

Forbidding paths and cliques graphs, permutation graphs, and well-quasi-ordering

Robert Brignall Joint work with Atminas, Korpelainen, Lozin and Vatter

2nd July 2013

Engineering and Physical Sciences Research Council

Orderings on Structures

The Open University

• Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, ...

Orderings on Structures

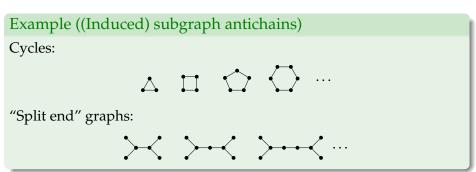
. . .

- Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, ...
- Give your family an ordering. E.g. graph minor, induced subgraph, permutation containment,

Orderings on Structures

The Open University

- Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, ...
- Give your family an ordering. E.g. graph minor, induced subgraph, permutation containment,
- Does your ordering contain infinite antichains? i.e. an infinite set of pairwise incomparable elements.



No infinite antichains = well-quasi-ordered.

- Words over a finite alphabet with subword ordering [Higman, 1952].
- Trees ordered by topological minors [Kruskal 1960; Nash-Williams, 1963]
- Graphs closed under minors [Robertson and Seymour, 1983—2004].

Infinite antichains.

- Graphs closed under induced subgraphs (or merely subgraphs).
- Permutations closed under containment.
- Tournaments, digraphs, posets, ... with their natural induced substructure ordering.

Question

In your favourite ordering, which downsets contain infinite antichains?

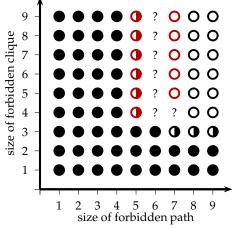
• Downset (or hereditary property): set \mathcal{P} of objects such that

 $G \in \mathcal{P}$ and $H \leq G$ implies $H \in \mathcal{P}$.

e.g. triangle-free graphs — (induced) subgraph ordering.

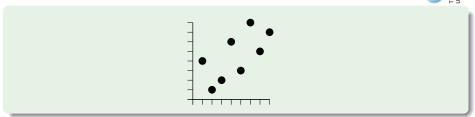
• Today: (permutation) graphs with no large clique or long path as an induced subgraph.

Forbidding paths and cliques



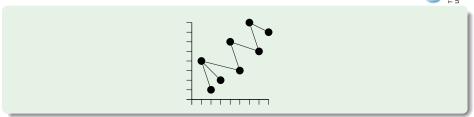
- \bullet = Graphs wqo
- \bullet = Permutation graphs wqo, graphs not wqo
- O = Permutation graphs not wqo

Permutation graphs



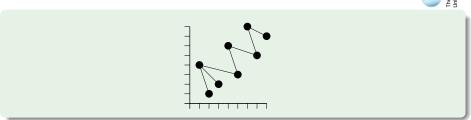
- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Make a graph G_{π} : for i < j, $i \sim j$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .

Permutation graphs



- Permutation $\pi = \pi(1) \cdots \pi(n)$
- Make a graph G_{π} : for i < j, $i \sim j$ iff $\pi(i) > \pi(j)$.
- Note: $n \cdots 21$ becomes K_n .

Permutation graphs



- Permutation graph = can be made from a permutation.
 = comparability ∩ co-comparibility
 = comparability graphs of dimension 2 posets
- Lots of polynomial time algorithms here (largest clique, tree width, clique width)

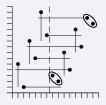
The Open University

Lemma

 P_7 , K_5 -free permutation graphs contain an infinite antichain.

Proof.

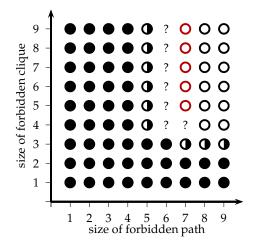
Here's an element of an infinite permutation antichain:



Turn this into a graph, show it is:

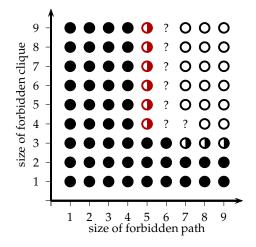
- 1. an antichain
- 2. *P*₇, *K*₅-free.

Where are we?



• Done: P_7 , K_n -free permutation graphs not wqo ($n \ge 5$)

Where are we?

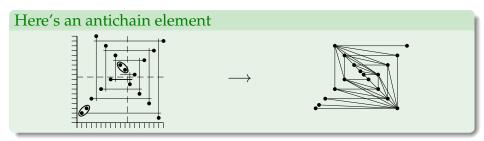


• **Done**: P_7 , K_n -free permutation graphs not wqo ($n \ge 5$)

• Next: *P*₅, *K*_n-free permutation graphs *are* wqo, for all *n*.

The Open

• P_5 , $K_{126923785921975}$ -free permutation graphs are wqo, but P_5 -free permutation graphs are not wqo.



• *P*₅, *K*₄-free graphs are not wqo [Korpelainen and Lozin]

Theorem

The class of permutations $Av(n \cdots 21, 24153, 31524)$ *is wqo.*

- $G_{n\cdots 21}\cong K_n$
- $G_{24153} \cong G_{31524} \cong P_5$ (and these are the only two permutations).
- So Av(*n*···21, 24153, 31524) corresponds to *P*₅, *K*_n-free permutation graphs.
- $\sigma \leq \pi$ implies $G_{\sigma} \leq G_{\pi}$, so:

Corollary

The class of P_5 , K_n -free permutations graphs is wqo.

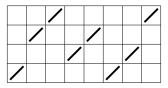
The Open University

Two steps:

Step 1 (Induction on *n*)

The simple permutations of Av($n \cdots 21, 24153, 31524$) are griddable.

- Simple permutations = 'building blocks' of the class
- Griddable = can plot the permutations on a picture like this:



(For more on griddings, see David Bevan's talk on Thursday.)

Two steps:

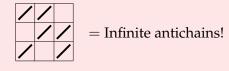
Step 2 (Refine the gridding)

The simple permutations of Av $(n \cdots 21, 24153, 31524)$ are griddable without NW corners.

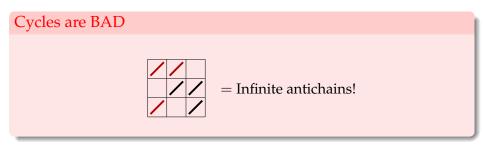
• NW corner = cells in this configuration:

• Murphy and Vatter, 2003:

Cycles are BAD



• Murphy and Vatter, 2003:

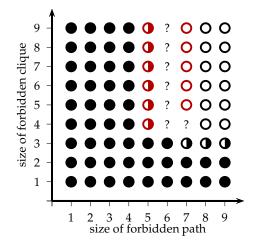


• Cycles have NW corners, so we have no cycles!

(The simples of) Av($n \cdots 21, 24153, 31524$) are good

- No cycles = wqo
- Simples good ⇒ whole class is wqo [Albert, Ruškuc, Vatter]

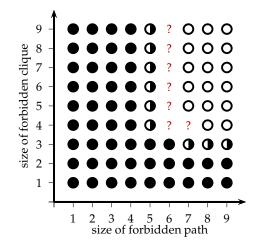
Where are we?



• **Done**: P_7 , K_n -free permutation graphs not wqo ($n \ge 5$)

• Done: P_5 , K_n -free permutation graphs *are* wqo, for all n.

Where are we?



- **Done**: P_7 , K_n -free permutation graphs not wqo ($n \ge 5$)
- Done: *P*₅, *K*_n-free permutation graphs *are* wqo, for all *n*.
- Lastly: The gap?

- Not griddable (in the sense defined here)
- None of our antichain construction tricks work

Tentative Conjecture

 P_6 , K_n -free permutation graphs are wqo.

"The fewer questions you ask, the sooner we get wine."

- Vincent Vatter, Permutation Patterns 2013, speaking about now