc

Dsc (above) and its 'easy variants' all build on increasing oscillations:

N.B. These form a chain (not an antichain!).

SIAM J. COMPUT. Vol. 25, No. 2, pp. 272-289, April 1996 © 1996 Society for Industrial and Applied Mathematics 003

GENOME REARRANGEMENTS AND SORTING BY REVERSALS*

VINEET BAFNA[†] AND PAVEL A. PEVZNER[‡]

Define $d(n) = \max_{\pi \in S_n} d(\pi)$ to be the *reversal diameter* of the symmetric group of order *n*. Gollan conjectured that d(n) = n - 1 and that only one permutation γ_n , and its inverse, γ_n^{-1} , require n - 1 reversals to be sorted (see Kececioglu and Sankoff [KS93] for details). The *Gollan* permutation, in one-line notation, is defined as follows:

$$\gamma_n = \begin{cases} (3, 1, 5, 2, 7, 4, \dots, n-3, n-5, n-1, n-4, n, n-2), & n \text{ even}, \\ (3, 1, 5, 2, 7, 4, \dots, n-6, n-2, n-5, n, n-3, n-1), & n \text{ odd}. \end{cases}$$

Theorem (Albert, B., Vatter, 2013)

Every proper permutation class C is contained in a permutation class with a rational generating function.

'Proof'.

Use increasing oscillations to make an enormous infinite antichain

Theorem (Albert, B., Vatter, 2013)

Every proper permutation class C is contained in a permutation class with a rational generating function.

'Proof'.

Use increasing oscillations to make an enormous infinite antichain

Theorem (Albert, B., Vatter, 2013)

Every proper permutation class C is contained in a permutation class with a rational generating function.

'Proof'.

Use increasing oscillations to make an enormous infinite antichain

such that $Av(\mathfrak{A}) \cup \mathfrak{A}$ has a rational generating function. Union this with C, and remove enough antichain elements of each length to preserve rationality.

§2 Labelled containment

- Colour/label each entry of σ and π red or black.
- $\sigma \leq_{\ell} \pi$ if σ embeds in π so that the labels match up. (Generalisations with more labels possible.)

Examples:

Increasing oscillations only embed contiguously

• Increasing oscillations only embed contiguously

• Increasing oscillations only embed contiguously

• Increasing oscillations only embed contiguously

· Cannot embed lowest & highest into lowest & highest

A labelled infinite antichain

Warning! Abuse of notation:

'A class C contains a labelled infinite antichain'

really means

'C contains an infinite set of permutations whose entries can be labelled red/black so that it forms an infinite antichain in \leq_{ℓ} .'

Proposition (After Pouzet, 1972)

A permutation class *C* that contains no infinite labelled antichain is finitely based.

Proof.

Suppose $C = Av(\mathfrak{B})$ is not finitely based. For each $\beta \in \mathfrak{B}$:

Proposition (After Pouzet, 1972)

A permutation class *C* that contains no infinite labelled antichain is finitely based.

Proof.

Suppose $C = Av(\mathfrak{B})$ is not finitely based. For each $\beta \in \mathfrak{B}$:

Proposition (After Pouzet, 1972)

A permutation class C that contains no infinite labelled antichain is finitely based.

Proof.

Suppose $C = Av(\mathfrak{B})$ is not finitely based. For each $\beta \in \mathfrak{B}$:

Theorem (Albert, B., Ruškuc, Vatter)

If $D \subsetneq Av(321)$ is finitely based or does not contain an infinite antichain, then it has a rational generating function.

Furthermore, if $D \subsetneq Av(321)$ *contains a (labelled or unlabelled) infinite antichain then it contains long increasing oscillations.*

Thus, if $D \subsetneq Av(321)$ avoids some oscillation, then D is finitely based and has a rational generating function.

- Growth rates below $\kappa \approx 2.20557$: no (labelled or unlabelled) infinite antichains (\Rightarrow all classes finitely based).
- At *κ*: increasing oscillations and Dsc appear (⇒ uncountably many classes).

Theorem (Albert, Ruškuc, Vatter, 2015)

Every permutation class C *with* $gr(C) < \kappa$ *has a rational generating function.*

- $\xi \approx 2.30522$ marks another phase transition: from countably many to uncountably many different growth rates (Vatter).
- Classification of growth rates from κ to ξ (Pantone, Vatter).

Smallish permutation classes

- $\xi \approx 2.30522$ marks another phase transition: from countably many to uncountably many different growth rates (Vatter).
- Classification of growth rates from κ to ξ (Pantone, Vatter).

Conjecture

The next infinite (labelled) antichain first appears in a class of growth rate $\nu \approx 3.06918$.

- $\xi \approx 2.30522$ marks another phase transition: from countably many to uncountably many different growth rates (Vatter).
- Classification of growth rates from κ to ξ (Pantone, Vatter).

Conjecture *The next infinite (labelled) antichain first appears in a class of growth rate* $v \approx 3.06918$.

Conjollary

Any class C with gr(C) < 3.06918 which contains only bounded length oscillations is finitely based.

§3 Grid classes

Grid classes

- \mathcal{M} a 0, ± 1 matrix.
- $\pi \in \operatorname{Grid}(\mathcal{M})$ if π can be gridded so that each cell of π is $\begin{cases} \operatorname{empty} \\ \operatorname{increasing} \\ \operatorname{decreasing} \end{cases}$ if the corresponding entry of \mathcal{M} is $\begin{cases} 0 \\ 1 \\ -1 \end{cases}$.

Grid classes

- *M* a 0, ±1 matrix.
- $\pi \in \operatorname{Grid}(\mathcal{M})$ if π can be gridded so that each cell of π is $\begin{cases} \operatorname{empty} \\ \operatorname{increasing} \\ \operatorname{decreasing} \end{cases}$ if the corresponding entry of \mathcal{M} is $\begin{cases} 0 \\ 1 \\ -1 \end{cases}$.

Long increasing oscillations don't grid nicely.

Long increasing oscillations don't grid nicely.

$\text{Grid}(\mathcal{M})$

Growth rate

Generating function

Basis

Infinite antichains

$\frac{\text{Grid}(\mathcal{M})}{\rho(\mathcal{M})^2 \text{ (Bevan, 2015)}}$

Growth rate

Generating function

Basis

Infinite antichains

	$\operatorname{Grid}(\mathcal{M})$
Growth rate	$ ho(\mathcal{M})^2$ (Bevan, 2015)
Generating function	Rational if acyclic [†] , otherwise
Basis	

Infinite antichains

† - see Albert, Atkinson, Bouvel, Ruškuc, Vatter, 2013

	$\operatorname{Grid}(\mathcal{M})$
Growth rate	$ ho(\mathcal{M})^2$ (Bevan, 2015)
Generating function	Rational if acyclic [†] , otherwise
Basis	Finite if acyclic [†] , otherwise
Infinite antichains	

† – see Albert, Atkinson, Bouvel, Ruškuc, Vatter, 2013

	$\operatorname{Grid}(\mathcal{M})$
Growth rate	$ ho(\mathcal{M})^2$ (Bevan, 2015)
Concrating function	Pational if acyclic [†] othorwise
Generating function	Rational II acyclic, otherwise
Basis	Finite if acyclic [†] , otherwise
Infinite antichains	None iff acyclic (Murphy, Vatter, 2003)

† – see Albert, Atkinson, Bouvel, Ruškuc, Vatter, 2013

 $G_{\mathcal{M}}$: bipartite graph, vertices $\{c_1, \ldots, c_m, r_1, \ldots, r_n\}$, with $c_i r_j \in E(G_{\mathcal{M}})$ if $M_{ij} \neq 0$.

Example

$$\mathcal{M} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \qquad \begin{array}{cccc} r_1 & -1 & 1 & 1 \\ G_{\mathcal{M}}: r_2 & 1 & -1 \\ & c_1 & c_2 & c_3 \end{array}$$

$$\mathcal{M} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \qquad \begin{array}{cccc} r_1 & -1 & 1 & 1 \\ G_{\mathcal{M}}: & r_2 & -1 \\ & & & c_1 & c_2 & c_3 \end{array}$$

 $G_{\mathcal{M}}$: bipartite graph, vertices $\{c_1, \ldots, c_m, r_1, \ldots, r_n\}$, with $c_i r_j \in E(G_{\mathcal{M}})$ if $M_{ij} \neq 0$.

Example

$$\mathcal{M} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \qquad G_{\mathcal{M}}: \ r_2 \longrightarrow c_1 \ c_2 \ c_3$$

- Acyclic: *G*_{*M*} has no cycles.
- Unicyclic: *G*_{*M*} has at most one cycle.

$\operatorname{Grid}(\mathcal{M})$	acyclic	unicyclic	polycyclic
Growth rate	$ ho(\mathcal{M})^2$	$ ho(\mathcal{M})^2$	$ ho(\mathcal{M})^2$
Generating function	Rational	Erm	Erm
Basis	Finite	Erm	Erm
Infinite antichains	None [‡]	Some	Some

 \ddagger Not even labelled infinite antichains (\Rightarrow finitely based).

Following the role of \mathfrak{Osc} in Av(321), we ask:

Question

When does a subclass C of a unicyclic grid class $Grid(\mathcal{M})$ contain an infinite labelled antichain?

Example: Let
$$\mathcal{M} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

Example: Let
$$\mathcal{M} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

Example: Let
$$\mathcal{M} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

Key idea: ⊞-decomposition

Lemma

The class $C \subseteq Grid(\mathcal{M})$ *contains infinite labelled antichains if and only if the* \boxplus *-indivisible gridded permutations in* C *do.*

Theorem (Bevan, B., Ruškuc)

For a unicyclic grid class $Grid(\mathcal{M})$, any subclass $C \subseteq Grid(\mathcal{M})$ contains (labelled) infinite antichains if and only if C has infinite intersection with one of two labelled antichains (per component of $G_{\mathcal{M}}$).

Example: For
$$\mathcal{M} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
, they are:

Theorem (Bevan, B., Ruškuc) Unicyclic grid classes are finitely based.

Proof outline (if it survives writing up...)

If $\mathcal{C} \subsetneq \operatorname{Grid}(\mathcal{M})$ contains no labelled antichains, then neither does \mathcal{C}^{+1} .

Theorem (Bevan, B., Ruškuc) Unicyclic grid classes are finitely based.

Proof outline (if it survives writing up...)

If $C \subsetneq \operatorname{Grid}(\mathcal{M})$ contains no labelled antichains, then neither does \mathcal{C}^{+1} . Write $\operatorname{Grid}(\mathcal{M}) = \operatorname{Av}(\mathfrak{B})$ and argue that $\mathfrak{B} \subset \mathcal{C}^{+1}$.

Proposition (Bevan, PhD thesis 2015)

The gridded permutations in a unicyclic grid class have an algebraic generating function.

Work in progress

A unicyclic grid class *should* have an algebraic generating function.

$\operatorname{Grid}(\mathcal{M})$	acyclic	unicyclic	polycyclic
Growth rate	$ ho(\mathcal{M})^2$	$ ho(\mathcal{M})^2$	$ ho(\mathcal{M})^2$
Generating function	Rational	Erm	Erm
Basis	Finite	Erm	Erm
Infinite antichains	None [‡]	Some	Some

 \ddagger Not even labelled infinite antichains (\Rightarrow finitely based).

$\operatorname{Grid}(\mathcal{M})$	acyclic	unicyclic	polycyclic
Growth rate	$ ho(\mathcal{M})^2$	$ ho(\mathcal{M})^2$	$ ho(\mathcal{M})^2$
Generating function	Rational	?Algebraic	Erm
Basis	Finite	Finite	Erm
Infinite antichains	None [‡]	'Two'	Some

 \ddagger Not even labelled infinite antichains (\Rightarrow finitely based).

Thanks!