Applications and Studies in Modular Decomposition

Robert Brignall

The Open University, UK

Wednesday 29th February, 2012

Robert Brignall (OU)

Outline

Introduction

- Combinatorial Structures
- Modular Decomposition
- History

2 Applications

- Reconstruction Conjecture
- Permutations

Prime Studies

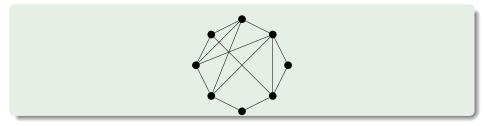
- Fine Structure
- Extremal Structure

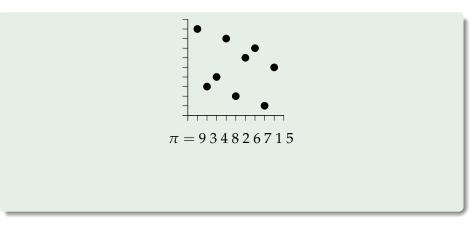
Many combinatorial objects can be described as relational structures:

- A set of points, A.
- A set of relations on these points.
 A *k*-ary relation *R* a subset of *A^k*.
- Binary relations come in many different flavours linear, transitive, symmetric ...

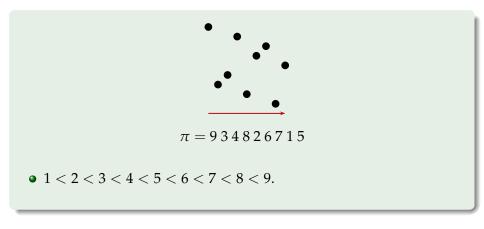
Often too abstract to be useful, but (e.g.) modular decomposition is common to all of these.

Defined by a single binary symmetric relation (the edges). *u* ~ *v* iff *v* ~ *u*.

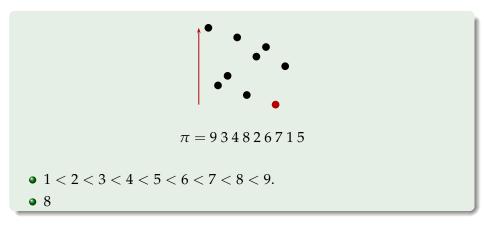


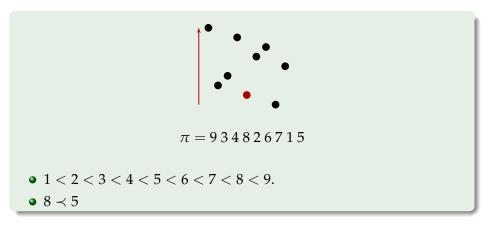


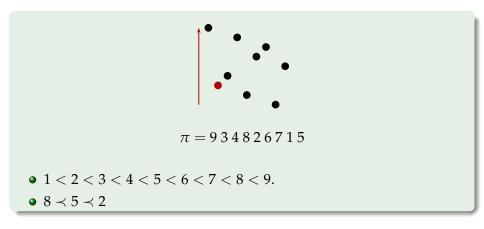
• A permutation of length *n* is a structure on two linear relations.

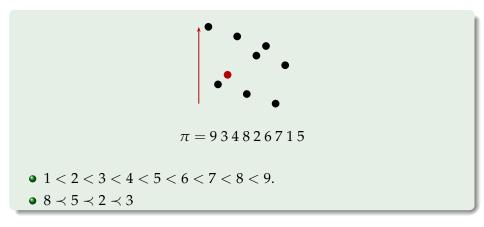


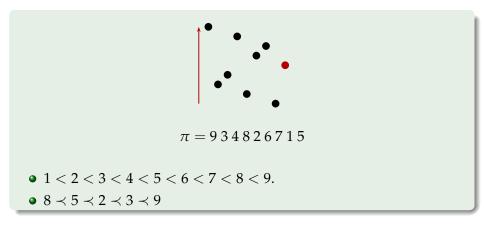
Robert Brignall (OU)

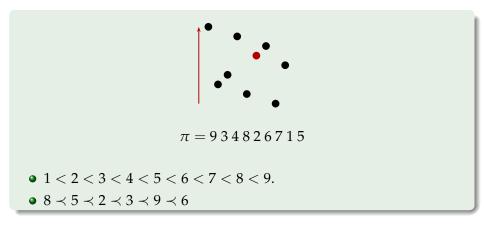


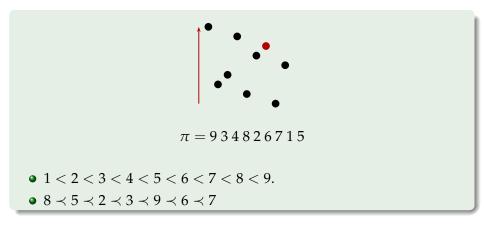


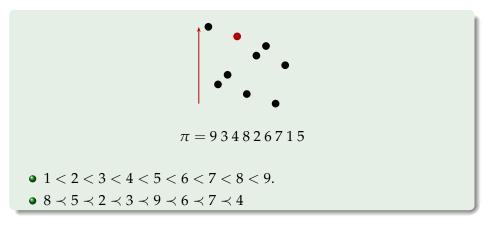


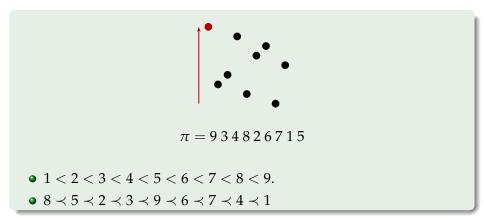




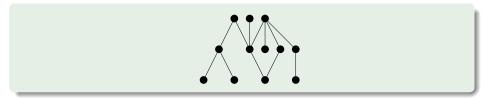








• A binary reflexive antisymmetric transitive relation.

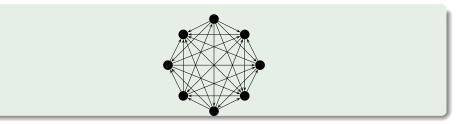


Tournaments

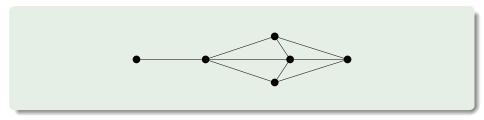
- A complete oriented graph.
- As a relational structure, it is a single trichotomous binary relation:

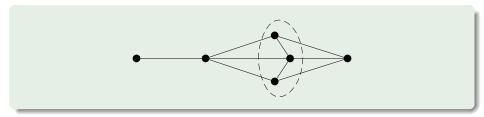
$$x \to y, y \to x \text{ or } x = y.$$

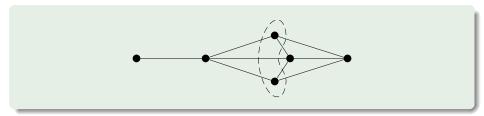
● A competition between players: *x* → *y* means "*y* wins."

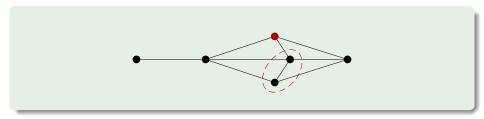


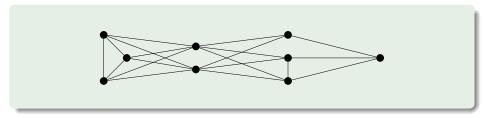
- Module: set of points which "look" at every other point in the same way.
- Synonyms: Autonomous sets, blocks, bound sets, closed sets, clumps, convex sets, intervals...
- A structure is **prime** if its only modules are singletons or the whole thing.
- Synonyms: Indecomposable, simple...



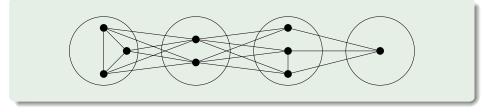




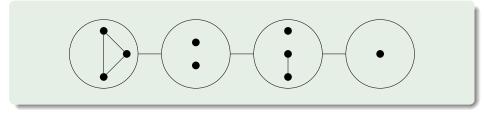




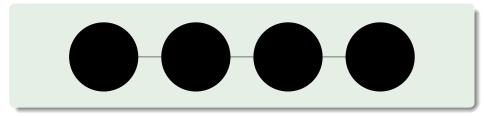
- Take any graph (more generally: relational structure).
- Find the maximal proper modules.



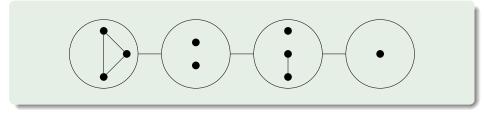
- Take any graph (more generally: relational structure).
- Find the maximal proper modules.



- Take any graph (more generally: relational structure).
- Find the maximal proper modules.



- Replace each module by a single point.
- The skeleton P_4 is prime.



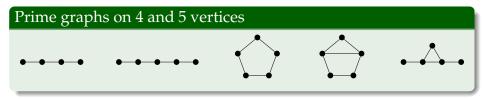
- This is the modular decomposition (a.k.a. substitution decomposition, disjunctive decomposition, *X*-join).
- Unique unless skeleton is K_n or $\overline{K_n}$.

More formally...

Theorem (Modular Decomposition)

- Let G be a graph. Then either
 - $G \text{ or } \overline{G} \text{ is disconnected, or}$
 - *G* has a prime skeleton, and the decomposition into maximal proper modules is *unique*.
 - Can be done recursively to each maximal module: modular decomposition tree.

- Modules are all singletons, or the whole graph.
- K_2 and $\overline{K_2}$ are special cases...
- No prime graphs on 3 vertices.



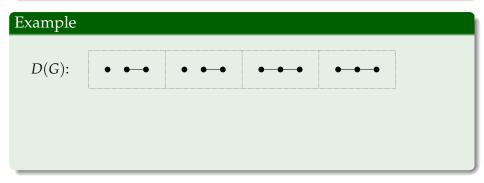
- Fraïssé (1953): gave a talk entitled "On a decomposition of relations which generalizes the sum of ordering relations"
- Gallai (1967): first article Transitiv orientbare Graphen
- Feature in Lovász's perfect graph theorem
- Möhring (1980s): game theory, combinatorial optimisation

Graph Modular Decomposition Algorithms

- James, Stanton and Cowan, 1972: First polynomial time algorithm, $O(n^4)$.
- McConnell and Spinrad, 1994: first linear time algorithm.
- Other linear time algorithms now available.
- Parameterised complexity: recently used in kernalisation algorithms.

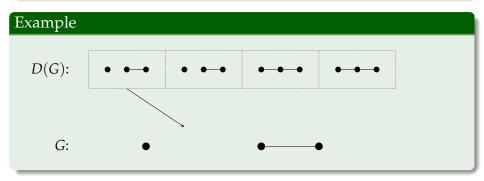
The deck of a graph: $D(G) = \{* G - v : v \in V(G) *\}.$

The Reconstruction conjecture (Ulam 1960, Kelly 1957)



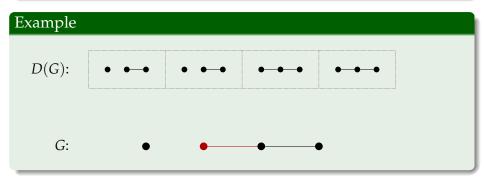
The deck of a graph: $D(G) = \{* G - v : v \in V(G) *\}.$

The Reconstruction conjecture (Ulam 1960, Kelly 1957)



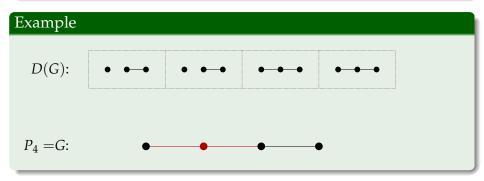
The deck of a graph: $D(G) = \{* G - v : v \in V(G) *\}.$

The Reconstruction conjecture (Ulam 1960, Kelly 1957)



The deck of a graph: $D(G) = \{* G - v : v \in V(G) *\}.$

The Reconstruction conjecture (Ulam 1960, Kelly 1957)



RC is notoriously difficult. A few highlights:

- Trees (Kelly, 1957)
- Graphs with \geq 2 components (folklore? See Harary 1964)
- Almost all graphs (Bollobas, 1990)
- All graphs with \leq 11 vertices (McKay, 1997).

Other relational structures:

- RC is True: permutations
- RC is False: digraphs, tournaments, hypergraphs, infinite graphs

More than one component

Proposition

Graphs with two or more components are reconstructible.

Proof.

In D(G), for each component *C* of *G*, we have:

- |V(G)| |V(C)| copies of *C*.
- A copy of D(C).

To reconstruct:

- Select a largest component in *D*(*G*): must be a component of *G*.
- Remove components attributable to *C* from *D*(*G*).
- Repeat, until no more components.

A special case of modular decomposition?

 $\bullet \geq 2$ components: first scenario of modular decomposition.

Theorem (Illé, 1993)

D(G) recognises whether G is prime or not.

Can we reconstruct decomposable (non-prime) graphs?

• Prime graphs already have a rich structure theory, so reducing RC to prime graphs could be important.

Generalising using modular decomposition

Lemma

If G is decomposable, can reconstruct the skeleton.

Generalising using modular decomposition

Lemma

If G is decomposable, can reconstruct the skeleton.

Lemma

If G is decomposable, can reconstruct all the maximal proper modules.

• So we're done, right?

... not quite. :(

... not quite. :(

• How to put modules back into the skeleton?

... not quite. :(

• How to put modules back into the skeleton?

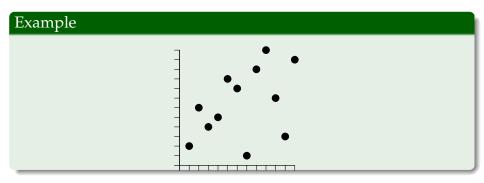
Theorem (B., Georgiou, Waters)

If a decomposable graph G contains a maximal module M for which some M - v is not a maximal module in the same orbit of the skeleton of G, then G is reconstructible.

• Roughly, this fails when the maximal modules of *G* form a hereditary property.

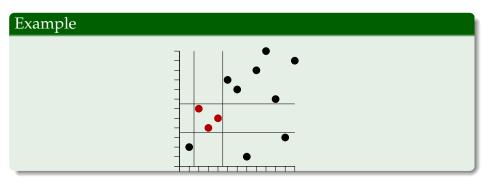
Intervals

- Module = interval.
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.



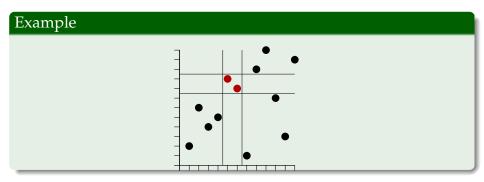
Intervals

- Module = interval.
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.



Intervals

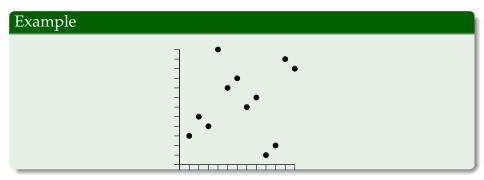
- Module = interval.
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.



Common interval: applies to a set Σ of permutations. Roughly, a set of points which each $\pi \in \Sigma$ maps to a contiguous set.

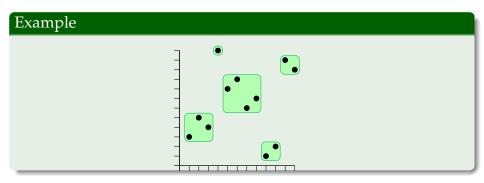
Important in gene sequence matching:

- "Reversal" = genetic mutation.
- Sorting by reversals: #steps to recover identity permutation.
- E.g. finding common ancestry of two species.

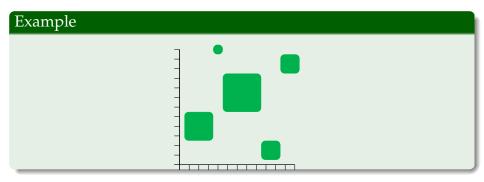


Robert Brignall (OU)

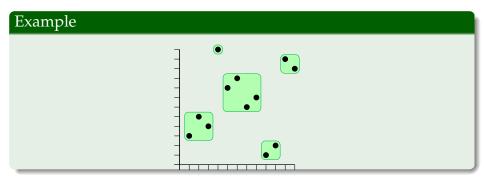
• Break permutation into maximal proper intervals.



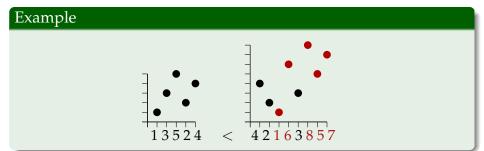
- Break permutation into maximal proper intervals.
- Gives a unique prime permutation. ("simple").



- Break permutation into maximal proper intervals.
- Gives a unique prime permutation. ("simple").
- Unique unless skeleton is 12 or 21.

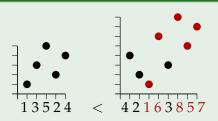


Pattern avoiding permutations 101



• Pattern containment: a partial order, $\sigma \leq \pi$.

Pattern avoiding permutations 101



- Pattern containment: a partial order, $\sigma \leq \pi$.
- Permutation class: downset in this ordering:

 $\pi \in \mathcal{C}$ and $\sigma \leq \pi$ implies $\sigma \in \mathcal{C}$.

• Avoidance: classes defined by minimal set of forbidden elements:

$$\mathcal{C} = \operatorname{Av}(B) = \{ \pi : \beta \leq \pi \text{ for all } \beta \in B \}.$$

Modular decomposition can help to answer questions such as:

- Enumeration: how many permutations in *C* of length *n*?
- Structure: what do permutations in *C* look like?
- Algorithms for the membership problem: is $\pi \in C$?

Permutation classes with only finitely many prime permutations behave well:

• Membership problem "is $\pi \in C$?" answered in linear time.

Permutation classes with only finitely many prime permutations behave well:

- Membership problem "is $\pi \in C$?" answered in linear time.
- Albert and Atkinson (2005):
 - They have a finite set of minimal forbidden elements.
 - They are well quasi-ordered (no infinite antichains).
 - They are enumerated by algebraic generating functions.

In fact...

Algebraic Generating Functions Everywhere!

Theorem (B., Huczynska and Vatter, 2008)

In a permutation class *C* with only finitely many prime permutations, the following sequences have algebraic generating functions:

- the number of permutations in C_n [Albert and Atkinson],
- the number of even permutations in C_n ,
- the number of involutions in C_n ,
- the number of permutations in C_n avoiding any finite set of blocked or barred permutations ("generalised" patterns),
- the number of alternating permutations in C_n ,
- the number of **Dumont** permutations in C_n ,
- ...,
- and any (finite) combination of the above.

Prime graphs are the elemental building blocks, simplifying studies in, e.g.

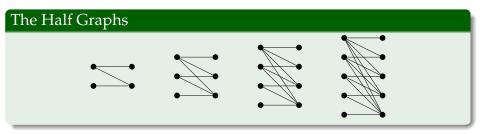
- Clique-width:
 cw(G) = max{cw(H) : H is a prime induced subgraph of G}.
- Well quasi-order: just like with permutations.
- Graph reconstruction?

Prime structure

Theorem (Schmerl and Trotter, 1993)

Every prime graph contains a prime induced subgraph on 1 or 2 fewer vertices.

Up to complements, one family where two vertices must be deleted:



- Prime graph *G*: *k*-subcritical: exactly *k* vertices for which *G* − *v* is prime.
- i.e. half-graphs are "0-subcritical" (= critical).

Paths are 2-subcritical

• • • • • • • •

- Need \geq 5 vertices.
- Delete either leaf: get a shorter path.
- Delete any other vertex: graph is disconnected.

- Prime graph *G*: *k*-subcritical: exactly *k* vertices for which *G* − *v* is prime.
- i.e. half-graphs are "0-subcritical" (= critical).

Paths are 2-subcritical

- Need \geq 5 vertices.
- Delete either leaf: get a shorter path.
- Delete any other vertex: graph is disconnected.

- Prime graph *G*: *k*-subcritical: exactly *k* vertices for which *G* − *v* is prime.
- i.e. half-graphs are "0-subcritical" (= critical).

Paths are 2-subcritical

• • • • • • • •

- Need \geq 5 vertices.
- Delete either leaf: get a shorter path.
- Delete any other vertex: graph is disconnected.

- Prime graph *G*: *k*-subcritical: exactly *k* vertices for which *G* − *v* is prime.
- i.e. half-graphs are "0-subcritical" (= critical).

Paths are 2-subcritical

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

- Need \geq 5 vertices.
- Delete either leaf: get a shorter path.
- Delete any other vertex: graph is disconnected.

- Prime graph *G*: *k*-subcritical: exactly *k* vertices for which *G* − *v* is prime.
- i.e. half-graphs are "0-subcritical" (= critical).

Paths are 2-subcritical

• • • • • • • •

- Need \geq 5 vertices.
- Delete either leaf: get a shorter path.
- Delete any other vertex: graph is disconnected.

- Prime graph *G*: *k*-subcritical: exactly *k* vertices for which *G* − *v* is prime.
- i.e. half-graphs are "0-subcritical" (= critical).

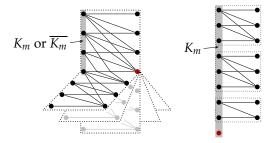
Paths are 2-subcritical

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

- Need \geq 5 vertices.
- Delete either leaf: get a shorter path.
- Delete any other vertex: graph is disconnected.

Classifying 1-subcriticals

- Classified by Belkhechine, Boudabbous and Elayech (2010).
- B., Georgiou: shorter method, following Schmerl and Trotter.
- Structure: variations on the half graph.



2-subcriticals and beyond

- Work in progress...
- Complete classification ⇒ direct proof of Illé's recognition procedure for prime graphs.
- Two basic infinite families: paths and *A*_ns:

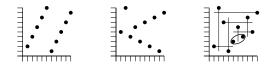
- Full range of 2-subcriticals formed from *P_n* or *A_n* by building "half graphs" everywhere...
- Suggests a general approach for *k*-subcriticals?

Ramsey theory of prime graphs

Graph theoretic analogue of the following?

Theorem (B., Huczynska and Vatter, 2008)

Every prime permutation of length at least $2(256k^8)^{2k}$ contains a prime permutation of length at least 2k from one of three families.



For permutations, we have a decision procedure:

Theorem (B., Ruškuc and Vatter, 2008)

It is decidable if a permutation class defined by a finite set of forbidden elements contains only finitely many prime permutations.

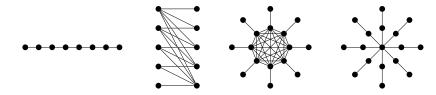
Theorem (Bassino, Bouvel, Pierrot, Rossin, 2012+)

Decision procedure can be done in polynomial time (w.r.t. forbidden elements).

Similar results would follow for hereditary properties of graphs.

Probable unavoidable substructures

The list of prime structures should include:



- Permutation case does not seem to translate.
- Can *k*-subcriticals help?

Thanks!