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@ Introduction
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@ Permutation of length n: an ordering on the symbols 1,...,n.
@ For example: m = 15482763.
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Permutations

@ Permutation of length n: an ordering on the symbols 1,...,n.
@ For example: m = 15482763.
@ Graphical viewpoint: plot the points (i, 7(i)).

(University of Bristol) Simple Permutations 4/ 40



Intervals

@ Pick any permutation .

@ Aninterval of 7 is a set of contiguous indices | = [a, b] such that
(1) = {=(i) : i € 1} is also contiguous.
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Intervals

@ Pick any permutation .

@ Aninterval of 7 is a set of contiguous indices | = [a, b] such that
(1) = {=(i) : i € 1} is also contiguous.

@ Intervals are important in biomathematics (genetic algorithms,
matching gene sequences).
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Simple Permutations

@ A simple permutation: The only intervals are singletons and the
whole thing.
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Simple Permutations

@ A simple permutation: The only intervals are singletons and the

whole thing.
Example
= °
1 e
- °
- °
- °
1 e
- °
1e
- °
- °
- °
- °
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Simple Permutations

@ A simple permutation: The only intervals are singletons and the

whole thing.
Example
B [
1 e
— [ }
— @
— (J
1 e
— [ }
1e
- °
B o
B [ )
. °
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Simple Permutations

@ A simple permutation: The only intervals are singletons and the

whole thing.
Example
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— [ }
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— [ }
B o
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Simple Permutations

@ A simple permutation: The only intervals are singletons and the

whole thing.
Example
B [ )
414 @
— [ }
— [ }
— [ }
— [ }
— [ }
1@
— [ }
B o
B o
B [ )
1T 1T 1T 1T 1T 1T 1T 1T 1T 11 v
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Some Basic Facts

@ 1issimple, as are 12 and 21.
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@ There are no simple permutations of length three.

@ Two of length four: 2413 and 3142.

@ The sequence goes 1,2,0,2,6,46,338,2926, 28146, ...
@ nth term is given by s, = —Com,+2(—1)"*1.

o0
@ Coefficient of x" in the functional inverse of f(x) = » _nix".
n=1
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Some Basic Facts

@ 1issimple, as are 12 and 21.

@ There are no simple permutations of length three.

@ Two of length four: 2413 and 3142.

@ The sequence goes 1,2,0,2,6,46,338,2926, 28146, ...
@ nth term is given by s, = —Com,+2(—1)"*1.

o0
@ Coefficient of x" in the functional inverse of f(x) = » _nix".
n=1

Theorem (Albert, Atkinson and Klazar, 2003)
The number of simple permutations is asymptotically given by

! 4 2
&(1—ﬁ+m+0(n_3)>.
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The Bigger Picture

@ We may regard permutations as a member of a general family of
combinatorial structures.

(University of Bristol) Simple Permutations 8/40



The Bigger Picture

@ We may regard permutations as a member of a general family of
combinatorial structures.

@ A relational structure: a set of points, and a set of relations on
these points.

(University of Bristol) Simple Permutations 8/40



The Bigger Picture

@ We may regard permutations as a member of a general family of
combinatorial structures.

@ A relational structure: a set of points, and a set of relations on
these points.

@ The ground set, A.

(University of Bristol) Simple Permutations 8/40



The Bigger Picture

@ We may regard permutations as a member of a general family of
combinatorial structures.

@ A relational structure: a set of points, and a set of relations on
these points.

@ The ground set, A.
@ Ak-ary relation R — a subset of AX.

(University of Bristol) Simple Permutations 8/40



The Bigger Picture

@ We may regard permutations as a member of a general family of
combinatorial structures.

@ A relational structure: a set of points, and a set of relations on
these points.

@ The ground set, A.
@ Ak-ary relation R — a subset of AX.

@ Binary relations come in many different flavours — linear, transitive,
symmetric,...

(University of Bristol) Simple Permutations 8/40



The Bigger Picture

@ We may regard permutations as a member of a general family of
combinatorial structures.

@ A relational structure: a set of points, and a set of relations on
these points.

@ The ground set, A.

@ Ak-ary relation R — a subset of AX.

@ Binary relations come in many different flavours — linear, transitive,
symmetric,...

@ Relational structures include graphs, digraphs, tournaments and
posets.
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Graphs

@ Graph — a relational structure on a single binary symmetric
relation.

Example
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Tournaments

@ Tournament — a complete oriented graph.

@ Formed by a single trichotomous binary relation —x — y,y — X
orx =y.
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Two Linear Orders

@ Permutation of length n — a structure on two linear relations.
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Two Linear Orders

@ Permutation of length n — a structure on two linear relations.

@ 1<2<3<4<5<b6<7<8<09.
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Two Linear Orders

@ Permutation of length n — a structure on two linear relations.

@ 1<2<3<4<5<b6<7<8<09.
@8<5<2<3<9
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Two Linear Orders

@ Permutation of length n — a structure on two linear relations.

@ 1<2<3<4<5<b6<7<8<09.
98<5<2<3<9<6
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Two Linear Orders

@ Permutation of length n — a structure on two linear relations.

@ 1<2<3<4<5<b6<7<8<09.
98<5<2<3<9<6<7
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Two Linear Orders

@ Permutation of length n — a structure on two linear relations.

@ 1<2<3<4<5<b6<7<8<09.
98<5<2<3<9<6<7<4
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Two Linear Orders

@ Permutation of length n — a structure on two linear relations.

@ 1<2<3<4<5<b6<7<8<09.
98<5<2<3<9<6<7<4<1
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Simple Relational Structures

@ The notion of simplicity exists for every relational structure.
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Simple Relational Structures

@ The notion of simplicity exists for every relational structure.
@ Graphs — indecomposable or prime graphs.
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Simple Relational Structures

@ The notion of simplicity exists for every relational structure.

@ Tournaments may be written as an abstract algebra with two
idempotent binary operations, v and A.

@ If x — y inthe tournament, thenx Vy =x andx Ay =Y.
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Simple Relational Structures

@ The notion of simplicity exists for every relational structure.

@ Tournaments may be written as an abstract algebra with two
idempotent binary operations, v and A.

@ If x — y in the tournament, thenx Vy =x and x Ay =Y.
@ Simple tournament <> simple abstract algebra.

@ (The kernel of every homomorphism is either the whole structure
or a single element.)
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The Substitution Decomposition

@ The simple relational structures form the “building blocks” of all
relational structures, by means of the substitution decomposition.
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The Substitution Decomposition

@ The simple relational structures form the “building blocks” of all
relational structures, by means of the substitution decomposition.

@ Origin: Fraissé (1953) gave a talk on “a decomposition of
relations...”

@ First article: Gallai (1967) used them in studying the transitive
orientations of graphs.

@ Frequently rediscovered in different settings under various hames:
modular decomposition, disjunctive decomposition, X-join...

@ Mohring (1985), and Mdhring and Radermacher (1984) discuss
applications in combinatorial optimisation and game theory.
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Decomposing Permutations

@ Break permutation into maximal proper intervals.
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Decomposing Permutations

@ Break permutation into maximal proper intervals.

8 ®
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Decomposing Permutations

@ Break permutation into maximal proper intervals.
@ Gives a unique simple permutation, the skeleton.
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Decomposing Permutations

@ If simple has > 2 points then the blocks are unique.

8 ®
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Decomposing Permutations

@ If simple has > 2 points then the blocks are unique.
@ This decomposition is the substitution decomposition.

8 ®
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Non-unigueness

@ Simple permutation of length 2: block decompaosition is not unique.
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Non-unigueness

@ Underlying structure is an increasing permutation.

L
-
a
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Non-unigueness

@ Underlying structure is an increasing permutation.
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9 Properties
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Pattern Containment

@ A permutation 7 = t1t, ... t¢ is contained in the permutation
o =81S; ...y if there exists a subsequence s;,,s;,, . ..,s; order
isomorphic to 7.
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Pattern Containment

@ A permutation 7 = t1t, ... t¢ is contained in the permutation
o =81S; ...y if there exists a subsequence s;,,s;,, . ..,s; order
isomorphic to 7.
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Pattern Containment

@ A permutation 7 = t1t, ... t¢ is contained in the permutation
o =81S; ...y if there exists a subsequence s;,,s;,, . ..,s; order
isomorphic to 7.

13524 < 42163857
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Containment Il

@ Containment forms a partial order on the set of all permutations.
[Much more on this one later...]
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@ Containment forms a partial order on the set of all permutations.
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@ Viewing permutations as relational structures, containment
corresponds to:

o taking subsets of the ground set A = [n],
@ restricting the two linear orders to act only on the subset.
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Containment Il

@ Containment forms a partial order on the set of all permutations.
[Much more on this one later...]

@ Viewing permutations as relational structures, containment
corresponds to:

o taking subsets of the ground set A = [n],
@ restricting the two linear orders to act only on the subset.

@ Easily generalise this to all relational structures.

@ For example, in graphs, containment corresponds to taking
induced subgraphs.
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Simple Containment

@ Pattern containment is easily restricted to the containment of
simple permutations within other simple permutations.
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Simple Containment

Theorem (Schmerl and Trotter, 1993)

Every simple permutation of length n > 2 contains a simple
permutation of lengthn — 1 orn — 2.

@ Pattern containment is easily restricted to the containment of
simple permutations within other simple permutations.
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Simple Containment

Theorem (Schmerl and Trotter, 1993)

Every simple permutation of length n > 2 contains a simple
permutation of lengthn — 1 orn — 2.

@ Pattern containment is easily restricted to the containment of
simple permutations within other simple permutations.

@ Get another partial order on the set of all simple permutations.
What does it look like?

@ In fact, this theorem is proved for all binary irreflexive relational
structures.

@ Some generalisations to single k-ary relations made by
Ehrenfeucht and McConnell (1994).
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Simple Containment

Theorem (Schmerl and Trotter, 1993)

Every simple permutation of length n > 2 contains a simple
permutation of lengthn — 1 orn — 2.

@ Which simple permutations of length n contain no simple
permutations of length n — 17?
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Simple Containment

Theorem (Schmerl and Trotter, 1993)

Every simple permutation of length n > 2 contains a simple
permutation of lengthn — 1 orn — 2.

@ Which simple permutations of length n contain no simple
permutations of length n — 17?

@ Schmerl and Trotter give criteria for posets and graphs.

(University of Bristol) Simple Permutations 19/ 40



Simple Containment

Theorem (Schmerl and Trotter, 1993)

Every simple permutation of length n > 2 contains a simple
permutation of lengthn — 1 orn — 2.

Corollary (Albert and Atkinson, 2005)

The only simple permutations that do not have a one-point simple
deletion are those of the form

246---(2m)135---(2m —1) (m > 2)

and every symmetry of this permutation.
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Decomposing the Indecomposable

@ Erd6s and Szekeres (1935): every permutation of length n
contains a monotone permutation of length at least v/n.
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Decomposing the Indecomposable

@ Erd6s and Szekeres (1935): every permutation of length n
contains a monotone permutation of length at least v/n.

@ Can we do something similar, restricting our view to simple
permutations?

@ It would have a number of consequences for “permutation
classes”.
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Special Simple Permutations

@ Parallel alternations (no simple one-point deletion).
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Special Simple Permutations

@ Wedge alternations
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Special Simple Permutations

@ Wedge alternations — not simple!
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Special Simple Permutations

@ Two flavours of wedge simple alternation.
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Proper Pin Sequences
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Proper Pin Sequences

@ Start with any two points.
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@ Start with any two points.
@ Extend up, down, left, or right — this is a right pin.
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Proper Pin Sequences

@ Start with any two points.
@ Extend up, down, left, or right — this is a right pin.

@ A proper pin must be maximal and cut the previous pin, but not the
rectangle.

@ A right-reaching pin sequence.
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Proper Pin Sequences

@ Start with any two points.
@ Extend up, down, left, or right — this is a right pin.

@ A proper pin must be maximal and cut the previous pin, but not the
rectangle.

@ A right-reaching pin sequence.
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Proper Pin Sequences

@ The points of the proper pin sequence form a simple permutation.
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A Decomposition Theorem

Theorem (B., Huczynska and Vatter)

Every simple permutation of length at least 2(256k®8)%¢ contains either
a proper pin sequence of length 2k, a parallel alternation of length 2k,
or a wedge simple permutation of length 2k.
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A Decomposition Theorem

Theorem (B., Huczynska and Vatter)

Every simple permutation of length at least 2(256k®8)%¢ contains either
a proper pin sequence of length 2k, a parallel alternation of length 2k,
or a wedge simple permutation of length 2k.

@ Long right-reaching pin sequences — done.
@ Short pin sequences must converge, producing alternations.
@ Use Erd6s-Szekeres to make parallel or wedge alternations.

@ More playing with pin sequences produces wedge simple
permutations.
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e Permutation Classes
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Permutation Classes

@ Recall: containment forms a partial order on the set of all
permutations.
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Permutation Classes

@ Recall: containment forms a partial order on the set of all
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(University of Bristol) Simple Permutations 25/ 40



Permutation Classes

@ Recall: containment forms a partial order on the set of all
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Permutation Classes

@ Recall: containment forms a partial order on the set of all
permutations.

@ Downsets of permutations in this partial order form permutation
classes.
i,e. teCando < wimplieso €C.

@ A permutation class C can be seen to avoid certain permutations.
Write C = Av(B) = {r: g L nfordl g € B}.

@ The minimal avoidance set is the basis. It is unique but need not
be finite.

The class C = Av(12) consists of all the decreasing permutations:

{1,21,321,4321,...}
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Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. }.
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Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. }.
@ Knuth (1969): stack sortable permutations.

Example

r213

4
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Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. }.
@ Knuth (1969): stack sortable permutations.
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Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. }.
@ Knuth (1969): stack sortable permutations.

#NHJ
w

(University of Bristol) Simple Permutations 26 /40



Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. }.
@ Knuth (1969): stack sortable permutations.
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Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. }.
@ Knuth (1969): stack sortable permutations.
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Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. }.
@ Knuth (1969): stack sortable permutations.
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Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. }.
@ Knuth (1969): stack sortable permutations.
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Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. .}.
@ Knuth (1969): stack sortable permutations — Av(231).

1234

(University of Bristol) Simple Permutations 26 /40



Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. .}.
@ Knuth (1969): stack sortable permutations — Av(231).

@ Lakshmibai and Sandhya (1990): permutations avoiding 3412 or

4231 correspond precisely to smooth Schubert varieties in the
ordinary flag manifold.

(University of Bristol) Simple Permutations 26 /40



Permutation Classes Il

@ MacMahon (1915): enumerated “lattice” permutations, essentially
Av(321) = {1,12,21,123,132,213,231,312,.. .}.
@ Knuth (1969): stack sortable permutations — Av(231).

@ Lakshmibai and Sandhya (1990): permutations avoiding 3412 or
4231 correspond precisely to smooth Schubert varieties in the
ordinary flag manifold.

@ We are interested in classes containing only finitely many simple
permutations.
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Finitely Many Simples

Permutation classes containing only finitely many simples are
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Finitely Many Simples

Permutation classes containing only finitely many simples are
particularly well-behaved:

@ They are partially well-ordered.
@ They are finitely based.
@ They are enumerated by algebraic generating functions.
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@ Partial well-order = class contains no infinite antichains.
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Partial Well-Order

@ Partial well-order = class contains no infinite antichains.

@ Elements of antichains differ principally because their skeletons
are different.

@ A finite choice of skeletons = only finite antichains.
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@ Consequence of partial well-order.

@ Substitution-closed class: “Largest” class containing a given set of
simple permutations.

@ The basis of a substitution-closed class consists of simple
permutations.

If the longest simple permutations in a substitution closed class have
length k then its basis elements have length at most k + 2.

@ Smaller classes are subsets of substitution closed classes.
@ Bases are antichains, and antichains are finite.
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Simple Decidability

Given a permutation class C = Av(B) defined by its basis, is it
decidable whether C contains only finitely many simple permutations?
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Simple Decidability

Given a permutation class C = Av(B) defined by its basis, is it
decidable whether C contains only finitely many simple permutations?

Every simple permutation of length at least 2(256k®8)%¢ contains either
a proper pin sequence of length 2k, a parallel alternation of length 2k,
or a wedge simple permutation of length 2k.
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The Language of Pins

@ Encode as: 1
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The Language of Pins

@ Encode as: 11RULDRU
@ Pattern containment « partial order on pin words.
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The Language of Pins

@ Encode as: 11RULDRU
@ Pattern containment « partial order on pin words.

@ Avoiding a pattern < avoiding every pin word generating that
pattern.
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Decidability

Theorem (B., Ruskuc and Vatter)

It is decidable whether a finitely based permutation class contains only
finitely many simple permutations.
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Decidability

Theorem (B., Ruskuc and Vatter)

It is decidable whether a finitely based permutation class contains only
finitely many simple permutations.

@ Technical theorem = only look for arbitrary parallel or wedge
simple permutations, or proper pin sequences.

@ Parallel and wedge simple permutations easily verified.

(University of Bristol) Simple Permutations 32/40



Decidability

Theorem (B., Ruskuc and Vatter)

It is decidable whether a finitely based permutation class contains only
finitely many simple permutations.

@ Technical theorem = only look for arbitrary parallel or wedge
simple permutations, or proper pin sequences.

@ Proper pin sequences « the language of pins.

(University of Bristol) Simple Permutations 32/40



Decidability

Theorem (B., Ruskuc and Vatter)

It is decidable whether a finitely based permutation class contains only
finitely many simple permutations.

@ Technical theorem = only look for arbitrary parallel or wedge
simple permutations, or proper pin sequences.
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Decidability

Theorem (B., Ruskuc and Vatter)

It is decidable whether a finitely based permutation class contains only
finitely many simple permutations.

@ Technical theorem = only look for arbitrary parallel or wedge
simple permutations, or proper pin sequences.

@ Proper pin sequences « the language of pins.
@ Language of pins avoiding a given pattern is regular.
@ Decidable if a regular language is infinite.
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Generating Functions

@ C, — permutations in C of length n.
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Generating Functions

@ C, — permutations in C of length n.
® ) "|Calx" is the generating function.

The generating function of C = Av(12) is:

T+x+x2+x3+... =
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231-avoiders

Av(231)

Av(231)

@ 231-avoiders: generic structure.
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231-avoiders

Av(231)

Av(231)

@ Only simple permutations arel, 12, and 21.
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231-avoiders
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Av(231)

@ Enumerate recursively: f(x) = xf(x)? + 1.
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231-avoiders

Av(231)

Av(231)

@ Enumerate recursively: f(x) = xf(x)? + 1.

1-I—4x
X

5 =1+X+2X%>+5x3+24x% + ...

f(x) =
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Recursion

“...the standard intuition of what a family with an algebraic
generating function looks like: the algebraicity suggeht it
may (or should...), be possible to give a recursive desonpbf

the objects based on disjoint union of sets and concatemntat
objects’

— Bousquet-Mélou, 2006
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Recursion

“...the standard intuition of what a family with an algebraic
generating function looks like: the algebraicity suggeht it
may (or should...), be possible to giveezursive descriptiomf

the objects based on disjoint union of sets and concatemntat
objects’

— Bousquet-Mélou, 2006

@ Recursive description: the substitution decomposition.
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Recursion

“...the standard intuition of what a family with an algebraic
generating function looks like: the algebraicity suggeht it
may (or should...), be possible to give a recursive desonpbf

the objects based on disjoint union of sets and concatemntat
objects’

— Bousquet-Mélou, 2006

@ Permutation classes with only finitely many simple permutations:
long permutations are built recursively from much shorter ones.
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Recursion

“...the standard intuition of what a family with an algebraic
generating function looks like: the algebraicity suggeht it
may (or should...), be possible to give a recursive desonpbf

the objects based on disjoint union of sets and concatemntat
objects’

— Bousquet-Mélou, 2006

Theorem (Albert and Atkinson, 2005)

A permutation class with only finitely many simple permutations has a
readily computable algebraic generating function.
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A Spot of Notation

@ 7 = 354C896712BA.
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A Spot of Notation
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@ 7 = 354C896712BA.
@ 7 = 25314[132,1,3412,12,21].

(University of Bristol) Simple Permutations 36/40



A Spot of Notation

@ 7 = 354C896712BA.
o 7 =25314[132,1,34

@ Ingeneral: 7 = o[ay, ..

(University of Bristol)
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Algebraic Generating Functions

Theorem (B., Huczynska and Vatter)

Let C be a permutation class containing only finitely many simple
permutations, P a finite query-complete set of properties, and Q C P.
The generating function for the set of permutations in C satisfying
every property in Q is algebraic over Q(x).
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Algebraic Generating Functions

Theorem (B., Huczynska and Vatter)

Let C be a permutation class containing only finitely many simple
permutations, P a finite query-complete set of properties, and @ C P.
The generating function for the set of permutations in C satisfying
every property in Q is algebraic over Q(x).

@ Set P of permutations — a property. If # € P, then 7 satisfies P.

@ Set P of properties is query-complete if for every simple
permutation o and property P € P we can determine whether
olag,...,am] satisfies P by merely knowing which properties of P
each q; satisfies.

@ Finite query-complete: set of query-complete properties is finite.
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Some Query-Complete Properties

The permutations of a class (Albert and Atkinson).
Alternating permutations.
Even permutations.

Permutations avoiding “blocked” or “barred” patterns.
Involutions (more work required).

)

)

)

@ Dumont permutations.

9

9

@ Any combination of the above.
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An Example

@ AL — Alternating permutations.
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@ AL — Alternating permutations.
® BR — Begins with arise: 7(1) < 7(2).
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An Example

@ AL — Alternating permutations.

® BR — Begins with arise: 7(1) < 7(2).

® ER — Ends with arise: 7(n — 1) < w(n).

@ Claim: {AL,BR,ER,{1}} is query-complete.
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@ Claim: {AL,BR,ER, {1}} is query-complete.
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An Example

AL

@ Claim: {AL,BR,ER,{1}} is query-complete.

@ Consider 7 = o[ay, ..., am] € AL.

@ Eachoj € ALU{1}.

@ o(i)>0o(i+1): oy e ERU{1} and oj;1 € BRU{1}.
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An Example

s
al

@ Claim: {AL,BR,ER,{1}} is query-complete.

@ Consider 7 = o[ay, ..., am] € AL.

@ Eachoj € ALU{1}.

@ o(i)>0o(i+1): o e ERU{1} and oj;1 € BRU{1}.
@ o(i)<o(i+1) o ER and aj;1 ¢ BR.
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The Rest of the Details

IAv(231)

IAv(231)

@ We enumerated this recursively: f(x) = xf(x)? + 1.
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IAv(231)

@ We enumerated this recursively: f(x) = xf(x)? + 1.

@ Do the same for query-complete sets of properties, keeping note
of which properties each substructure satisfies.

@ This forms a proper algebraic system.
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The Rest of the Details

IAv(231)

IAv(231)

@ We enumerated this recursively: f(x) = xf(x)? + 1.

@ Do the same for query-complete sets of properties, keeping note
of which properties each substructure satisfies.

@ This forms a proper algebraic system.

Theorem (See, e.g., Stanley (1999))

Every proper algebraic system over Q[x] has a unique solution, which
is algebraic over Q(x).

(University of Bristol) Simple Permutations 40/ 40
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