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Setting the Scene

Permutation of length n: an ordering on the symbols 1, . . . , n.

For example: π = 15482763.

Graphical viewpoint: plot the points (i, π(i)).

Example

Robert Brignall (OU) Grid Classes 9th June 2011 3 / 35



Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

4213
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

213

4
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

13

2
4
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

3

1
2
4
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

31

2
4
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

312

4
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

12

3
4
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

123

4
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

1234
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

231
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

31

2
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

1

2
3
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

1

2
3

231 is not stack-sortable.
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Stack Sorting

Knuth (1969): what permutations can be sorted through a stack?

Example

· · · a · · · b · · · c · · ·

231 is not stack-sortable.

In general: can’t sort any permutation with a subsequence abc
such that c < a < b. (abc forms a 231 “pattern”.)
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Permutation Containment

Write permutations in one-line notation, e.g. τ = 13524.

A permutation τ = τ(1) · · · τ(k) is contained in the permutation
σ = σ(1)σ(2) · · · σ(n) if there exists a subsequence
σ(i1)σ(i2) · · · σ(ik) order isomorphic to τ.

Example

1 3 5 2 4 < 4 2 1 6 3 8 5 7
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Permutation Classes

Containment is a partial order on the set of all permutations.

Recall: downsets are permutation classes. i.e. π ∈ C and σ ≤ π

implies σ ∈ C.

Each class has a unique set of minimal forbidden elements. Write

C = Av(B) = {π : β 6≤ π for all β ∈ B}.

B is (unfortunately) called the basis.
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Easy Examples

Av(21) = {1, 12, 123, 1234, . . .}, the increasing permutations.

Av(12) = {1, 21, 321, 4321, . . .}, the decreasing permutations.

Typical Elements

Robert Brignall (OU) Grid Classes 9th June 2011 7 / 35



Easy Examples

⊕21 = Av(321, 312, 231) = {1, 12, 21, 123, 132, 213, . . .}.

⊖12 = Av(123, 213, 132) = {1, 12, 21, 231, 312, 321, . . .}.

Typical Elements
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Questions

Given a permutation class C:

Basis: C = Av(B) for some B. Is B finite?

Well-quasi-order: Does C contain infinite antichains?

Structure: What do the permutations in C look like?

Enumeration: How many of length n? Asymptotics?
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Exact Enumeration

Cn – permutations in C of length n.

∑ |Cn|x
n is the generating function.

Example

The generating function of C = Av(12) is:

1 + x + x2 + x3 + · · · =
1

1 − x

Robert Brignall (OU) Grid Classes 9th June 2011 9 / 35



Exact Enumeration

Cn – permutations in C of length n.

∑ |Cn|x
n is the generating function.

Example

The generating function of ⊕21 = Av(231, 312, 321) is:

1 + x + 2x2 + 3x3 + · · · =
1

1 − x − x2
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Asymptotic Enumeration

Cn – permutations in C of length n.

Theorem (Marcus and Tardos, 2004)

For every permutation class C other than the class of all permutations, there
exists a constant K such that

lim sup
n→∞

n

√

|Cn| ≤ K.

Big open question: does the growth rate, lim
n→∞

n

√

|Cn|, always exist?
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Small Growth Rates

Growth rate of C is lim
n→∞

n

√

|Cn| (if it exists).

Below κ ≈ 2.20557, growth rates exist and can be characterised
[Vatter, 2011]:

0 1 φ 2 κ

κ is the lowest growth rate where we encounter infinite
antichains, and hence uncountably many permutation classes.

The proof of this uses grid classes.
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Increasing Oscillations: an Infinite Antichain

(Infinite) set of pairwise incomparable permutations.

Two typical elements

Need to show there is no embedding of one in the other.
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Increasing Oscillations: an Infinite Antichain

(Infinite) set of pairwise incomparable permutations.

Two typical elements

Anchor: bottom copies of 4123 must match up.
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Increasing Oscillations: an Infinite Antichain

(Infinite) set of pairwise incomparable permutations.

Two typical elements

Each point is matched in turn.
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Two typical elements

Each point is matched in turn.

Robert Brignall (OU) Grid Classes 9th June 2011 12 / 35



Increasing Oscillations: an Infinite Antichain

(Infinite) set of pairwise incomparable permutations.

Two typical elements

Each point is matched in turn.
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Increasing Oscillations: an Infinite Antichain

(Infinite) set of pairwise incomparable permutations.

Two typical elements

Last pair cannot be embedded.
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Increasing Oscillations: an Infinite Antichain

(Infinite) set of pairwise incomparable permutations.

Two typical elements

Alternatively, make a graph: for i < j, i ∼ j iff π(i) > π(j)
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Increasing Oscillations: an Infinite Antichain

(Infinite) set of pairwise incomparable permutations.

Two typical elements

Neither is the induced subgraph of the other.
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Increasing Oscillations are Important

At κ ≈ 2.20557, we find permutation classes that contain the
increasing oscillating antichain.

Above λ ≈ 2.48188, every real number is the growth rate of a
permutation class [Vatter, 2010].
The proof builds classes based on this antichain.

0 1 φ 2 κ λ

From order to chaos: What lies between κ and λ?
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Grid Classes

Idea: describe complicated classes in terms of easier ones.

Matrix M whose entries are (infinite) permutation classes.

Grid(M) the grid class of M: all permutations which can be
“gridded” so each cell satisfies constraints of M.

Example

Let M =

(

Av(21) Av(231) ∅

Av(123) ∅ Av(12)

)

.

∈ Grid(M)
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Monotone Grid Classes

Special case: all cells of M are Av(21) or Av(12).

Rewrite M as a matrix with entries in {0, 1,−1}.

Example

M =





1 1 0
−1 0 1
0 1 −1




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Rewrite M as a matrix with entries in {0, 1,−1}.

Example

M =





1 1 0
−1 0 1
0 1 −1





Robert Brignall (OU) Grid Classes 9th June 2011 15 / 35



Basis of Grid Classes

Question

Given a grid class Grid(M), what is its basis? (Is it finite?)

A complete answer to this question seems a very long way off. . .
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Juxtapositions: 1 × k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Proof.

Basis elements formed by gluing basis elements of C and D together:

Red: Basis element of C.
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Juxtapositions: 1 × k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Proof.

Basis elements formed by gluing basis elements of C and D together:

Green: Basis element of D, overlaps by (at most) 1 with red.
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Juxtapositions: 1 × k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Proof.

Basis elements formed by gluing basis elements of C and D together:

Can we grid it? If line too far right: LHS is bad.
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Juxtapositions: 1 × k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Proof.

Basis elements formed by gluing basis elements of C and D together:

Line too far left: RHS is bad.
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Juxtapositions: 1 × k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Proof.

Basis elements formed by gluing basis elements of C and D together:

Crossover point: permutation not in Grid(C D).
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Basis: 2 × 2 Grids

Lemma (Albert, Atkinson, B., 2010)

The grid classes

C D C D C D

are finitely based, for finitely based classes C and D.

Proof: same kind of arguments to 1 × 2 case.

Does not obviously extend to 2 × k.
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Geometric Grid Classes

Fill a square grid with 45◦ lines.

Make permutations by choosing points from these lines.

These are not just monotone grid classes:

Example

GGrid
( )

= Av(2143, 2413, 3142, 3412)

is a subclass of:
Grid

( )

= Av(2143, 3412)

Theorem (Albert, Atkinson, Bouvel, Ruškuc, Vatter, 2010)

Every geometric grid class is finitely based.
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Basis: Some final comments

Strong belief that all monotone grid classes are finitely based.
(Not just geometric ones.)

Grid

(

∅ Av(321654)
Av(321654) ∅

)

is not finitely based:
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More geometry

Theorem (Albert et al)

Geometric grid classes can be encoded by a regular language, and therefore
have rational generating functions.

Proof.

(Homage to Nik Ruškuc for the illustration.)
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Practical enumeration

Test ground: count classes avoiding two permutations of length 4.

Up to symmetry, four we can use this on:

Av(1324, 4312) Av(2143, 4231)

Av(2143, 4312) Av(2143, 4321)

Each class is the union of several geometric grid classes.
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Enumerating Av(2143, 4312)

Theorem (Albert, Atkinson, B., 2011)

Av(2143, 4312) has generating function

1 − 13x + 69x2 − 191x3 + 294x4 − 252x5 + 116x6 − 23x7

(1 − x)2(1 − 3x)2(1 − 3x + x2)2

Proof.

This class is contained in , and so is the union of:

Enumeration of these classes is fiddly. . .
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Enumerating Av(2143, 4231)

Theorem (Albert, Atkinson, B., 2010)

Av(2143, 4231) has generating function

1 − 12x + 60x2 − 162x3 + 259x4 − 252x5 + 146x6 − 46x7 + 8x8

(1 − x)4(1 − 3x)(1 − 3x + x2)2

Proof.

This class is the union of:
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Well-quasi-order

Recall: well-quasi-order = no infinite antichains.

Theorem (Vatter and Waton, 2007)

Geometric grid classes are well-quasi-ordered.

Proof.

Geometric grid classes can be encoded by words over a finite
alphabet.

Words are wqo by Higman’s Lemma.
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The Graph of a Matrix

Graph of a matrix, G(M), formed by connecting together all
non-zero entries that share a row or column and are not
“separated” by any other nonzero entry.

Example
































C 0 0 D

0 0 E 0

D E 0 C

0 0 0 D
































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When monotone = geometric

For a monotone gridding matrix M:

Lemma (Albert et al)

GGrid(M) = Grid(M) if and only if the graph of M is a forest.

Proof idea: you can “iron out” kinks in the lines when there are no
cycles.

Corollary

Monotone grid classes of forests are well-quasi-ordered.
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Monotone grids and well-quasi-order

Theorem (Murphy and Vatter, 2003)

The monotone grid class Grid(M) is wqo if and only if G(M) is a forest.

Proof.

(⇒) Construct infinite antichains that “walk” around a cycle.
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Griddability

Idea: Want wqo for general permutation classes. When does this
result hold?

C is D-griddable if there exists a finite matrix M whose entries are
(subclasses of) D, and C ⊆ Grid(M).
Roughly, every permutation in C can be “chopped up” and shown
to lie in Grid(M).

Monotone griddable: a class C is the subclass of a monotone grid
class.
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When is a class griddable?

Question

When is a class C monotone griddable?

Answer [Huczynska & Vatter, 2006]

A class C is monotone griddable if and only if it contains neither the
classes ⊕21 nor ⊖12.

More generally: D-griddable classes can be characterised for any
class D [Vatter, 2011].
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Beyond monotone

What can we say about infinite antichains for general grid classes?

Next stage: allow cells labelled by ⊕21 and ⊖12.

Example
























Av(21) 0 0 Av(21)

0 ⊖12 0 0

⊕21 0 Av(12) 0

0 0 0 ⊕21
























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Beyond monotone

What can we say about infinite antichains for general grid classes?

Next stage: allow cells labelled by ⊕21 and ⊖12.

Example
























Av(21) Av(21)

⊖12

⊕21 Av(12)

⊕21

























Can assume graph is a forest, but the number of
non-monotone-griddable cells in each component matters.
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.
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Proof.
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Just one non-monotone per component

Simple permutations are the “building blocks” of permutation classes.

Theorem (B.)

If the non-monotone cell contains only finitely many simple permutations,
then the grid class is wqo.
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But sometimes one is too much...

One cell containing arbitrarily long increasing oscillations next to
a monotone cell is bad...

Mind the gap: between finite simples and infinite oscillations, not
(yet) known.
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Thanks!
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