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Permutations

Permutation of length n: an ordering on the symbols 1, . . . , n.

For example: π = 15482763.
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Permutations

Permutation of length n: an ordering on the symbols 1, . . . , n.

For example: π = 15482763.

Graphical viewpoint: plot the points (i , π(i)).

Example
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Intervals

Pick any permutation π.

An interval of π is a set of contiguous indices I = [a, b] such that
π(I) = {π(i) : i ∈ I} is also contiguous.

Example
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Intervals

Pick any permutation π.

An interval of π is a set of contiguous indices I = [a, b] such that
π(I) = {π(i) : i ∈ I} is also contiguous.

Intervals are important in biomathematics (genetic algorithms,
matching gene sequences).

Example
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Simple Permutations

A simple permutation: The only intervals are singletons and the
whole thing.
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Some Basic Facts

1 is simple, as are 12 and 21.
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Some Basic Facts

1 is simple, as are 12 and 21.

There are no simple permutations of length three.

Two of length four: 2413 and 3142.

The sequence goes 1, 2, 0, 2, 6, 46, 338, 2926, 28146, . . .

nth term is given by sn = −Comn+2(−1)n+1.

Coefficient of xn in the functional inverse of f (x) =

∞
∑

n=1

n!xn.

Theorem (Albert, Atkinson and Klazar, 2003)
The number of simple permutations is asymptotically given by

n!

e2

(

1 − 4
n

+
2

n(n − 1)
+ O(n−3)

)

.
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The Bigger Picture

We may regard permutations as a member of a general family of
combinatorial structures.
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The Bigger Picture

We may regard permutations as a member of a general family of
combinatorial structures.

A relational structure: a set of points, and a set of relations on
these points.

The ground set, A.

A k-ary relation R – a subset of Ak .

Binary relations come in many different flavours – linear, transitive,
symmetric,...

Relational structures include graphs, digraphs, tournaments and
posets.
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Graphs

Graph — a relational structure on a single binary symmetric
relation.

Example
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Tournaments

Tournament — a complete oriented graph.

Formed by a single trichotomous binary relation — x → y , y → x
or x = y .

Example
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Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example

(University of Bristol) Simple Permutations 11 / 40



Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

(University of Bristol) Simple Permutations 11 / 40



Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

8

(University of Bristol) Simple Permutations 11 / 40



Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

8 ≺ 5

(University of Bristol) Simple Permutations 11 / 40



Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

8 ≺ 5 ≺ 2

(University of Bristol) Simple Permutations 11 / 40



Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

8 ≺ 5 ≺ 2 ≺ 3

(University of Bristol) Simple Permutations 11 / 40



Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

8 ≺ 5 ≺ 2 ≺ 3 ≺ 9

(University of Bristol) Simple Permutations 11 / 40



Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

8 ≺ 5 ≺ 2 ≺ 3 ≺ 9 ≺ 6

(University of Bristol) Simple Permutations 11 / 40



Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example
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Two Linear Orders

Permutation of length n — a structure on two linear relations.

Example

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

8 ≺ 5 ≺ 2 ≺ 3 ≺ 9 ≺ 6 ≺ 7 ≺ 4 ≺ 1
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Simple Relational Structures

The notion of simplicity exists for every relational structure.
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Simple Relational Structures

The notion of simplicity exists for every relational structure.

Graphs — indecomposable or prime graphs.
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Simple Relational Structures

The notion of simplicity exists for every relational structure.

Tournaments may be written as an abstract algebra with two
idempotent binary operations, ∨ and ∧.

If x → y in the tournament, then x ∨ y = x and x ∧ y = y .

Simple tournament ⇐⇒ simple abstract algebra.

(The kernel of every homomorphism is either the whole structure
or a single element.)
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The Substitution Decomposition

The simple relational structures form the “building blocks” of all
relational structures, by means of the substitution decomposition.
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The Substitution Decomposition

The simple relational structures form the “building blocks” of all
relational structures, by means of the substitution decomposition.

Origin: Fraïssé (1953) gave a talk on “a decomposition of
relations...”

First article: Gallai (1967) used them in studying the transitive
orientations of graphs.

Frequently rediscovered in different settings under various names:
modular decomposition, disjunctive decomposition, X -join...

Möhring (1985), and Möhring and Radermacher (1984) discuss
applications in combinatorial optimisation and game theory.
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Decomposing Permutations

Break permutation into maximal proper intervals.

Example
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Decomposing Permutations

Break permutation into maximal proper intervals.

Gives a unique simple permutation, the skeleton.

Example
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Decomposing Permutations

If simple has > 2 points then the blocks are unique.

Example

(University of Bristol) Simple Permutations 14 / 40



Decomposing Permutations

If simple has > 2 points then the blocks are unique.

This decomposition is the substitution decomposition.

Example
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Non-uniqueness

Simple permutation of length 2: block decomposition is not unique.

Example
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Non-uniqueness

Underlying structure is an increasing permutation.
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Pattern Containment

A permutation τ = t1t2 . . . tk is contained in the permutation
σ = s1s2 . . . sn if there exists a subsequence si1 , si2 , . . . , sik order
isomorphic to τ .
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Pattern Containment

A permutation τ = t1t2 . . . tk is contained in the permutation
σ = s1s2 . . . sn if there exists a subsequence si1 , si2 , . . . , sik order
isomorphic to τ .

Example

1 3 5 2 4 < 4 2 1 6 3 8 5 7
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Containment II

Containment forms a partial order on the set of all permutations.
[Much more on this one later...]
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Viewing permutations as relational structures, containment
corresponds to:

taking subsets of the ground set A = [n],
restricting the two linear orders to act only on the subset.
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Containment II

Containment forms a partial order on the set of all permutations.
[Much more on this one later...]
Viewing permutations as relational structures, containment
corresponds to:

taking subsets of the ground set A = [n],
restricting the two linear orders to act only on the subset.

Easily generalise this to all relational structures.

For example, in graphs, containment corresponds to taking
induced subgraphs.
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Simple Containment

Pattern containment is easily restricted to the containment of
simple permutations within other simple permutations.
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Simple Containment

Theorem (Schmerl and Trotter, 1993)
Every simple permutation of length n ≥ 2 contains a simple
permutation of length n − 1 or n − 2.

Pattern containment is easily restricted to the containment of
simple permutations within other simple permutations.

Get another partial order on the set of all simple permutations.
What does it look like?

In fact, this theorem is proved for all binary irreflexive relational
structures.

Some generalisations to single k-ary relations made by
Ehrenfeucht and McConnell (1994).
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Simple Containment

Theorem (Schmerl and Trotter, 1993)
Every simple permutation of length n ≥ 2 contains a simple
permutation of length n − 1 or n − 2.

Which simple permutations of length n contain no simple
permutations of length n − 1?
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Simple Containment

Theorem (Schmerl and Trotter, 1993)
Every simple permutation of length n ≥ 2 contains a simple
permutation of length n − 1 or n − 2.

Which simple permutations of length n contain no simple
permutations of length n − 1?

Schmerl and Trotter give criteria for posets and graphs.
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Simple Containment

Theorem (Schmerl and Trotter, 1993)
Every simple permutation of length n ≥ 2 contains a simple
permutation of length n − 1 or n − 2.

Corollary (Albert and Atkinson, 2005)
The only simple permutations that do not have a one-point simple
deletion are those of the form

246 · · · (2m)135 · · · (2m − 1) (m ≥ 2)

and every symmetry of this permutation.
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Decomposing the Indecomposable

Erdős and Szekeres (1935): every permutation of length n
contains a monotone permutation of length at least

√
n.
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Decomposing the Indecomposable

Erdős and Szekeres (1935): every permutation of length n
contains a monotone permutation of length at least

√
n.

Can we do something similar, restricting our view to simple
permutations?

It would have a number of consequences for “permutation
classes”.
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Special Simple Permutations

Parallel alternations (no simple one-point deletion).
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Special Simple Permutations

Wedge alternations
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Special Simple Permutations

Wedge alternations – not simple!
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Special Simple Permutations

Two flavours of wedge simple alternation.
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Proper Pin Sequences
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Proper Pin Sequences

Start with any two points.
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A proper pin must be maximal and cut the previous pin, but not the
rectangle.
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Proper Pin Sequences

Start with any two points.

Extend up, down, left, or right – this is a right pin.

A proper pin must be maximal and cut the previous pin, but not the
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A right-reaching pin sequence.
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Proper Pin Sequences

The points of the proper pin sequence form a simple permutation.
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A Decomposition Theorem

Theorem (B., Huczynska and Vatter)

Every simple permutation of length at least 2(256k8)2k contains either
a proper pin sequence of length 2k, a parallel alternation of length 2k,
or a wedge simple permutation of length 2k.
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A Decomposition Theorem

Theorem (B., Huczynska and Vatter)

Every simple permutation of length at least 2(256k8)2k contains either
a proper pin sequence of length 2k, a parallel alternation of length 2k,
or a wedge simple permutation of length 2k.

Long right-reaching pin sequences — done.

Short pin sequences must converge, producing alternations.

Use Erdős-Szekeres to make parallel or wedge alternations.

More playing with pin sequences produces wedge simple
permutations.
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Permutation Classes

Recall: containment forms a partial order on the set of all
permutations.
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Permutation Classes

Recall: containment forms a partial order on the set of all
permutations.

Downsets of permutations in this partial order form permutation
classes.
i.e. π ∈ C and σ ≤ π implies σ ∈ C.

A permutation class C can be seen to avoid certain permutations.
Write C = Av(B) = {π : β 6≤ π for all β ∈ B}.

The minimal avoidance set is the basis. It is unique but need not
be finite.

Example
The class C = Av(12) consists of all the decreasing permutations:

{1, 21, 321, 4321, . . .}
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Permutation Classes II

MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1, 12, 21, 123, 132, 213, 231, 312, . . .}.
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Knuth (1969): stack sortable permutations.

Example
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Knuth (1969): stack sortable permutations.

Example
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Permutation Classes II

MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1, 12, 21, 123, 132, 213, 231, 312, . . .}.

Knuth (1969): stack sortable permutations — Av(231).

Example
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Permutation Classes II

MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1, 12, 21, 123, 132, 213, 231, 312, . . .}.

Knuth (1969): stack sortable permutations — Av(231).

Lakshmibai and Sandhya (1990): permutations avoiding 3412 or
4231 correspond precisely to smooth Schubert varieties in the
ordinary flag manifold.
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Permutation Classes II

MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1, 12, 21, 123, 132, 213, 231, 312, . . .}.

Knuth (1969): stack sortable permutations — Av(231).

Lakshmibai and Sandhya (1990): permutations avoiding 3412 or
4231 correspond precisely to smooth Schubert varieties in the
ordinary flag manifold.

We are interested in classes containing only finitely many simple
permutations.
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Finitely Many Simples

Permutation classes containing only finitely many simples are
particularly well-behaved:
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Finitely Many Simples

Permutation classes containing only finitely many simples are
particularly well-behaved:

They are partially well-ordered.

They are finitely based.

They are enumerated by algebraic generating functions.
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Partial Well-Order

Partial well-order = class contains no infinite antichains.
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Partial Well-Order

Partial well-order = class contains no infinite antichains.

Elements of antichains differ principally because their skeletons
are different.

A finite choice of skeletons ⇒ only finite antichains.
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Finite Basis

Consequence of partial well-order.
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Consequence of partial well-order.

Substitution-closed class: “Largest” class containing a given set of
simple permutations.

The basis of a substitution-closed class consists of simple
permutations.

Lemma
If the longest simple permutations in a substitution closed class have
length k then its basis elements have length at most k + 2.
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Finite Basis

Consequence of partial well-order.

Substitution-closed class: “Largest” class containing a given set of
simple permutations.

The basis of a substitution-closed class consists of simple
permutations.

Lemma
If the longest simple permutations in a substitution closed class have
length k then its basis elements have length at most k + 2.

Smaller classes are subsets of substitution closed classes.

Bases are antichains, and antichains are finite.
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Simple Decidability

Question
Given a permutation class C = Av(B) defined by its basis, is it
decidable whether C contains only finitely many simple permutations?
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Simple Decidability

Question
Given a permutation class C = Av(B) defined by its basis, is it
decidable whether C contains only finitely many simple permutations?

Theorem

Every simple permutation of length at least 2(256k8)2k contains either
a proper pin sequence of length 2k, a parallel alternation of length 2k,
or a wedge simple permutation of length 2k.
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The Language of Pins

Encode as: 1
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The Language of Pins

Encode as: 11RULDRU

Pattern containment ↔ partial order on pin words.
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The Language of Pins

Encode as: 11RULDRU

Pattern containment ↔ partial order on pin words.

Avoiding a pattern ↔ avoiding every pin word generating that
pattern.
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Decidability

Theorem (B., Ruškuc and Vatter)

It is decidable whether a finitely based permutation class contains only
finitely many simple permutations.
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Theorem (B., Ruškuc and Vatter)

It is decidable whether a finitely based permutation class contains only
finitely many simple permutations.

Proof.
Technical theorem ⇒ only look for arbitrary parallel or wedge
simple permutations, or proper pin sequences.

Parallel and wedge simple permutations easily verified.
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Decidability

Theorem (B., Ruškuc and Vatter)

It is decidable whether a finitely based permutation class contains only
finitely many simple permutations.

Proof.
Technical theorem ⇒ only look for arbitrary parallel or wedge
simple permutations, or proper pin sequences.

Proper pin sequences ↔ the language of pins.

Language of pins avoiding a given pattern is regular.

Decidable if a regular language is infinite.
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Generating Functions

Cn – permutations in C of length n.
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Generating Functions

Cn – permutations in C of length n.
∑

|Cn|xn is the generating function.

Example
The generating function of C = Av(12) is:

1 + x + x2 + x3 + · · ·
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Generating Functions

Cn – permutations in C of length n.
∑

|Cn|xn is the generating function.

Example
The generating function of C = Av(12) is:

1 + x + x2 + x3 + · · · =
1

1 − x
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231-avoiders

Example

Av(231)

Av(231)

231-avoiders: generic structure.
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231-avoiders

Example

Av(231)

Av(231)

Only simple permutations are1, 12, and 21.
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231-avoiders

Example

Av(231)

Av(231)

Enumerate recursively: f (x) = xf (x)2 + 1.
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231-avoiders

Example

Av(231)

Av(231)

Enumerate recursively: f (x) = xf (x)2 + 1.

f (x) =
1 −

√
1 − 4x

2x
= 1 + x + 2x2 + 5x3 + 14x4 + . . .
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Recursion

“ ...the standard intuition of what a family with an algebraic
generating function looks like: the algebraicity suggeststhat it
may (or should...), be possible to give a recursive description of
the objects based on disjoint union of sets and concatentation of
objects.”

— Bousquet-Mélou, 2006

(University of Bristol) Simple Permutations 35 / 40



Recursion

“ ...the standard intuition of what a family with an algebraic
generating function looks like: the algebraicity suggeststhat it
may (or should...), be possible to give arecursive descriptionof
the objects based on disjoint union of sets and concatentation of
objects.”

— Bousquet-Mélou, 2006

Recursive description: the substitution decomposition.
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Recursion

“ ...the standard intuition of what a family with an algebraic
generating function looks like: the algebraicity suggeststhat it
may (or should...), be possible to give a recursive description of
the objects based on disjoint union of sets and concatentation of
objects.”

— Bousquet-Mélou, 2006

Permutation classes with only finitely many simple permutations:
long permutations are built recursively from much shorter ones.
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Recursion

“ ...the standard intuition of what a family with an algebraic
generating function looks like: the algebraicity suggeststhat it
may (or should...), be possible to give a recursive description of
the objects based on disjoint union of sets and concatentation of
objects.”

— Bousquet-Mélou, 2006

Theorem (Albert and Atkinson, 2005)
A permutation class with only finitely many simple permutations has a
readily computable algebraic generating function.
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A Spot of Notation

π = 354C896712BA.
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π = 354C896712BA.

π = 25314[132, 1, 3412, 12, 21].

(University of Bristol) Simple Permutations 36 / 40



A Spot of Notation

α1

α2

α3

α4

α5

π = 354C896712BA.

π = 25314[132, 1, 3412, 12, 21].

In general: π = σ[α1, . . . , αm].
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Algebraic Generating Functions

Theorem (B., Huczynska and Vatter)
Let C be a permutation class containing only finitely many simple
permutations, P a finite query-complete set of properties, and Q ⊆ P.
The generating function for the set of permutations in C satisfying
every property in Q is algebraic over Q(x).
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Let C be a permutation class containing only finitely many simple
permutations, P a finite query-complete set of properties, and Q ⊆ P.
The generating function for the set of permutations in C satisfying
every property in Q is algebraic over Q(x).

Set P of permutations — a property. If π ∈ P, then π satisfies P.

Set P of properties is query-complete if for every simple
permutation σ and property P ∈ P we can determine whether
σ[α1, . . . , αm] satisfies P by merely knowing which properties of P
each αi satisfies.

(University of Bristol) Simple Permutations 37 / 40



Algebraic Generating Functions

Theorem (B., Huczynska and Vatter)
Let C be a permutation class containing only finitely many simple
permutations, P a finite query-complete set of properties, and Q ⊆ P.
The generating function for the set of permutations in C satisfying
every property in Q is algebraic over Q(x).

Set P of permutations — a property. If π ∈ P, then π satisfies P.

Set P of properties is query-complete if for every simple
permutation σ and property P ∈ P we can determine whether
σ[α1, . . . , αm] satisfies P by merely knowing which properties of P
each αi satisfies.

Finite query-complete: set of query-complete properties is finite.
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Some Query-Complete Properties

The permutations of a class (Albert and Atkinson).

Alternating permutations.

Even permutations.

Dumont permutations.

Permutations avoiding “blocked” or “barred” patterns.

Involutions (more work required).

Any combination of the above.
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An Example

AL — Alternating permutations.
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AL — Alternating permutations.

BR — Begins with a rise: π(1) < π(2).

ER — Ends with a rise: π(n − 1) < π(n).
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An Example

AL — Alternating permutations.

BR — Begins with a rise: π(1) < π(2).

ER — Ends with a rise: π(n − 1) < π(n).

Claim: {AL, BR, ER, {1}} is query-complete.
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An Example

Claim: {AL, BR, ER, {1}} is query-complete.

Consider π = σ[α1, . . . , αm] ∈ AL.

Each αi ∈ AL ∪ {1}.

σ(i) > σ(i + 1): αi ∈ ER ∪ {1} and αi+1 ∈ BR ∪ {1}.
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An Example

Claim: {AL, BR, ER, {1}} is query-complete.

Consider π = σ[α1, . . . , αm] ∈ AL.

Each αi ∈ AL ∪ {1}.

σ(i) > σ(i + 1): αi ∈ ER ∪ {1} and αi+1 ∈ BR ∪ {1}.

σ(i) < σ(i + 1): αi 6∈ ER and αi+1 6∈ BR.
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The Rest of the Details

Av(231)

Av(231)

We enumerated this recursively: f (x) = xf (x)2 + 1.
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Av(231)

We enumerated this recursively: f (x) = xf (x)2 + 1.

Do the same for query-complete sets of properties, keeping note
of which properties each substructure satisfies.

This forms a proper algebraic system.
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The Rest of the Details

Av(231)

Av(231)

We enumerated this recursively: f (x) = xf (x)2 + 1.

Do the same for query-complete sets of properties, keeping note
of which properties each substructure satisfies.

This forms a proper algebraic system.

Theorem (See, e.g., Stanley (1999))

Every proper algebraic system over Q[x ] has a unique solution, which
is algebraic over Q(x).
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