Grid Classes

Robert Brignall

The Open University

Tuesday 15th November, 2011

Outline

Introduction

- Permutation classes
- Enumeration
- Antichains

Grid Classes

- Grid classes
- Monotone grids
- Basis
- 3 Grid Enumeration
 - Geometry is Rational
 - Practical Work
- Well-quasi-order
 - General grids

Setting the Scene

- Permutation of length *n*: an ordering on the symbols 1, ..., *n*.
- For example: $\pi = 15482763$.
- Graphical viewpoint: plot the points $(i, \pi(i))$.

Example		

• Knuth (1969): what permutations can be sorted through a stack?

• 231 is not stack-sortable.

- 231 is not stack-sortable.
- In general: can't sort any permutation with a subsequence *abc* such that *c* < *a* < *b*. (*abc* forms a 231 "pattern".)

Permutation Containment

- Write permutations in one-line notation, e.g. $\tau = 13524$.
- A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .

- Containment is a partial order on the set of all permutations.
- Recall: downsets are permutation classes. i.e. *π* ∈ *C* and *σ* ≤ *π* implies *σ* ∈ *C*.
- Each class has a unique set of minimal forbidden elements. Write

$$\mathcal{C} = \operatorname{Av}(B) = \{ \pi : \beta \leq \pi \text{ for all } \beta \in B \}.$$

B is (unfortunately) called the basis.

Easy Examples

Av(21) = {1,12,123,1234,...}, the increasing permutations.
Av(12) = {1,21,321,4321,...}, the decreasing permutations.

Easy Examples

•
$$\oplus 21 = Av(321, 312, 231) = \{1, 12, 21, 123, 132, 213, \ldots\}.$$

• $\oplus 12 = Av(123, 213, 132) = \{1, 12, 21, 231, 312, 321, \ldots\}.$

Given a permutation class C:

- Enumeration: How many of length *n*? Asymptotics?
- Structure: What do the permutations in *C* look like?
- Basis: C = Av(B) for some *B*. Is *B* finite?
- Well-quasi-order: Does C contain infinite antichains?

Exact Enumeration

- C_n permutations in C of length n.
- $\sum |C_n| x^n$ is the generating function.

Example

The generating function of C = Av(12) is:

$$1 + x + x^2 + x^3 + \cdots = \frac{1}{1 - x}$$

Exact Enumeration

- C_n permutations in C of length n.
- $\sum |C_n| x^n$ is the generating function.

Example

The generating function of $\oplus 21 = Av(231, 312, 321)$ is:

$$1 + x + 2x^2 + 3x^3 + \dots = \frac{1}{1 - x - x^2}$$

Asymptotic Enumeration

• C_n – permutations in C of length n.

Theorem (Marcus and Tardos, 2004)

For every permutation class C other than the class of all permutations, there exists a constant K such that

$$\limsup_{n\to\infty}\sqrt[n]{|\mathcal{C}_n|}\leq K.$$

• Big open question: does the growth rate, $\lim_{n\to\infty} \sqrt[n]{|C_n|}$, always exist?

Small Growth Rates

- Growth rate of C is $\lim_{n\to\infty} \sqrt[n]{|C_n|}$ (if it exists).
- Below $\kappa \approx 2.20557$, growth rates exist and can be characterised [Vatter, 2011]:

- *κ* is the lowest growth rate where we encounter infinite antichains, and hence uncountably many permutation classes.
- The proof of this uses grid classes.

• (Infinite) set of pairwise incomparable permutations.

• Need to show there is no embedding of one in the other.

Ro	bert	Brigna	11 ((OU)	
		Digna	1	(00)	

• (Infinite) set of pairwise incomparable permutations.

• Anchor: bottom copies of 4123 must match up.

Robert Brignall (OU)

Increasing Oscillations are Important

- At $\kappa \approx 2.20557$, we find permutation classes that contain the increasing oscillating antichain.
- Above λ ≈ 2.48188, every real number is the growth rate of a permutation class [Vatter, 2010]. The proof builds classes based on this antichain.

• From order to chaos: What lies between κ and λ ?

Grid Classes

- Idea: describe complicated classes in terms of easier ones.
- Matrix \mathcal{M} whose entries are (infinite) permutation classes.
- Grid(\mathcal{M}) the grid class of \mathcal{M} : all permutations which can be "gridded" so each cell satisfies constraints of \mathcal{M} .

Example

Robert Brignall (OU)

Grid Classes

Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

Question

Given a grid class $Grid(\mathcal{M})$, what is its **basis**? (Is it finite?)

• A complete answer to this question seems a very long way off...

Lemma (Atkinson, 1999)

 $\textit{Grid}(\mathcal{C} \ \mathcal{D})$ is finitely based if \mathcal{C} and \mathcal{D} are finitely based.

Proof.

- $\pi \in \operatorname{Grid}(\mathcal{C} \mathcal{D})$: can draw a vertical line through π so that:
 - Points to the left of the line lie in *C*.
 - Points to the right lie in \mathcal{D} .

Basis elements of $\operatorname{Grid}(\mathcal{C} \mathcal{D})$: minimal permutations so that for any vertical line, we can find a basis element of \mathcal{C} on the left, or \mathcal{D} on the right (or both).

Lemma (Atkinson, 1999)

 $Grid(\mathcal{C} \mathcal{D})$ is finitely based if \mathcal{C} and \mathcal{D} are finitely based.

Proof.

Basis elements formed by gluing basis elements of ${\mathcal C}$ and ${\mathcal D}$ together:

• Red: Basis element of C.

Lemma (Atkinson, 1999)

 $Grid(\mathcal{C} \mathcal{D})$ is finitely based if \mathcal{C} and \mathcal{D} are finitely based.

Proof.

Basis elements formed by gluing basis elements of ${\mathcal C}$ and ${\mathcal D}$ together:

• Green: Basis element of \mathcal{D} , overlaps by (at most) 1 with red.

Lemma (Atkinson, 1999)

 $Grid(\mathcal{C} \mathcal{D})$ is finitely based if \mathcal{C} and \mathcal{D} are finitely based.

Proof.

Basis elements formed by gluing basis elements of ${\mathcal C}$ and ${\mathcal D}$ together:

• Can we grid it? If line too far right: LHS is bad.

Lemma (Atkinson, 1999)

 $Grid(\mathcal{C} \mathcal{D})$ is finitely based if \mathcal{C} and \mathcal{D} are finitely based.

Proof.

Basis elements formed by gluing basis elements of ${\mathcal C}$ and ${\mathcal D}$ together:

• Line too far left: RHS is bad.

Lemma (Atkinson, 1999)

 $Grid(\mathcal{C} \mathcal{D})$ is finitely based if \mathcal{C} and \mathcal{D} are finitely based.

Proof.

Basis elements formed by gluing basis elements of ${\mathcal C}$ and ${\mathcal D}$ together:

• Line too far left: RHS is bad.

Lemma (Atkinson, 1999)

 $Grid(\mathcal{C} \mathcal{D})$ is finitely based if \mathcal{C} and \mathcal{D} are finitely based.

Proof.

Basis elements formed by gluing basis elements of ${\mathcal C}$ and ${\mathcal D}$ together:

• Crossover point: permutation not in $Grid(\mathcal{C} \mathcal{D})$.

Lemma (Atkinson, 1999)

 $Grid(\mathcal{C} \mathcal{D})$ is finitely based if \mathcal{C} and \mathcal{D} are finitely based.

Proof.

Basis elements formed by gluing basis elements of ${\mathcal C}$ and ${\mathcal D}$ together:

• Total points needed bounded by size of basis elements of *C* and *D*.

Lemma (Albert, Atkinson, B., 2011+)

The grid classes

are finitely based, for finitely based classes C and D.

- Proof: same kind of arguments to 1×2 case.
- Does not obviously extend to $2 \times k$.

Geometric Grid Classes

- Fill a square grid with 45° lines.
- Make permutations by choosing points from these lines.
- These are not just monotone grid classes:

$$\operatorname{Grid}\left(\underbrace{\boldsymbol{\times}}\right) = \operatorname{Av}(2143, 3412)$$

Theorem (Albert, Atkinson, Bouvel, Ruškuc, Vatter, 2011)

Every geometric grid class is finitely based.

Basis: Some final comments

• Strong belief that all monotone grid classes are finitely based. (Not just geometric ones.)

More geometry

Theorem (Albert, Atkinson, Bouvel, Ruškuc, Vatter, 2011)

Geometric grid classes can be encoded by a regular language, and therefore have rational generating functions.

Proof.

- Test ground: count classes avoiding two permutations of length 4.
- Up to symmetry, four we can use this on:

Av(1324, 4312) Av(2143, 4231)

Av(2143,4312) Av(2143,4321)

• Each class is the union of several geometric grid classes.

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Av(2143, 4312) – refining the gridding

Lemma

Av(2143, 4312) is equal to

Proof.

- 4312 is a basis element of Grid (
- Look at embeddings of 2143 what does this exclude?

Finishing off Av(2143, 4312)

Theorem (Albert, Atkinson, B., 2011)

a2

Av(2143,4312) has generating function

$$\frac{1 - 13x + 69x^2 - 191x^3 + 294x^4 - 252x^5 + 116x^6 - 23x^7}{(1 - x)^2(1 - 3x)^2(1 - 3x + x^2)^2}$$

Proof idea

Use encoding:

Theorem (Albert, Atkinson, B., 2010)

Av(2143, 4231) has generating function

$$\frac{1 - 12x + 60x^2 - 162x^3 + 259x^4 - 252x^5 + 146x^6 - 46x^7 + 8x^8}{(1 - 3x)(1 - x)^4(1 - 3x + x^2)^2}$$

Proof.

This class is the union of:

- Av(2143, 4321): Structure is established, but haven't bothered to do the enumeration (yet).
- Av(1324, 4312): We know the structure (but can we prove it?).
- Real aim: To turn these ad hoc methods into something routine/automatic.

Well-quasi-order

Recall: well-quasi-order = no infinite antichains.

Theorem (Vatter and Waton, 2007)

Geometric grid classes are well-quasi-ordered.

Proof.

- Geometric grid classes can be encoded by words.
- Words are wqo by Higman's Lemma.

The Graph of a Matrix

• Graph of a matrix, *G*(*M*), formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

Robert Brignall (OU)

Grid Classes

The Graph of a Matrix

• Graph of a matrix, *G*(*M*), formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

The Graph of a Matrix

• Graph of a matrix, *G*(*M*), formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

Robert Brignall (OU)

Grid Classes

When monotone = geometric

• For a monotone gridding matrix \mathcal{M} :

Lemma (Albert, Atkinson, Bouvel, Ruškuc, Vatter, 2011) $GGrid(\mathcal{M}) = Grid(\mathcal{M})$ if and only if the graph of \mathcal{M} is a forest.

• Proof idea: you can "iron out" kinks in the lines when there are no cycles.

Corollary

Monotone grid classes of forests are well-quasi-ordered.

Monotone grids and well-quasi-order

Theorem (Murphy and Vatter, 2003)

The monotone grid class $Grid(\mathcal{M})$ *is wqo if and only if* $G(\mathcal{M})$ *is a forest.*

Proof.

 (\Rightarrow) Construct infinite antichains that "walk" around a cycle.

- Idea: Want wqo for general permutation classes. When can results for grid classes be used?
- *C* is *D*-griddable if there exists a finite matrix *M* whose entries are (subclasses of) *D*, and *C* ⊆ Grid(*M*).
 Roughly, every permutation in *C* can be "chopped up" and shown to lie in Grid(*M*).
- Monotone griddable: a class *C* is the subclass of a monotone grid class.

When is a class griddable?

Question

When is a class C monotone griddable?

Answer [Huczynska & Vatter, 2006]

A class C is monotone griddable if and only if it contains neither the classes $\oplus 21$ nor $\oplus 12$.

• More generally: *D*-griddable classes can be characterised for any class *D* [Vatter, 2011].

Beyond monotone

- What can we say about infinite antichains for general grid classes?
- Next stage: allow cells labelled by $\oplus 21$ and $\ominus 12$.

Example						
	(Av(21)	0	0	Av(21)	
		0	⊖12	0	0	
		⊕21	0	Av(12)	0	
		0	0	0	⊕21 /	

Beyond monotone

- What can we say about infinite antichains for general grid classes?
- Next stage: allow cells labelled by $\oplus 21$ and $\ominus 12$.

• Can assume graph is a forest, but the number of non-monotone-griddable cells in each component matters.

```
Robert Brignall (OU)
```

Grid Classes

Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not wqo.

Theorem (B.)

Theorem (B.)

Theorem (B.)

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not wqo.

Proof.

Just one non-monotone

Simple permutations are the "building blocks" of permutation classes.

Theorem (B.)

If the non-monotone cell contains only finitely many simple permutations, then the grid class is wqo.

But sometimes one is too much...

• One cell containing arbitrarily long increasing oscillations next to a monotone cell is bad...

• Mind the gap: between finite simples and infinite oscillations, not (yet) known.

Thanks!