Infinite Antichains: from Permutations to Graphs

Robert Brignall

The Open University

Monday 4th April, 2011

Orderings on Structures

• Pick your favourite family of combinatorial structures.

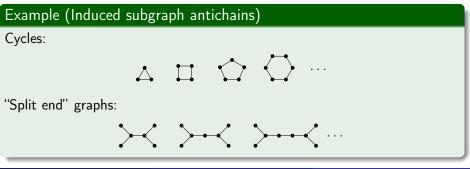
E.g. graphs, permutations, tournaments, posets, ...

Orderings on Structures

- Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, ...
- Give your family an ordering.
 - E.g. graph minor, induced subgraph, permutation containment, ...

Orderings on Structures

- Pick your favourite family of combinatorial structures.
 E.g. graphs, permutations, tournaments, posets, ...
- Give your family an ordering.
 E.g. graph minor, induced subgraph, permutation containment, ...
- Does your ordering contain infinite antichains? i.e. an infinite set of pairwise incomparable elements.



No infinite antichains – well-quasi-ordered.

- Words over a finite alphabet with subword ordering [Higman, 1952].
- Trees ordered by topological minors [Kruskal 1960; Nash-Williams, 1963]
- Graphs closed under minors [Robertson and Seymour, 1983-2004].

Infinite antichains.

- Graphs closed under induced subgraphs (or merely subgraphs).
- Permutations closed under containment.
- Tournaments, digraphs, posets, ... with their natural induced substructure ordering.

Question

In your favourite ordering, which downsets contain infinite antichains?

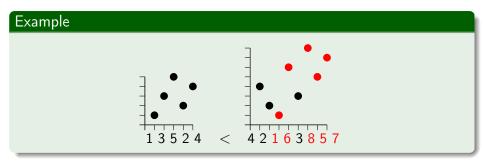
• Downset (or hereditary property): set \mathcal{P} of objects such that

$$G \in \mathcal{P}$$
 and $H \leq G$ implies $H \in \mathcal{P}$.

- e.g. triangle-free graphs (induced) subgraph ordering.
- For permutation containment, these are called permutation classes. e.g. the class of "stack sortable" permutations.

Permutation Containment

- Write permutations in one-line notation, e.g. $\tau = 13524$.
- A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .



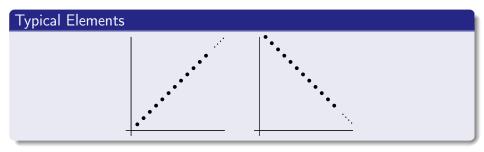
- Containment is a partial order on the set of all permutations.
- Recall: downsets are permutation classes. i.e. $\pi \in C$ and $\sigma \leq \pi$ implies $\sigma \in C$.
- Each class has a unique set of minimal forbidden elements. Write

$$\mathcal{C} = \mathsf{Av}(B) = \{ \pi : \beta \not\leq \pi \text{ for all } \beta \in B \}.$$

B is (unfortunately) called the basis.

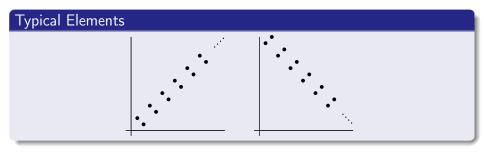
• Av(21) = $\{1, 12, 123, 1234, ...\}$, the increasing permutations.

• $\mathsf{Av}(12)=\{1,21,321,4321,\ldots\},$ the decreasing permutations.



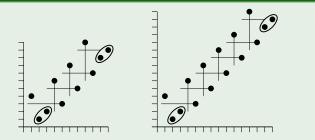
•
$$\oplus 21 = Av(321, 312, 231) = \{1, 12, 21, 123, 132, 213, \ldots\}.$$

• $\ominus 12 = Av(123, 213, 132) = \{1, 12, 21, 231, 312, 321, \ldots\}.$

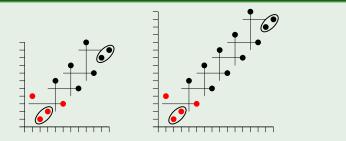


CGT 2011

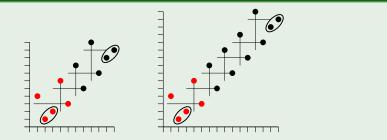
7 / 17



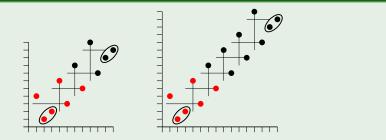
• Need to show there is no embedding of one in the other.



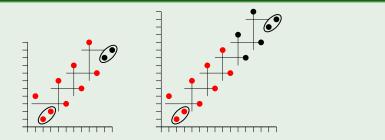
• Anchor: bottom copies of 4123 must match up.



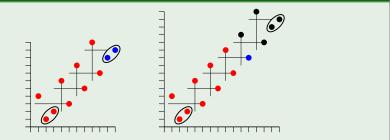
• Each point is matched in turn.



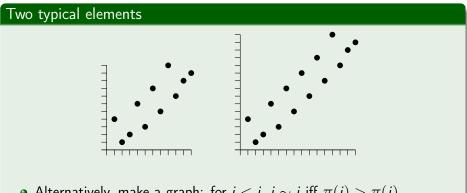
• Each point is matched in turn.



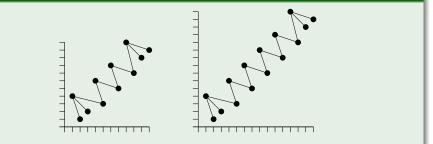
• Each point is matched in turn.



• Last pair cannot be embedded.



• Alternatively, make a graph: for i < j, $i \sim j$ iff $\pi(i) > \pi(j)$



• The split end antichain!

Aside: Asymptotic Enumeration

- C_n permutations in C of length n.
- Growth rate of C is $\lim_{n\to\infty} \sqrt[n]{|C_n|}$ (if it exists).
- Below $\kappa \approx 2.20557$, growth rates exist and can be characterised [Vatter, 2007+]:
- - At κ, we find the increasing oscillating antichain, and hence uncountably many permutation classes. The proof uses grid classes (more later).
 - Above $\lambda \approx 2.48188$, every real number is the growth rate of a permutation class [Vatter, 2010]. The proof builds classes based on this antichain.
 - From order to chaos: What lies between κ and λ ?

Grid Classes

- Hot topic: Crucial tool to study the structure of classes.
- Matrix \mathcal{M} whose entries are (infinite) permutation classes.
- Grid(\mathcal{M}) the grid class of \mathcal{M} : all permutations which can be "gridded" so each cell satisfies constraints of \mathcal{M} .

Example

• Let
$$\mathcal{M} = \begin{pmatrix} Av(21) & Av(231) & \emptyset \\ Av(123) & \emptyset & Av(12) \end{pmatrix}$$
.

Robert Brignall (OU)

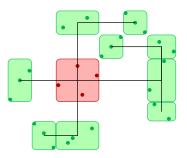
There are some related concepts in graph theory:

- Split graphs: graphs that can be partitioned into a clique and an independent set.
- Canonical properties, used in asymptotic enumeration ("speeds") of hereditary properties [Balogh, Bollobás and Weinreich]
- Matrix partitions of graphs [Feder and Hell]

Grid Classes and Well-quasi-order

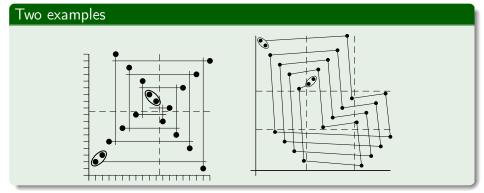
[B., 2009+]

- A general construction for infinite antichains in all but one family of grid classes.
- Within this family, proof that certain grid classes are well-quasi-ordered.

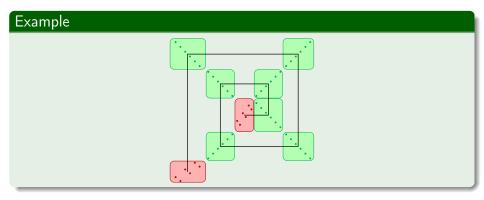


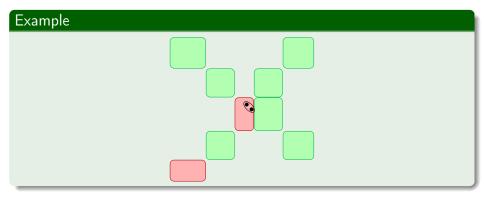
Antichains round Cycles

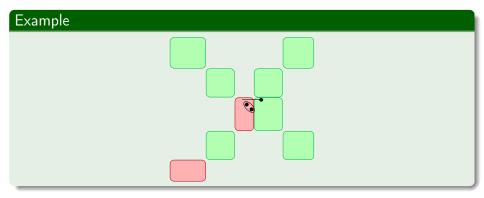
• Murphy and Vatter, 2003: Build an antichain by placing points sequentially around a "cycle".

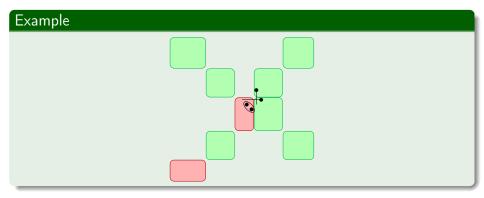


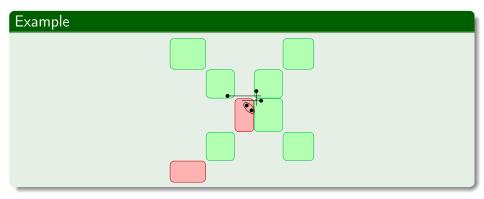
• N.B. Each non-empty cell is monotone.

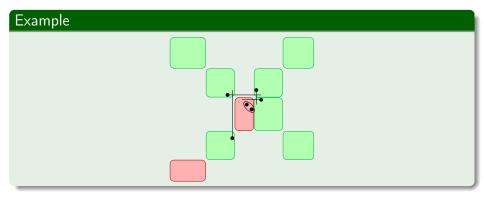


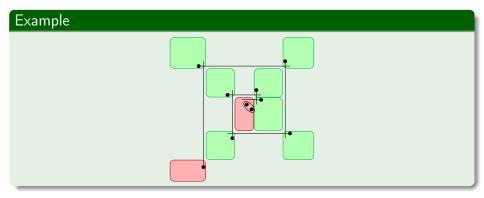


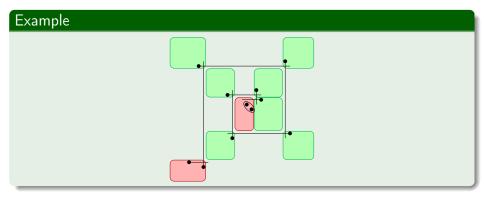


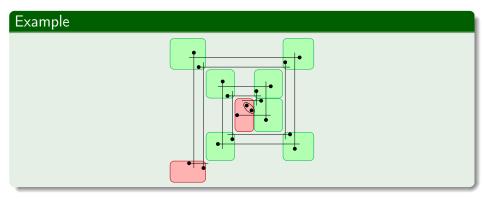


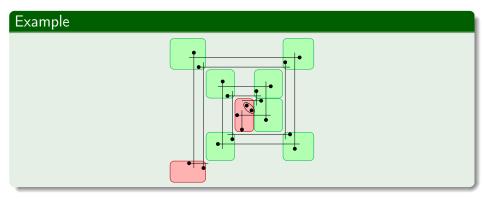


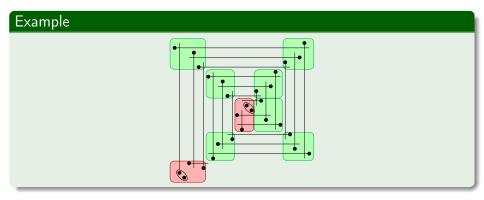












To Graphs...

• Two cheap results...

Conjecture (Ding, 1992)

The hereditary property of permutation graphs that do not contain (as an induced subgraph) a path or the complement of a path on $n \ge 5$ vertices is well-quasi-ordered.

Counterexample becomes (roughly)

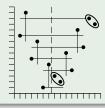
Double-split graphs

- Double-split graph: partitions into a matching, and the complement of a matching.
- As seen in the strong perfect graph theorem [Chudnovsky, Robertson, Seymour and Thomas, 2006].
- Hereditary property: take the downward closure. It is characterised by 44 minimal forbidden graphs [Alexeev, Fradkin, Kim, 2010]

Double-split graphs

- Double-split graph: partitions into a matching, and the complement of a matching.
- As seen in the strong perfect graph theorem [Chudnovsky, Robertson, Seymour and Thomas, 2006].
- Hereditary property: take the downward closure. It is characterised by 44 minimal forbidden graphs [Alexeev, Fradkin, Kim, 2010]
- ... but it is not well-quasi-ordered:

Turn this into a graph



Robert Brignall (OU)

Infinite Antichains

CGT 2011

16 / 17

Thanks!

