

From permutations to graphs well-quasi-ordering and infinite antichains

Robert Brignall Joint work with Atminas, Korpelainen, Lozin and Vatter

18th December 2014

Orderings on Structures

The Open University

• Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, ...

Orderings on Structures

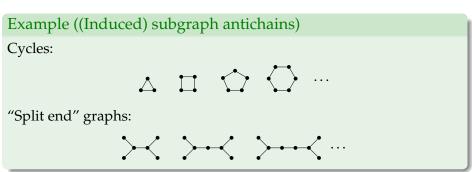
. . .

- Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, ...
- Give your family an ordering. E.g. graph minor, induced subgraph, permutation containment,

Orderings on Structures

The Open University

- Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, ...
- Give your family an ordering. E.g. graph minor, induced subgraph, permutation containment,
- Does your ordering contain infinite antichains? i.e. an infinite set of pairwise incomparable elements.



No infinite antichains = well-quasi-ordered.

- Words over a finite alphabet with subword ordering [Higman, 1952].
- Trees ordered by topological minors [Kruskal 1960; Nash-Williams, 1963]
- Graphs closed under minors [Robertson and Seymour, 1983—2004].

Infinite antichains.

- Graphs closed under induced subgraphs (or merely subgraphs).
- Permutations closed under containment.
- Tournaments, digraphs, posets, . . . with their natural induced substructure ordering.

Algorithms inside well-quasi-ordered sets

- Polynomial-time recognition: is one graph a minor of another?
- Fixed-parameter tractability: e.g. graphs with vertex cover at most *k* can be recognised in polynomial time.

Miscellany

- Well-quasi-order = nice structure. Useful for other problems (e.g. enumeration)
- Connections with logic: Kruskal's Tree Theorem is unproveable in Peano arithmetic [Friedman, 2002]
- Antichains are pretty! (See later)
- It is fun [Kříž and Thomas, 1990]
- Because it's there. [Mallory]

- Quasi order: reflexive transitive relation.
- Partial order: quasi order + asymmetric.

Definition

Let (S, \leq) be a quasi-ordered (or partially-ordered) set. Then *S* is said to be well quasi ordered (wqo) under \leq if it

- is well-founded (no infinite descending chain), and
- contains no infinite antichain (set of pairwise incomparable elements).
- Well founded: usually trivial for finite combinatorial objects. This is all about the antichains.

• Don't panic! Maybe you could restrict to a subcollection?

Example: Cographs as induced subgraphs

- Cographs = graphs containing no induced P_4 = closure of K_1 under complementation and disjoint union.
 - Cographs are well-quasi-ordered. [Damaschke, 1990]
 - Learn to stop worrying and love the antichains! [sorry, Kubrick]

Question

In your favourite ordering, which downsets contain infinite antichains?

• Downset (or hereditary property, or class): set \mathcal{C} of objects such that

 $G \in \mathcal{C}$ and $H \leq G$ implies $H \in \mathcal{C}$.

Examples

- Triangle-free graphs: downset under (induced) subgraphs. Not wqo.
- Cographs: downset under induced subgraphs. Wqo.
- Planar graphs: downset under graph minor. Wqo.
- Words over {0,1} with no '00' factor: downset under factor order. Not wqo: 010, 0110, 01110, 01110,...

Downsets often defined by the minimal forbidden elements.

e Oper

Examples

- Triangle-free graphs: *K*³ free as (induced) subgraph.
- Cographs: $Free(P_4)$.
- Planar graphs: {*K*₅, *K*_{3,3}}-minor free graphs [Wagner's Theorem]
- Pattern-avoiding permutations: Av(321) (see later).
- Confusingly, the set of minimal forbidden elements is an antichain!
- Graph Minor Theorem ⇒ every minor-closed class has finitely many forbidden elements.

The Open University

Question

In your favourite ordering, which downsets contain infinite antichains?

Known decision procedures

- Graph minors: no antichains anywhere!
- Subgraph order: a downset is wqo if and only if it contains neither $\land \square \diamondsuit \diamondsuit \cdots$ nor $\rightarrowtail \rightarrowtail \leadsto \dotsm \cdots$ [Ding, 1992]
- Factor order: downsets of words over a finite alphabet [Atminas, Lozin & Moshkov, 2013]

Theorem (Cherlin & Latka, 2000)

Any downset with k minimal forbidden elements is wqo iff it doesn't contain any of the infinite antichains in a finite collection Λ_k .

Ordering of the day

Induced subgraph ordering, $H \leq_{ind} G$.

Question

For which m, n is the following true?

The set of permutation graphs with no induced P_m or K_n is wqo.

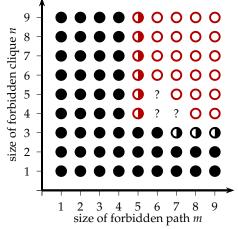
We'll:

- Build some antichains;
- Find structure to prove wqo.

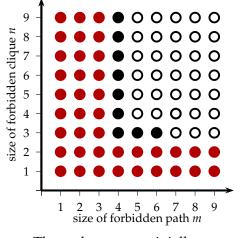
Motivation?

- The 'right' level of difficulty: Interestingly complex, but tractable.
- Demonstration of some recently-developed structural theory.
- Expansion of the graph \longleftrightarrow permutation interplay.

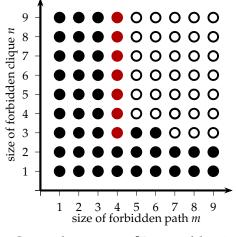
Forbidding paths and cliques



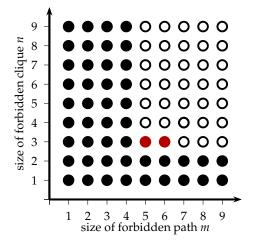
- = Graphs wqo
- \bullet = Permutation graphs wqo, graphs not wqo
- O = Permutation graphs not wqo



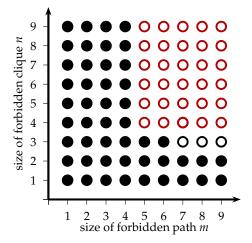
These classes are trivially wqo.



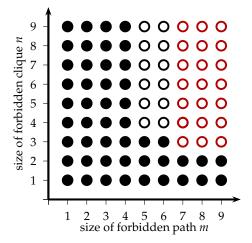
Cographs are wqo [Damaschke, 1990]



P₆, K₃-free graphs are wqo [Atminas and Lozin, 2014]

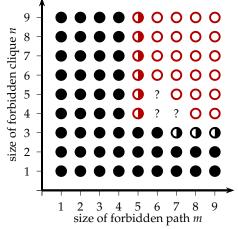


P₅, K₄-free graphs are not wqo [Korpelainen and Lozin, 2011]



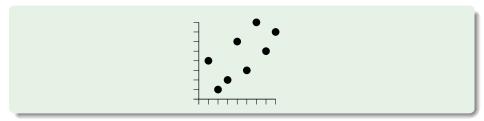
P₇, K₃-free graphs are not wqo [Korpelainen and Lozin, 2011b]

Forbidding paths and cliques



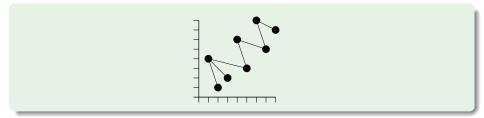
- = Graphs wqo
- \bullet = Permutation graphs wqo, graphs not wqo
- O = Permutation graphs not wqo

Permutation graphs



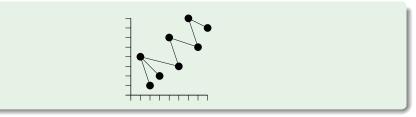
- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Make a graph G_{π} : for i < j, $ij \in E(G_{\pi})$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .

Permutation graphs



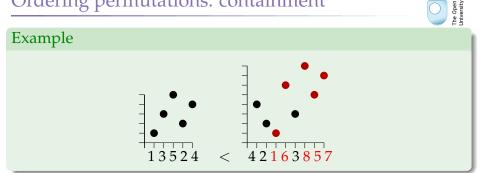
- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Make a graph G_{π} : for i < j, $ij \in E(G_{\pi})$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .

Permutation graphs



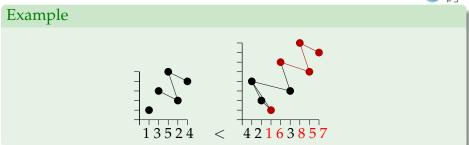
- Permutation graph = can be made from a permutation = comparability ∩ co-comparibility = comparability graphs of dimension 2 posets
- Lots of polynomial time algorithms here (e.g. MAXCLIQUE, TREEWIDTH)

Ordering permutations: containment



• Pattern containment: a partial order, $\sigma \leq \pi$.

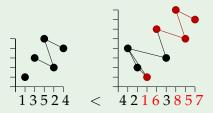
Ordering permutations: containment



- Pattern containment: a partial order, $\sigma \leq \pi$.
- Draw the graphs: $G_{\sigma} \leq_{\text{ind}} G_{\pi}$.

Ordering permutations: containment

Example



- Pattern containment: a partial order, $\sigma \leq \pi$.
- Draw the graphs: $G_{\sigma} \leq_{\text{ind}} G_{\pi}$.
- Permutation class: downset in this ordering:

 $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

• Avoidance: minimal forbidden permutation characterisation:

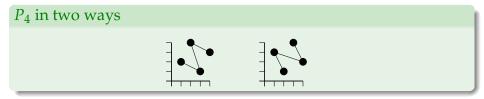
$$\mathcal{C} = \operatorname{Av}(B) = \{ \pi : \beta \leq \pi \text{ for all } \beta \in B \}.$$

$$\sigma \leq \pi \Longrightarrow G_{\sigma} \leq_{\mathrm{ind}} G_{\pi}$$

This means

Av(*B*) is wqo \implies {*G*_{β} : $\beta \in B$ }-free permutation graphs are wqo.

Conversely, the perm \rightarrow graph mapping is not injective:



Open Problem

Av(*B*) is wqo \iff {*G*_{β} : $\beta \in B$ }-free permutation graphs are wqo.

• For a graph *G*, define

 $\Pi(G) = \{ \text{permutations } \pi : G_{\pi} \cong G \}.$

e.g. $\Pi(P_4) = \{2413, 3142\}$, and $\Pi(K_5) = \{54321\}$.

• Given a permutation antichain

$$A=\{\alpha_1,\alpha_2,\dots\},\$$

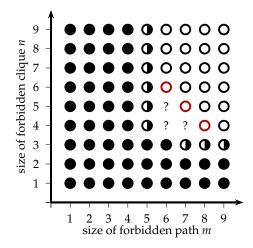
want each $\Pi(G_{\alpha_i})$, to contain as few permutations as possible.

Fact

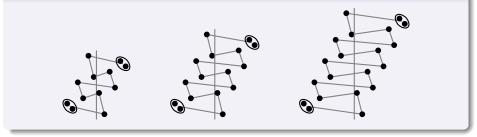
$$G_{\alpha_i} \not\leq G_{\alpha_j}$$
 iff $\sigma \not\leq \alpha_j$ for all $\sigma \in \Pi(G_{\alpha_i})$.

• So for each $\sigma \in \Pi(G_{\alpha_i})$, it suffices to find $\tau \leq \sigma$ such that $\tau \not\leq \alpha_j$ for every *j*.

Three permutation antichains required



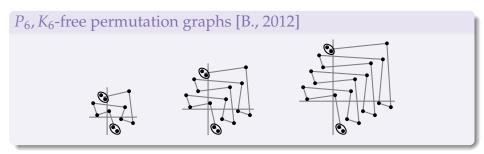
An antichain in Av(54321, 2416375, 3152746) [Murphy, 2003]



iversit

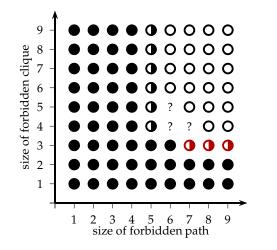
For every π in the above antichain:

- $|\Pi(G_{\pi})| = 4$, and we know what they are.
- $\pi^{-1} \in \Pi(G_{\pi})$ contains 51423, but π does not.
- Other permutations in $\Pi(G_{\pi})$ can be handled similarly.



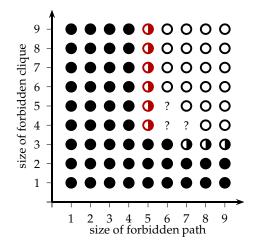
*P*₇, *K*₄-free permutation graphs [Murphy & Vatter, 2003]

Wqo classes



• Known: *P*_m, *K*₃-free permutation graphs are wqo [Lozin and Mayhill, 2011]

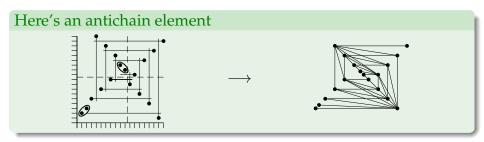
Wqo classes



- Known: *P*_m, *K*₃-free permutation graphs are wqo [Lozin and Mayhill, 2011]
- Todo: *P*₅, *K*_n-free permutation graphs are wqo, for all *n*.

The Open University

• P_5 , $K_{126923785921975}$ -free permutation graphs are wqo, but P_5 -free permutation graphs are not wqo.



• This antichain needs arbitrarily large cliques.

Theorem

The class of permutations $Av(n \cdots 21, 24153, 31524)$ is wqo.

- $G_{n\cdots 21}\cong K_n$
- $G_{24153} \cong G_{31524} \cong P_5$ (and these are the only two permutations).
- So Av $(n \cdots 21, 24153, 31524)$ corresponds to P_5, K_n -free permutation graphs.

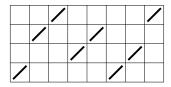
Corollary

The class of P_5 , K_n -free permutation graphs is wqo.

Proposition

The simple permutations of $Av(n \cdots 21, 24153, 31524)$ *are griddable.*

- Simple permutations are 'building blocks' (c.f. prime graphs)
- Griddable = can draw on a picture like this:



Proof

- Induction on n.
- Key step: in graph terms, limit the size of the largest matching in a prime graph

Theorem (Albert, Ruškuc, Vatter, 2014)

If the simple permutations in a class are geometrically griddable, then the class is wqo.

'Geometrically griddable' is stricter than 'griddable'

$$\operatorname{GGrid}\left(\begin{array}{|c|} \searrow & & \\ \swarrow & & \\ \swarrow & & \\ \end{array} \right) \to P_4$$
-free split permutation graphs

is a subclass of:

$$\operatorname{Grid}\left(\begin{array}{|c|} \mathbf{X} \\ \mathbf{X} \end{array}\right) \rightarrow \operatorname{split} \operatorname{permutation} \operatorname{graphs}$$

• Aim: take gridding from Step 1 and refine to a geometric one

Proposition

The simple permutations of $Av(n \cdots 21, 24153, 31524)$ *are griddable without NW corners.*

NW corners and cycles

• NW corner = configuration shown in red

The Open University

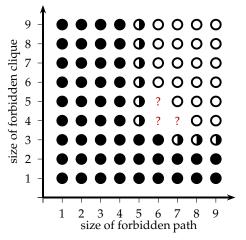
Proposition

The simple permutations of $Av(n \cdots 21, 24153, 31524)$ *are griddable without NW corners.*

NW corners and cycles

- NW corner = configuration shown in red
- Cycle = closed dotted line
- No NW corners \Rightarrow no cycles!
- No cycles \Rightarrow gridding is geometric \Rightarrow class is wqo

The question marks



- Three classes remain: $\{P_6, K_5\}, \{P_6, K_4\}$ and $\{P_7, K_4\}$.
- Not griddable (in the sense used here)
- None of our antichain construction tricks work

Thanks!

Main reference: Atminas, B., Korpelainen, Lozin & Vatter, *Well-quasi-order for permutation graphs omitting a path and a clique*, arXiv 1312:5907